+ All Categories
Home > Documents > FRET - Förster Resonance Energy Transfer || Data

FRET - Förster Resonance Energy Transfer || Data

Date post: 23-Dec-2016
Category:
Upload: niko
View: 232 times
Download: 3 times
Share this document with a friend
102
Part Four Supporting Information and Conclusions FRET Förster Resonance Energy Transfer: From Theory to Applications, First Edition. Edited by Igor Medintz and Niko Hildebrandt. Ó 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA. j 655
Transcript
Page 1: FRET - Förster Resonance Energy Transfer || Data

Part FourSupporting Information and Conclusions

FRET – Förster Resonance Energy Transfer: From Theory to Applications, First Edition.Edited by Igor Medintz and Niko Hildebrandt.� 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.

j655

Page 2: FRET - Förster Resonance Energy Transfer || Data
Page 3: FRET - Förster Resonance Energy Transfer || Data

14DataAlice G. Byrne, Matthew M. Byrne, George Coker III, Kelly B. Gemmill,Christopher Spillmann, Igor Medintz, Seth L. Sloan, and B. Wieb van der Meer

In this chapter, we present FRET data using the following tables:

These tables contain F€orster distances and other information about donorsand acceptors. The chromophores, donors, and/or acceptors belong to threegroups:

1) Traditional probes (i.e., probes that are neither fluorescent proteins nor quantumdots)

2) Fluorescent proteins3) Quantum dots

Table Description

Table 14.1 The Steinberg R0 tableTable 14.2 The Fairclough–Cantor R0 tableTable 14.3 The Kawski R0 tableTable 14.4 The 17 “families” of traditional dyesTable 14.5 The official names of the dyes in Table 14.6Table 14.6 Donor–acceptor pairsTable 14.7 Acceptor–donor pairsTable 14.8 New traditional probes (more recent than 1993)Table 14.9 Selected data on fluorescent protein donor–acceptor

interactionsTable 14.10 Quantum dot donor to non quantum dot acceptor tableTable 14.11 Non quantum dot donor to quantum dot acceptor tableTable 14.12 Table of quantum dot–quantum pairsTable 14.13 (andFigure 14.26)

Donor–acceptor pairs with a F€orster distance in a givenrange

j657

FRET – Förster Resonance Energy Transfer: From Theory to Applications, First Edition.Edited by Igor Medintz and Niko Hildebrandt.� 2014 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2014 by Wiley-VCH Verlag GmbH & Co. KGaA.

Page 4: FRET - Förster Resonance Energy Transfer || Data

The tables are either previously published tables with information on traditionalprobes or new tables for traditional probes that are more recent than 1993,fluorescent proteins, and quantum dots. The previously published tables are theSteinberg table (Table 14.1) [1], the Fairclough–Cantor table (Table 14.2) [2], theKawski table (Table 14.3) [3], and the set of tables published by van der Meer, Coker,and Chen (Tables 14.4–14.8) [4]. These tables are presented exactly as they appearedpreviously with minor modifications: tables have been renumbered, distances are

given in nanometers instead of A�ngstr€om, a percent difference column has been

added to Table 14.6, printing errors that created duplicate data, and other similarerrors have been rectified. Moreover, donor–acceptor pair numbers (abbreviated asD:A No.) have been added to all tables about pairs. The sole purpose of this donor–acceptor pair number is to enable convenient cross-referencing. For example, onecan search for a pair by first selecting an acceptor in Table 14.7, followed by findingan appropriate donor in the same table, and then find more detailed information inTable 14.6 by locating the desired pair number. The first 12 tables are more or less inchronological order, but the final table (Table 14.13) contains information fromprevious tables and lists donor–acceptor pairs with F€orster distances in a givenrange, varying from 0–0.49 nm to more than 7 nm. In this table, the D:A pairnumber also plays an essential role. Figure 14.26 shows the frequency distributionof donor–acceptor pairs in a graphical form.

14.1Tables before 1987

The information of the Steinberg table [1] is given in Table 14.1, the table ofFairclough and Cantor [2] is presented in Table 14.2, and the homotransfer datapresented by Kawski [3] are shown in Table 14.3. Kawski has also collected data onthe F€orster distance for homotransfer between chlorophyll a molecules in varioustwo-dimensional solutions (for more recent data see Ref. [20] of Chapter 3). Thisdistance is in the 5.0–9.0 nm range. As already mentioned, these tables are identicalto the original tables except for minor changes and that the distances are in

nanometers (not in A�ngstr€oms) and that a donor–acceptor pair number is listed

for convenience.

14.2Introduction to the Table of Traditional Chromophores

Molecules or compounds that have been widely used as traditional FRETdonors oracceptors are listed in Table 14.5, in which the strongest long-wavelength absorptionpeak (ABS) and the wavelength of maximum fluorescence intensity (EM) are alsoshown. They are organized into 17 families, listed in Table 14.4, on the basis of theirparent molecular structure and are listed according to the order of their ABSs exceptfor the last two families, identified as L and O. Molecules or compounds in each of

658j 14 Data

Page 5: FRET - Förster Resonance Energy Transfer || Data

Table 14.1 The Steinberg R0 table.

D:A No. Donor–acceptor pair R0 [2/3] (nm)

1 Phenol–phenol 1.1–1.72 Indole–indole 1.6–2.33 Phenol–indole 1.5–1.94 Phe–Phe 0.5–0.75 Phe–Tyr 1.2–1.36 Phe–Trp 1.6–1.97 Phe–Tyr� 1.458 Tyr–Phe 0.29 Tyr–Tyr 0.7–0.910 Tyr–Trp 1.3–1.511 Tyr–Tyr� 1.3–1.512 Trp–Tyr 0.2113 Trp–Trp 0.5–0.714 Trp–Tyr� 0.8–1.315 Tyr�–Trp 0.4316 Phe–CO:heme 2.217 Trp–heme 2.518 Phe–CO:heme 3.1–3.719 Trp–heme 2.820 Tyr–ITyr 1.3421 Tyr–I2Tyr 1.4922 Tyr–thyroxine 1.7423 Trp–ITyr 0.7924 Trp–I2Tyr 1.0525 Trp–thyroxine 1.5426 Tyr–DNS 2.027 Trp–DNS 2.128 DNS–DNS 0.929 DNS–heme (Fe3þ) 5.830 DNS–heme (Fe2þ) 6.331 ANS–ANS 2.432 Trp–anthraniloyl 2.033 Trp–PMP 1.6–2.4a)

34 PMP–PMP 0.735 Trp–Cu:transferrin 1.836 Trp–Fe: transferrin 2.137 Trp–Cu:O2 hemocyanin 2.75b)

38 Tyr–NADH 2.539 Trp–NADH 2.5

Data onR0 [2/3], the F€orster distance at k2¼ 2/3, for various donor–acceptor pairs fromRef. [1], in which

details and the original references can be found. D:A No.: donor–acceptor pair number. Phe:phenylalanine, Tyr: tyrosine, Tyr�: ionized tyrosine, ITyr: monoiodotyrosine, I2Tyr: diiodotyrosine,Trp: tryptophan, DNS: 1-dimethyl-aminonaphthalene-5-sulfonate, ANS: 1-anilinonaphthalene-8-sulfo-nate, PMP: pyridoxamine-5-phosphate.a) Range covers four different proteins.b) pH 6.6.

14.2 Introduction to the Table of Traditional Chromophores j659

Page 6: FRET - Förster Resonance Energy Transfer || Data

the first 15 families contain a common chromophoric moiety. In general, thismoiety is responsible for the similar spectral feature of all the family members.However, conjugation with biomolecules or simple modifications may sometimesshift their absorption peak positions quite drastically. The extent of the shiftdepends on the conjugation position of the biomolecule or substituent functionalgroup in relation to the parent and/or on its electron-donating strength. Theabsorption and emission spectra may also be affected significantly by environ-mental factors such as the pH of the aqueous medium, concentrations ofquenching species, and the solvent polarity.In the following discussion, a short description of each of these 17 families is

presented,includingtheirchemicalstructures,mostofwhichweregenerouslyprovidedbyMolecular Probes, Inc., which is nowpart of Invitrogen. Formore detailed optical orchemical reactivity information about a certain dye with which biomolecules can bemodified, see Ref. [182] (see also Refs [133] and [183].

Table 14.2 The Fairclough–Cantor R0 table.

D:A No. Donor QD tD (ns) Acceptor emax x 10 – 4

(M – 1 cm – 1)Jl (OLI) R0 [2/3]

(nm)

21 DNS 0.1–0.2 15–20 FITC 4.2–4.8 7.9–15.9

3.3–4.1

22 DNS 0.1–0.2 15–20 RITC 1.2 3.1 2.8–3.123 Trp 0.10 2 ANS 0.6 — 2.224 AEDANS 0.1–0.5 13–17 FITC 4.2–4.8 7.9–16 3.3–4.825 FITC 0.5 4 RITC 1.2 5.0 4.026 AEDANS 0.1–0.5 13–17 NBD 2.0 4.6 3.0–3.927 AEDANS 0.1–0.5 13–17 pf 3.3 3.9 2.9–3.828 Trp 0.10 2 AEDANS 0.65 0.7 2.229 NBD 0.1–0.5 — RITC 1.2 4.8 3.0–3.9

Data for various donor–acceptor pairs from Ref. [2], in which details can be found.The eight columns have the following information:D:A No. Donor–acceptor pair number, introduced just above Section 14.1Donor DonorQD Donor quantum yield in the absence of transfertD (ns) The lifetime of the donor in the absence of transfer in nanosecondsAcceptor Acceptoremax� 10�4

(M�1 cm�1)The highest value of the molar extinction coefficient of the acceptor in the unitsindicated

Jl (OLI) The overlap integral in wavelength form expressed in OLI units (see Chapter 2and Table 14.6)

R0 [2/3](nm)

F€orster distance at k2¼ 2/3 nm

DNS: 1-dimethylaminonaphthalene-5-sulfonate, Trp: tryptophan, AEDANS: N-((acetylamino)ethyl)-5-naphthylamine-1-sulfonic acid, FITC: fluorescein isothiocyanate, NBD: 7-nitrobenzo-2-oxa-1,3-diazol,RITC: rhodamine isothiocyanate, ANS: 1-anilino-naphthalene-8-sulfonate, pf: proflavine.

660j 14 Data

Page 7: FRET - Förster Resonance Energy Transfer || Data

Table 14.3 The Kawski R0 table.

D:A No. Fluorophore and solvent R0(anisotropy)(nm)

R0(spectra)(nm)

49 Rhodamine B in a cellulose acetate film 5.03� 0.1 4.90� 0.150 Rhodamine B in glycerol–water (740 poise) 5.03 5.0551 Fluorescein in glycerol with 5% water (v/v) 4.18 4.3052 Anthracene in a cellulose acetate film 2.17� 0.05 1.99� 0.153 2-Methylanthracene in a cellulose acetate film 2.04� 0.05 1.97� 0.0554 5-Methyl-2-phenyl-indole in a cellulose acetate film 1.85� 0.05 1.72� 0.05F€orster distances for homotransfer in three-dimensional solutions, from Ref. [3], in whichdetails can be found.

D:A No. Donor–acceptor pair number, introduced just above Section 14.1Fluorophoreand solvent

Fluorophore and solvent

R0

(anisotropy)F€orster distance obtained from anisotropy versus concentration data

R0 (spectra) F€orster distance derived from the equation given inTable 14.6 (see Chapter 2)

Table 14.4 The 17 “families” of traditional dyes (see pages 695–704 for more information aboutthese families).

Identifier Members/description/common chromophore

T Tyrosine, tryptophan, indole, and phenolQ Nucleotide analogues, such as eADP, TNP-AMP, and Y-ATPA ANSI IAEDANSD DNSM Membrane probes: the parinaric acids, DHE, and DPHP PyreneS StilbeneH AnthraceneC CoumarinB BimaneN NBDF FluoresceinE EosinR RhodamineL Lanthanide and transition elementsO Others that do not fit in the preceding categories

These families consist of dyes with a common chromophore or of dyes that are spectroscopically closelyrelated. They are listed in order of absorption wavelength except the last two: from the T-family, wherethe absorption occurs near 280 nm, to the R-family, which absorbs near 540 nm, followed by the L-and0-families. One letter (identifier) stands for the name of the family. A detailed description is given in thetext. This table is adapted from Ref. [4].

14.2 Introduction to the Table of Traditional Chromophores j661

Page 8: FRET - Förster Resonance Energy Transfer || Data

Table 14.5 The official names of the dyes given in Table 14.6.

Official name (common name or abbreviation) ABS EM

T: Tryptophan/tyrosine family

Tryptophan (TRP) 270–295 330–344

3-(2-Aminoethyl)indole (3-AI) 272 330

Indole 272 330

Tyrosine 276 288

Q: Nucleotide analogues

1-N(6)-Ethenoadenosine-50-diphosphate (eATP) 300 410

Co(NH3)4 ATP 365 None

20,30-O-(2,4,6-Trinitrophenyl)adenosine-5-diphosphate (TNP-ADP) 408 530–570

20,30-O-(2,4,3-Trinitrophenyl)adenosine monophosphate (TNP-AMP) 408 530–570

20,30-O-(1,4,6-Trinitrocyclohexadienylidine)adenosine-50-triphosphate(TNP-ATP)

408 530–570

CrATP 430 None

6-40-((4-(Dimethylamino)-phenyl)azo)-2-iodoacetanilide-mercaptopurine ribonucleic triphosphate (6-Y-ATP)

465 None

8-40-((4-(Dimethylamino)-phenyl)azo)-2-iodoacetanilide-mercaptopurine ribonucleic triphosphate (8-Y-ATP)

468 None

A: ANS Family

2-(40-Maleimidoanilino)naphthalene-6-sulfonic acid (MIANS) 318 432

2-(4-(Iodoacetamido)anilino)naphthalene-6-sulfonic acid (IAANS) 329 463

N-((Acetylamino)ethyl)-5-naphthylamine-1-sulfonic acid (AEDANS) 337 520

1-Anilinonaphthalene-8-sulfonic acid (1,8-ANS) 370 482

I: IAEDANS family

5-((2-(Iodoacetyl)amino)ethyl)amino)-naphthalene-1-sulfonic acid(1,5-IAEDANS)

337 520

N-(Iodoacetylaminoethyl)-2-aminonaphthalene-6-sulfonic acid(2,6-IAEDANS)

357 412

D: DNS family

N-(2-Dimethylaminonaphthalene-6-sulfonyl)-phosphatidylethanolamine (2,6-DPE)

260 425

N-(1-Dimethylaminonaphthalene-5-sulfonyl)-phosphatidylethanolamine (1,5-DPE)

270 530

N-(2-Dimethylaminonaphthalene-5-sulfonyl)-phosphatidylethanolamine (2,5-DPE)

280 480

Dansyl dipalmitoylphosphatidylethanolamine (DDPPE) 333 518

Dansyl dimyristoylphosphatidylethanolamine (DDMPE) 340 520

1-Dimethylamino-5-sulfonylnaphthalene (DASN) 340 578

Dansylaziridine (DNZ) 340 539

Dansyl chloride (DNS-CI) 340 578

662j 14 Data

Page 9: FRET - Förster Resonance Energy Transfer || Data

Dansyl glutamylglycylarginyl (DEGR) 340 530

4-Dimethylaminoazobenzene-4-sulfonyl chloride (Dabsyl chloride) 423 None

M: Membrane probes

cis-Parinaric acid (c -PnA) 318 410

trans-Parinaric acid (t -PnA) 318 410

Dehydroergosterol (DHE) 324 380

1,6-Diphenyl-1,3,5-hexatriene (DPH) 348 426

P: Pyrene family

N-(1-Pyrene)maleimide (1-NPM) 343 376

Pyrenebutyl-methylphosphonofluoridate (PBMPF) 346 376

N-(3-Pyrenyl)maleimide (NPR) 342 376

Dimethyldiazaperopyrenium (DDPP) 342 376

1-Methylpyrenoate (1-MP) 342 378

Pyrenebutylmethylphosphonate (PBMP) 342 378

S: Stilbene family

4,40-Dinitrostilbene-2,20-disulfonate (DNDS) 352 444

2,5-Dimethoxystilbene-40-maleimide (DMSM) 361 420

Dimethylamino-4-maleimidostilbene (DMAMS) 361 420

H: Anthracene family

N-Methylanthraniloyl (NMA) 350 425

Anthraniloyl (ANTHO) 352 442

9-Anthroyloubain (9-AO) 352 442

Anthroylpalmitate (AP) 352 442

16-(9-Anthroyloxy)palmitic acid (16-AP) 359 475

6-(9-Anthroyloxy)stearic acid (6-AS) 359 470

9-(9-Anthroyloxy)stearic acid (9-AS) 359 475

2-(9-Anthroyloxy)stearic acid (2-AS) 360 469

7-(9-Anthroyloxy)stearic acid (7-AS) 360 474

12-(9-Anthroyloxy)stearic acid (12-AS) 360 471

3-(9-Anthroyloxy)stearic acid (3-AS) 362 463

Anthracene (ANTHR) 375 400

9,10-Diphenylanthracene (DPA) 382 415

9-Vinylanthracene (9-VA) 385 425

9-Methylanthroate (9-MA) 386 412

C: Coumarin family

7-Dimethylaminocoumarin-4-acetamide (DACA) 368 459

7-Diethylamino-3-(40-maleimido-phenyl)-4-methylcoumarin (CPM) 385 471

7-Diethylaminocoumaric-4-phenylsuccinimidyl-thioamidinyl(CPM-SH)

385 471

(continued )

14.2 Introduction to the Table of Traditional Chromophores j663

Page 10: FRET - Förster Resonance Energy Transfer || Data

B: Bimane family

Monobromotrimethylammoniobimane (qBBr) 378 470

Monobromobimane (mBBr) 396 480

N: NBD family

4-Chloro-7-nitrobenzo-2-oxa-1,3-diazol (NBD chloride) 337 None

4-(N-(Iodoacetoxy)ethyl-N-methylamino)-7-nitrobenz-2,1,3-oxadiazol(IANBD)6-(7-Nitrobenz-2-oxa-1,3-diazol-4-yI)amino-pentyl-methyl-phosphonofluoridate (NBDPF)

485 530

6-(7-Nitrobenz-2-oxa-1,3-diazol-4-yI)amino-hexanoic Add (NBDAH) 488 530

F: Fluorescein family

Acetamidofluorescein (AF) 490 520

Fluorescein-5-maleimide (FM) 490 515

5(6)-Carboxyfluorescein (6CF) 490 515

5-(Iodoacetamido) fluorescein (IAF or 5-IAF) 490 520

Fluorescein thiosemicarbazide (FTC) 492 519

40,50-Dimethoxy-6-carboxy fluorescein (DCF) 492 520

Fluorescein-50-isothiocyanate (FITC) 494 520

Fluorescein mercuric acetate (FMA) 494 520

5(N-Dodecanoylamino) fluorescein (DAF) 495 521

5-(N-Hexadecanoylamino) fluorescein (HAF) 495 521

Fluorescein-6-carboxylic acid (FCA) 495 519

Hexadecylaminofluorescein (HDF) 495 521

Fluorescein thiocarbamyl phosphatidylethanolamine (FTP) 497 521

E: Eosin family

5-(N-Hexadecanoylamino)eosin (HAE) 520 550

5-(Iodoacetamido)eosin (IAE) 520 544

Eosin-5-maleimide (EM) 523 545

Eosin isothiocyanate (EITC) 530 560

N-Eosin-N0-phosphatidylethanolamine (EPE) 530 570

N-Eosin-N0-phosphatidylethanolaminothiourea (EPEU) 530 570

R: Rhodamine family

Tetramethylrhodamine 5(and 6)-maleimide (MTMR) 540 568

Tetramethylrhodamine 5(and 6)-iodoacetamide (ITMR) 547 573

Octadecylrhodamine B chloride (ORB) 556 577

Rhodamine B (RB) 560 579

Table 14.5 (Continued)

Official name (common name or abbreviation) ABS EM

664j 14 Data

Page 11: FRET - Förster Resonance Energy Transfer || Data

Rhodamine isothiocyanate (RITC) 560 590

L: Lanthanide and transition elements

Chromium (III) (Cr(III)) 532 687

Europium (III) (Eu (III)) 580

Tris(2,20-bipyridyl)ruthenium(II) (TBPR) 456

Cobalt(II) (Co(II))

Cobalt-EDTA (CoEDTA)

Praseodymium (Pr)

Terbium (III) (Tb(III)) 270 550

O: Other (listed alphabetically by abbreviation)

Acetylcholinesterase (AChE) 290 333

Bilirubin (BILI)

Bacteriorhodopsin (BTR)

Benzoquinonium (BZQ)

cis-Eleostearic acid (cis -ESA)

Chlorine e6 (Cl-e6) 402 670

4-(Dimethyamino)azobenzene-40-maleimide (DABmal) 419 None

4-Dimethylamino-phenylazophenyl-40-maleimide (DABMI) 419 None

2,6-Dichloro-4-aminophenol iloprost (DCHPA)

N-(4-(Dimethylamino)-3,5-dinitrophenyl)-maleimide (DDPM) 442 None

3-(4-(p-N,N-Didecylaminostyryl)-1-pyridinium)-propylsulfonate(Di-10-ASPPS)Dibucaine 365 385

1,10-Dioctadecyl-3,3,30,30-tetramethylindocarbo-cyanine iodide(DiIC18(3))

547 571

1,10-Dioctadecyl-3,3,30,30-tetramethyIindo-dicarbo-cyanine iodide(DiIC18(5))

642 675

3,30-Ditetradecyloxacarbocyanine perchlorate (DiOC(10)-(3)) 490 540

3-N-(2,4-Dinitrophenyl)aminoproprion-amidinyl (aDNP) 475 None

(4-((4-(Dimethylamino)phenyl)azo)phenyl)-iodoacetamide (DPAPIA) 417 None

Erythrosin-50-isothiocyanate (ErlTC) 536 555

Ethidium 526 605

Flavin adenine dinucleotide (FAD) 360 520

1,5-Difluoro-2,4-dinitrobenzene (F(2)DNB) 332 None

4,40-Difiuoro-3,30-dinitrosulfone (F(2)DPS) 370 None

Filipin

Formycin 290 None

Formycin A-50-triphosphate (FTP) 315 350

Hexadecanoylamino acridine (HDA)

Heme A 418 None

(continued )

14.2 Introduction to the Table of Traditional Chromophores j665

Page 12: FRET - Förster Resonance Energy Transfer || Data

Heme C 410 None

Heme

Heme (whole b5)

Cytosol hemoglobin (CytHemo)

2-Methylnaphthoate (2-MN)

(2-Methoxy-1-naphthyl)methyl (MNA)

Naphthyl-N-acetyl (NA) 290 350

N-(p-(Benzoxazolyl)phenyl)maleimide (NBPM) 340 380

Naphthylcholinamide (NCA)

N-Naphthyl-23,24-dinor-5-cholen-22-amide-3b-ol (NCAD)

N-Acetyl-p-(p-(dimethylamino)phenyl)azo)-aniline (N-DPAA) 510

N-Cyclohexyl-N0-(4-dimethylamino-1-naphthyl)-carbodiimide (NCD-4)

Octadecyl naphthalene sulfonic acid (ONSA)

Pyridoxamine phosphate (PDAP) 325 395

Pyridoxal-50-phosphate (PDP) 388 None

Porphyrin 404 622

Proflavin

Propidium 493 630

Retinal 560

Rifampican

50-(p-Sulfobenzoyl)-2-aza-1, N(6)-ethenoadenosine (50-SBeA) 395 420

Succinimidyl-3-(2-pyridylthio)-proprionate (SPDP) 260 None

Trinitrobenzene sulfonate (TNBS) 480 None

a-Tocopherol 360 387

The common name or an abbreviation of the dye’s name is given in bold within parentheses, if available.ABS denotes in most cases the wavelength, in nanometers, of the strongest long-wavelength absorptionpeak. EM stands for the wavelength, in nanometers, of maximum fluorescence intensity. The dyes areorganized by “family” (see text). Within the families the dyes with the lowest ABS are listed first exceptin the family of “Other dyes,” which are listed alphabetically by abbreviation. If the quantum yield isnegligible, the EM is given as None. If the ABS and/or EM is not known, no value is given.)

Table 14.5 (Continued)

Official name (common name or abbreviation) ABS EM

666j 14 Data

Page 13: FRET - Förster Resonance Energy Transfer || Data
Page 14: FRET - Förster Resonance Energy Transfer || Data
Page 15: FRET - Förster Resonance Energy Transfer || Data
Page 16: FRET - Förster Resonance Energy Transfer || Data
Page 17: FRET - Förster Resonance Energy Transfer || Data
Page 18: FRET - Förster Resonance Energy Transfer || Data
Page 19: FRET - Förster Resonance Energy Transfer || Data
Page 20: FRET - Förster Resonance Energy Transfer || Data
Page 21: FRET - Förster Resonance Energy Transfer || Data
Page 22: FRET - Förster Resonance Energy Transfer || Data
Page 23: FRET - Förster Resonance Energy Transfer || Data
Page 24: FRET - Förster Resonance Energy Transfer || Data
Page 25: FRET - Förster Resonance Energy Transfer || Data
Page 26: FRET - Förster Resonance Energy Transfer || Data
Page 27: FRET - Förster Resonance Energy Transfer || Data
Page 28: FRET - Förster Resonance Energy Transfer || Data

Table 14.7 Acceptor–donor pairs with data for the F€orster distance.

D:A No. Acceptor Donor R0 (nm)

55 T: TRP T: TRP 1.213 T: TRP 0.5–0.76 Phe 1.6–1.910 Tyr 1.3–1.515 Tyr� 0.4356 Q: TNP-ATP T: TRP 2.598 A: MIANS 3.2211 P: NPM 3.4230 S: DMSM 3.8272 C: CPM 4.2297 F: FM 3.8308 F: FITC 3.2329 E: EM 2.583 Q: TNP-ADP Q: eADP 5.184 Q: eADP 4.885 Q: eADP 4.38119 I: 1,5-IAEDANS 3.28120 I: 1,5-IAEDANS 3.09121 I: 1,5-IAEDANS 4.03122 I: 1,5-IAEDANS 3.94361 O: ISA 3.4368 O: 50-SBeA 2.2117 Q: TNP-AMP I: 1,5-IAEDANS 4.32118 Q: TNP I: 1,5-IAEDANS 3.05212 Q: Co(NH3)4ATP P: NPM 1.27270 C: CPM 1.52292 N: NBPM 1.32213 Q: CrATP P: NPM 1.25271 C: CPM 1.46293 N: NBPM 1.15123 Q: 6-Y-ATP I: 1,5-IAEDANS 4.1124 Q: 8-Y-ATP I: 1,5-IAEDANS 4.157 A: ANSmal T: TRP 2.9458 T: TRP 2.668 A: ANTHY T: TRP 2.047 A: AEDANS T: TRP 2.259 I: 1,5-1 AEDANS T: TRP 1.8560 T: TRP 2.1361 T: TRP 2.262 D: DNS-Cl T: TRP 2.1194 D: DNS-Cl 3.06377 O: FTP 2.4463 D: DNS T: TRP 2.2373 O: NA 2.08374 O: NA 2.7226 Tyr 2.027 T: TRP 2.1

682j 14 Data

Page 29: FRET - Förster Resonance Energy Transfer || Data

28 D: DNS 0.981 D: DNS-Amide T: Indole 2.4382 T: Indole 2.6186 D: DDPM Q: eADP 2.9287 Q: eADP 3.1188 Q: eADP 2.75114 A: 1,8-ANS 3.3125 I: 1,5-IAEDANS 2.74126 I: 1,5-IAEDANS 2.9193 D: DNS-Cl 2.19214 P: NPM 2.53294 N: NBPM 2.47383 D: DDMPE O: NCAD 2.16179 D: 2,5-DPE D: 2,6-DPE 2.55180 D: 2,6-DPE 2.2864 M: c-PnA T: TRP 2.865 M: DHE T: TRP 2.3366 P: NPM T: TRP 2.799 A: MIANS 1.7215 P: NPM 2.0231 S: DMSM 1.5273 C: CPM 2.0357 P: PI O: AChE 2.19358 P: PBMP O: AChE 2.55359 P: PI & PBMP O: AChE 2.65380 P: 1-MP O: Dimetianiline 2.567 S: DMSM T: TRP 2.8216 S: DMAMS P: NPM 3.8217 S: DNDS P: NPM 2.65236 C: DACA H: NMA 3.38369 O:MNA 3.24375 H: n-AS O: Dibucaine 2.1379 O: a-Tocopherol 1.4206 H: ANTHR M: t-PnA 1.569 C: CPM T: TRP 3.1100 A: MIANS 3.0218 P: NPM 2.32219 P: NPM 3.4226 P: PBMPF 4.0232 S: DMSM 2.5274 C: CPM 3.1298 F: FM 1.4330 E: EM 1.1237 C: CPM-SH H:NMA 4.7489 B: mBBr Q: eADP 2.72290 Q: eADP 3.10493 N: IANBD ester Q: eADP 4.0127 N: IANBD I: 1,5-IAEDANS 5.09128 I: 1,5-IAEDANS 4.62129 I: 1,5-IAEDANS 3.0

(continued )

14.2 Introduction to the Table of Traditional Chromophores j683

Page 30: FRET - Förster Resonance Energy Transfer || Data

288 B: mBBr 3.1220 N: NBD P: NPM 3.16221 P: NPM 3.9296 N: NBD 2.845 A: AEDANS 3.0–3.9227 N: NBDPF P: PBMPF 2.97228 N: NBDAH P: PBMPF 3.27275 N: NBD-MANC C: CPM 3.96295 N: NBD-CI N: NBPM 3.13386 O: PDP 1.1370 F: FM T: TRP 2.771 T: TRP 2.5101 A: MIANS 3.4222 P: NPM 3.4233 S: DMSM 4.6279 C: CPM 4.8280 C: CPM 4.8281 C: CPM 4.8299 F: FM 4.9300 F: FM 4.7331 E: EM 3.094 F: 5-IAF Q: eADP 4.5695 Q: eADP 3.751103 A: MIANS 4.15107 A: IAANS 3.45108 A: IAANS 3.11130 I: 1,5-IAEDANS 5.03131 I: 1,5-IAEDANS 4.02132 I: 1,5-IAEDANS 4.05133 I: 1,5-IAEDANS 4.2134 I: 1,5-IAEDANS 4.33–4.98135 I: 1,5-IAEDANS 5.51136 I: 1,5-IAEDANS 4.35137 I: 1,5-IAEDANS 4.8138 I: 1,5-IAEDANS 4.59139 I: 1,5-IAEDANS 4.922140 I: 1,5-IAEDANS 4.5141 I: 1,5-IAEDANS 4.0142 I: 1,5-IAEDANS 4.72143 I: 1,5-IAEDANS 4.4144 I: 1,5-IAEDANS 5.2186 D: DNZ 3.69187 D: DNZ 4.19277 C: CPM 3.8278 C: CPM 4.0102 F: FITC A: MIANS 4.21145 I: 1,5-IAEDANS 4.9

Table 14.7 (Continued)

D:A No. Acceptor Donor R0 (nm)

684j 14 Data

Page 31: FRET - Förster Resonance Energy Transfer || Data

146 I: 1,5-IAEDANS 4.44147 I: 1,5-IAEDANS 4.04148 I: 1,5-IAEDANS 4.34149 I: 1,5-IAEDANS 4.81150 I: 1,5-IAEDANS 4.38151 I; 1,5-IAEDANS 4.09152 I; 1,5-IAEDANS 4.9264 H: AO 4.7289 B: mBBr 3.77385 O: NCD-4 3.1240 DNS 3.3–4.143 A: AEDANS 3.3–4.8110 F: AF A: AEDANS 4.3113 F: FIA A: 1,8-ANS 5.08153 F: FTC I: 1,5-IAEDANS 4.4154 I: 1,5-IAEDANS 4.7155 I: 1,5-IAEDANS 4.3156 I: 1,5-IAEDANS 4.2157 I: 1,5-IAEDANS 3.5287 B: qBBr 3.9196 F: HAF D: DNS-CI 3.6276 C: CPM 4.74209 M: c-PnA 2.7203 F: FTP M: DPH 4.5207 F: HDF M: t-PnA 2.84262 H: ANTHR 3.8267 H: AP 4.14382 O: NCA 2.59384 O: ONSA 3.64265 F: FMA H: AO 4.5328 F: FMA 3.74327 F: DCF F: FCA 6.2305 F: 6CF F: 6CF 5.08372 E: EM T: TRP 2.5104 A: MIANS 3.0223 P: NPM 3.0234 S: DMSM 4.6282 C: CPM 4.5283 C: CPM 4.5301 F: FM 5.7302 F: FM 5.7332 E: EM 4.3195 E: EITC D: DNS-Cl 4.6314 F: FITC 5.4158 E: IAE I: 1,5-IAEDANS 5.61188 D: DNZ 4.38189 D: DNZ 4.36190 D: DNZ 4.93181 E: EPE D: 2,6-DPE 3.75182 D: 2,6-DPE 3.91

(continued )

14.2 Introduction to the Table of Traditional Chromophores j685

Page 32: FRET - Förster Resonance Energy Transfer || Data

183 D: 1,5-DPE 4.6184 D: 1,5-DPE 4.87337 L: Tb(III) 4.56198 E: HAE D: DEGR 3.84199 D: DEGR 4.37313 F: FITC 5.30324 F: HAF 5.01309 E: C12-Eosin F: FITC 3.58310 F: FITC 4.16311 F: FITC 4.64312 F: FITC 4.51323 F: DAF 5.01191 R: ITMR D: DNZ 4.195192 R: MTMR D: DNZ 4.274235 S: DMSM 4.3284 C: CPM 4.1303 F: FM 5.5304 F: FM 5.5333 E: EM 4.6334 E: EM 4.6200 R: R18 D: DEGR 4.44201 D: DEGR 4.2202 D: DEGR 4.28241 H: 6-AS 4.2244 H: 9-AS 4.3252 H: 12-AS 4.5258 H: 3-AS 3.8320 F: FITC 5.32325 F: HAF 5.43306 R: SRB F: 6CF 5.826315 R: TRITC F: FITC 5.6317 F: FITC 4.07–6.17318 F: FITC 4.0319 F: FITC 5.6316 R: RITC F: FITC 5.644 F: FITC 4.041 DNS 2.8–3.148 NBD 3.0–3.9338 R: RB L: Tb(III) 6.5791 L: Co(II) Q: eADP 1.1492 Q: eADP 0.92159 I: 1,5-IAEDANS 1.40160 L: Pr(III) I: 1,5-IAEDANS 0.93339 L: Tb(III) 0.77340 L: Tb(III) 0.81354 L: Eu(III) 0.85355 L: Eu(III) 0.85

Table 14.7 (Continued)

D:A No. Acceptor Donor R0 (nm)

686j 14 Data

Page 33: FRET - Förster Resonance Energy Transfer || Data

341 L: Nd(III) L: Tb(III) 0.93342 L: Tb(III) 0.95352 L: Eu(III) 0.92353 L: Eu(III) 0.89343 L: Ho(III) L: Tb(III) 0.94344 L: Tb(III) 0.97345 L: Er(III) L: Tb(III) 0.81346 L: Tb(III) 0.84370 L: TBPR O: Retinal 3.0573 O: DCHPA T: TRP 1.6674 O: Formycin T: TRP 1.4106 A: MIANS 0.6225 P: NPM 0.975 O: cis-ESA T: TRP 1.676 O: BILI T: TRP 2.8210 M: c-PnA 3.077 O: DABMI T: TRP 2.8115 A: 1,8-ANS 3.49164 I: 1,5-IAEDANS 4.05165 I: 1,5-IAEDANS 3.89166 I: 1,5-IAEDANS 4.11167 I: 1,5-IAEDANS 4.08168 I: 1,5-IAEDANS 4.08169 I: 1,5-IAEDANS 4.15170 I: 1,5-IAEDANS 3.9171 I: 1,5-IAEDANS 4.08–4.15172 I: 1,5-IAEDANS 3.99173 I: 1,5-IAEDANS 4.38197 D: DNS-CI 3.02290 B: mBBr 3.579351 L: Tb(III) 3.2378 O: FTP 2.8278 O: Heme T: TRP 2.93111 A: AEDANS 3.6240 H: 16-AP 3.84243 H: 6-AS 3.77246 H: 9-AS 3.86250 H: 2-AS 3.63251 H: 7-AS 3.82257 H: 12-AS 4.02260 H: 3-AS 3.70261 H: 10-AS 3.9216 Phe-CO 2.217 T: TRP 2.518 Phe-CO 3.1–3.719 T: TRP 2.8174 O: Heme A I: 1,5-IAEDANS 3.6177 I: 2,6-IAEDANS 4.5365 O: Porphyrin 2.05–2.3161 O: Heme C I: 1,5-IAEDANS 3.8

(continued )

14.2 Introduction to the Table of Traditional Chromophores j687

Page 34: FRET - Förster Resonance Energy Transfer || Data

178 I: 2,6-IAEDANS 4.879 O: CI T: TRP 5.280 O: b-Napthol T: Tyrosine 1.9896 O: F2DPS Q: eADP 2.8997 O: F2DNB Q: eADP 3.09109 O: DPAPIA A: IAANS 3.22285 C: CPM 3.74105 O: FAD A: MIANS 1.77175 I: 1,5-IAEDANS 1.2224 P: NPM 2.7112 O: N-DPAA A: AEDANS 4.08116 O: CMNP A: 1,8-ANS 2.49162 O: TNBS I: 1,5-IAEDANS 3.1163 O: DiO(C14)3 I: 1,5-IAEDANS 5.7286 O: DiO(C10)3 C: CPM 5.17176 O: Proflavine I: 1,5-IAEDANS 3.8185 O: Di-10-ASPPS D: DDPPE 3.6204 O: Cl e6 M: DPH 3.62205 O: Retinal M: DPH 4.3335 R: R18 5.20–5.629336 R: R18 5.29–5.43356 L: TBPR 4.06366 O: DilC18(5) 4.89–5.58372 O: Retinal 4.90208 O: HDA M: t-PnA 2.11229 O: Ethidium P: DDPP 3.8238 O: aDNP H: NMA 3.29239 O: CytHemo H: 16-AP 3.45242 H: 6-AS 3.46245 H: 9-AS 3.54247 H: 2-AP 3.29249 H: 2-AS 3.34255 H: 12-AS 3.6256 H: 12-AS 4.6268 H: 9-VA 3.79248 O: Di-I-C18(3) H: 2-AS 4.6253 H: 12-AS 5.3269 H: DPA 3.7376 O: Filipin 4.9254 O: Di-I-C18(5) H: 12-AS 2.9259 H: 3-AS 3.1263 O: PERY H: ANTHR 3.35266 O: ErlTC H: AO 4.4307 F: 5-IAF 5.8321 F: FITC 6.2291 O: N-Rho-Pe N: NBD-PC 5.58322 O: eDNP-lys F: FITC 1.7

Table 14.7 (Continued)

D:A No. Acceptor Donor R0 (nm)

688j 14 Data

Page 35: FRET - Förster Resonance Energy Transfer || Data

326 O: HHC F: HAF 3.46347 O: Rifampican L: Tb(III) 2.78348 L: Tb(III) 2.35349 O: BTR L: Tb(III) 6.17350 O: NBDA L: Tb(III) 4.46360 O: BZQ O: AChE 2.44362 O: SBeA O: ISA 2.3363 O: PDP O: PDAP 2.62367 O:SPDP O: SPDP 6.8371 O: CoEDTA O: Retinal 1.24381 O: 2-MN O: Dimetianiline 1.11 Phenol Phenol 1.1–1.72 Indole Indole 1.6–2.33 Phenol 1.5–1.94 Phe Phe 0.5–0.78 Tyr 0.25 Tyr Phe 1.2–1.39 Tyr 0.7–0.912 T: TRP 0.217 Tyr� Phe 1.4511 Tyr 1.3–1.514 T: TRP 0.8–1.320 ITyr Tyr 1.3423 T: TRP 0.7921 I2Tyr Tyr 1.4924 T: TRP 1.0522 Thyroxine Tyr 1.7425 T: TRP 1.5429 Heme (Fe3þ) DNS 5.830 Heme (Fe2þ) DNS 6.331 ANS ANS 2.442 T: TRP 2.232 Anthraniloyl T: TRP 2.033 PMP T: TRP 1.6–2.434 PMP 0.735 Cu: transferrin T: TRP 1.836 Fe: transferrin T: TRP 2.137 Cu: O2 hemocyanin T: TRP 2.7538 NADH Tyr 2.539 T: TRP 2.546 pf A: AEDANS 2.9–3.8The information given in this table is contained in Tables 14.1, 14.2, and 14.6, but is rearrangedso that one can easily find a suitable donor for a certain acceptor.

The four columns contain the following information:D:A No. Donor–acceptor pair number, introduced just above Section 14.1Acceptor Acceptor, as Identifier (see Table 14.4): Name (see Table 14.5)Donor Donor, also in the format Identifier: NameR0 (nm) F€orster distance in nanometers

14.2 Introduction to the Table of Traditional Chromophores j689

Page 36: FRET - Förster Resonance Energy Transfer || Data

Table 14.8 New traditional probes (more recent than 1993).

D:A No. Donor Acceptor R0 (nm) References

387 1,5-DPE EPE 4.87 [125]388 2,5-DPE EPE 5.12 [125]389 2,6-DPE 2,5-DPE 2.28 [125]390 4,4-Difluoro-4-bora-3a,4a-

diaza-d-indacene (BODIPYFL)

4,4-Difluoro-4-bora-3a,4a-diaza-d-indacene(BODIPY FL)

5.7 [126]

391 5-IAF 5-TMRIA 3.4–4.0 [127]392 5-Methoxyquinazoline-2,4

(1H,3H)-dione-basedemissive uracil analogue

7-Diethyaminocoumarin-3-carboxylic acid

2.7 [128]

393 AEDANS TNP-ATP 4.14 [129]394 FLC 4.72 [129]395 FITC 4.71 [129]396 DABMI 4.00 [129]397 Fluorescein 4.4–4.8 [130]398 Alexa 488 Alexa 568 5.55–6.06 [131]399 Alexa 488 maleimide Alexa 594 maleimide 5.4 [132]400 AlexaFluor 350 QSY 35 4.7 [133]401 AlexaFluor 488 5.0 [134]402 Dabcyl 5.0 [133]403 AlexaFluor 488 QSY 35 4.4 [133]404 Dabcyl 4.9 [133]405 QSY 7 and QSY 9 6.4 [133]406 AlexaFluor 546 6.4 [134]407 AlexaFluor 555 7.0 [134]408 AlexaFluor 568 6.2 [134]409 AlexaFluor 594 6.0 [134]410 AlexaFluor 647 5.6 [134]411 AlexaFluor 546 QSY 35 2.5 [133]412 Dabcyl 2.9 [133]413 QSY 7 and QSY 9 6.7 [133]414 AlexaFluor 568 7.0 [134]415 AlexaFluor 594 7.1 [134]416 AlexaFluor 647 7.4 [134]417 AlexaFluor 555 QSY 7 and QSY 9 4.5 [133]418 AlexaFluor 594 4.7 [134]419 AlexaFluor 647 5.1 [134]420 AlexaFluor 568 QSY 7 and QSY 9 5.6 [133]421 QSY 21 7.5 [133]422 AlexaFluor 647 8.2 [134]423 AlexaFluor 594 QSY 21 7.7 [133]424 AlexaFluor 647 8.5 [134]425 AlexaFluor 647 QSY 21 6.9 [133]426 AMCA Cy3 4.96 [135]427 ANAI IPM 3.0 [136]428 ANN FHS 3.89� 0.02 [137]429 5- or 6-IAF 3.97� 0.03 [137]430 BAP ORANGE-DCF 1.52 [138]431 ODB-2 3.81 [138]

690j 14 Data

Page 37: FRET - Förster Resonance Energy Transfer || Data

432 CVL 2.89 [138]433 RED520 2.19 [138]434 BFP GFP 4.0 [134]435 DsRFP 3.1–3.3 [139]436 BODIPY-FL Rhodamine 5.8 [140]437 BODIPY-FL 5.7 [141]438 BPE CY5 7.2 [142]439 BPE, B-phycoerythrin CY5,

carboxymethylindocyanine7.2 [143]

440 B-Phycoerythrin Cy5 7.2 [139]441 C-460 [Ru(pby)3]

2þ 3.8 [144]442 [Ru(pby)3]

2þ 4.38 [144]443 Carboxyfluorescein

succinimidyl ester (CF)Texas Red 5.1 [139]

444 CC2-DMPE DiSBAC2 4.8 [145]445 CF TR 5.1 [146]446 CFP YFP 5.0 [134]447 GFP 4.8 [134]448 GFP 4.7–4.9 [139]449 CPM Fluorescein 4.7 [147]450 TRS 5.1 [148]451 FM 5.2 [148]452 Cy3 Cy5 5.42 [149]453 Cy5 >5.0 [134]454 Cy5 Cy5.5 >8.0 [139]455 CZ1 ORANGE-DCF 3.56 [138]456 ODB-2 3.77 [138]457 RED520 3.65 [138]458 Dansyl FITC 3.3–4.1 [139]459 Octadecylrhodamine 4.3 [139]460 ODR, octadecylrhodamine 4.3 [143]461 DANZ DABM 3.4 [150]462 DMACA-PLAP NBD-PE 3.96 [151]463 DMSM LY 2.6–3.2 [152]464 DOBIPY BODIPY 5.7 [153]465 DPA PM567 3.28 [154]466 DPA 2.65 [154]467 DPH-PC NBD-PC 3.98–4.05 [155]468 ECFP DPA 4.2 [156]469 EDANS DABCYL 3.3 [141]470 DABCYL 3.3 [126]471 EGFP DPA 3.63 [156]472 EITC ENAI 4.6 [136]473 Eu-DOTA Cy5.5 6.2 [141]474 Eu-DTPA-AMCA Cy5 5.5 [141]475 Eu-DTPA-cs124 Cy5 5.6 [141]476 Eu-TTHA-cs124 Cy5 6.8 [141]477 FITC EM 6.0 [157]478 ETSC 6.1–6.4 [158]479 Eosin thiosemicarbazide 6.1–6.4 [139]480 FITC, fluorescein-5-

isothiocyanateEM, eosin maleimide 6.0 [143]

(continued )

14.2 Introduction to the Table of Traditional Chromophores j691

Page 38: FRET - Förster Resonance Energy Transfer || Data

481 Fluorescein TMR 4.9–5.4 [146,148]482 Tetramethylrhodamine 5.5 [141]483 Cy5 4.7 [159]484 Tetramethylrhodamine 5.5 [134]485 QSY 7 and QSY 9 dyes 6.1 [183]486 FNAI EITC 4.5 [136]487 GFP YFP 5.7 [136]488 IAEDANS FITC 4.9 [160]489 IAF TMR 3.7 [161]490 EIA 4.6 [161]491 IANBD DDPM 2.5 [162]492 Indol Dansyamide 2.43 [144]493 IPM FNAI 3.9 [136]494 LY, Lucifer yellow TNP-ADP 3.5 [152]495 EM 5.3 [163]496 TNP-ATP 3.5 [143]497 EM, eosin maleimide 5.3 [143]498 MIANS NBD-Cl 2.35–2.77 [164]499 MNA DACM 3.2 [165]500 NAA DNP 3.3–3.7 [166]501 Naphthalene Dansyl 2.2 [143]502 Dansyl 2.2 [167]503 NBD SRH 4.0–7.4 [168]504 LRH 4.5–7.0 [168]505 NCP CPM 3.4 [168]506 OG488-PLAP C18RhoB 5.65 [151]507 PBFT CPN RB-SL 4.8 [170]508 pCNPhe Trp 1.60� 0.05 [171]509 pENPhe Trp 1.56� 0.03 [171]510 PM567 PM567 4.57 [154]511 Proflavin ETSC 4.6 [158]512 PTSx

a) DiSBAC2 4.1 [145]513 Pyrene Bimane 3.0 [172]514 Coumarin 3.9 [172]515 Rhodamine 6G Malachite green 6.1 [139]516 Tb-DTPA-cs124 TAMRA 6.0 [141]517 TBP ORANGE-DCF 3.39 [138]518 Tetramethylrhodamine Texas Red 5.2 [173]519 Texas Red NBD 5 [153]520 TMR Cy5 5.3 [174]521 TO TO 2.3� 0.7 [175]522 Cy3 3.2� 0.9 [175]523 TAMRA 3.0� 0.8 [175]524 labFQ 2.8� 0.8 [175]525 Cy5 2.6� 0.8 [175]526 labRQ 2.2� 0.8 [175]527 TPB ODB-2 3.46 [138]528 RED520 3.00 [138]

Table 14.8 (Continued )

D:A No. Donor Acceptor R0 (nm) References

692j 14 Data

Page 39: FRET - Förster Resonance Energy Transfer || Data

1) Tryptophan/tyrosine family (T). Two natural amino acids – tryptophan andtyrosine, which can be found inmost proteins or enzymes – are used extensivelyin FRETexperiments. Their chemical structures are shown in Figures 14.1 and14.2. Note that indole and phenol are the respective fluorophoric moieties oftryptophan and tyrosine. Indole, phenol, and their derivatives are also includedin this family. Because of their low ABSs (in the range of 270–295 nm),members of this family are predominantly used as FRET donors for otherfamilies.

2) Nucleotide analogues family (Q). The nucleotide analogues (such as AMP, ADP,and ATP) modified by formation or addition of chromophoric groupings aremembers of this family. The ABS and EM as members of this family dependprimarily on the conjugated groups. Etheno (e) and trinitrophenyl (TNP) appearto be the two most used derivatives in this family. The chemical structures of1,6-ethenoadenosine-50-diphosphate (eADP) and 20- (or 30)-O-(trinitrophenyl)adenosine-50-diphosphate (TNP-ADP) are shown in Figures 14.3 and 14.4. Thee-nucleotides have ABS of 300 nm and EM of 410 nm. The blue fluorescence ofthe etheno derivatives is known to be environmentally insensitive. The ABS and

529 TP-EPS-2 ORANGE-DCF 3.87 [138]530 ODB-2 3.68 [138]531 RED520 3.85 [138]532 Trp Ru(III)(NH3)5 1.2–1.6 [176]533 Nitrobenzoyl 1.6 [177]534 Thionitrobenzoate (TNB) 2.4 [178]535 Tyr-NO2 2.6 [179]536 Nitrobenzenesulfenyl

(NBS)3.0 [177]

537 Dinitrobenzenesulfonyl(DNBS)

3.3 [177]

538 Diphenylhexatriene(DPH)

4.0 [180]

539 eA NBD 3.8 [181]

The five columns contain the following information:D:A No. Donor–acceptor pair number, introduced just above Section 14.1Donor DonorAcceptor AcceptorR0 (nm) F€orster distance in nanometersRef. Reference number

Most of these pairs are from papers after 1993, however, some older pairs that were overlooked inRef. [4] have been added.a) PTSx is a pyrene sulfonic acid.

NH

CH2 C

H

COO–

+NH3

Figure 14.1 Tryptophan.

14.2 Introduction to the Table of Traditional Chromophores j693

Page 40: FRET - Förster Resonance Energy Transfer || Data

EM of TNP nucleotides are 408 and 530–570 nm, respectively. Unlike e-nucleo-tides, the free TNP nucleotides are essentially nonfluorescent in water, but arefluorescent when bound to the nucleotide binding site of some proteins. TheTNP nucleotides are used very widely as FRETacceptors for many fluorophores,such as dansyl, coumarin, and fluorescein [21,22].

3) ANS family (A). This family consists of anilinonaphthalene and its derivatives:1-anilinonaphthalene-8-sulfonic acid (1,8-ANS), 2-anilinonaphthalene-6-sul-fonic acid (2,6-ANS), and derivatives of 2,6-ANS, such as maleimido-2,6-ANS (MIANS) and iodoacetamido-2,6-ANS (IAANS). The chemical structuresof 1,8-ANS and 2,6-ANS are shown in Figures 14.5 and 14.6, respectively. TheABS and EM of 1,8-ANS are 370 and 482 nm, respectively. However, the ABSand EM for the 2,6-ANS and its maleimide and iodoacetamide derivativesare significantly blueshifted to about 320–330 and 430–460-nm, respectively.1,8-ANS is a very good environment-sensitive and water-soluble probe. It isessentially nonfluorescent in free water and only weakly fluorescent in boundwater, but it becomes appreciably fluorescent when bound to membranes. Itbecomes even more fluorescent when bound to proteins. The fluorescence ofboth MIANS and IAANS conjugates is quite sensitive to substrate binding, aswell as to protein association and denaturation [9,28]. The quantum yields ofboth MIANS and IAANS are considerably lower (around 0.1 for the most cases)than that of 1,8-ANS (0.25–0.92).

4) IAEDANS family (I). 5-((2-(Iodoacetyl)amino)ethyl)aminonaphthalene-1-sul-fonic acid (1,5-IAEDANS) and N-(iodoacetylamino-ethyl)-2-aminonaphtha-lene-6-sulfonic acid (2,6-IAEDANS) are members of this family. Thechemical structure of (1,5-IAEDANS) is demonstrated in Figure 14.7.

CH2 C

H

COO–

+NH3

HO

Figure 14.2 Tyrosine.

N

N

N

N

N

OH2C

OH OH

OPOP–O

O O

O– O–

Figure 14.3 eADP.

694j 14 Data

Page 41: FRET - Förster Resonance Energy Transfer || Data

IAEDANS features high water solubility and its emission overlaps well with theabsorbance of fluorescein. Therefore, IAEDANS–fluorescein is a very popularFRET donor–acceptor pair despite the large discrepancy between their molarabsorbances at their ABSs [46,51].

5) DNS family (D). The dansyl derivatives and conjugated fatty acids are membersof this family. The dansyl conjugated fatty acids are very sensitive to the solventpolarity. This feature has been utilized for investigating molecular interactionsat membrane surfaces [30]. Dansyl chloride is nonfluorescent until it is reactedwith amines. This feature has been used for quantifying the conjugation ratiowith biomolecules [61]. A wide range of both ABSs and EMs are found in thereferences for this family. The dansyl–eosin pair is a very widely used FRET

N

N N

N

NH2

OH2C

O O

OPOP–O

O O

O– O–

NO2O2N

N–O O–

+

Figure 14.4 TNP-ADP.

NH

HO3S

Figure 14.6 2,6-ANS.

NH SO3H

Figure 14.5 1,8-ANS.

14.2 Introduction to the Table of Traditional Chromophores j695

Page 42: FRET - Förster Resonance Energy Transfer || Data

donor–acceptor pair even though the discrepancy between their peak molarabsorbances is quite large. The structures of dansyl chloride (DNS-Cl) and thatof a typical dansyl fatty acid, dansyl dihexadecanoylphosphatidylethanolamine(DDHPE), are shown in Figures 14.8 and 14.9, respectively.

6) Membrane probes family (M). Members of this family include 1,6-diphenyl-1,3,5-hexatriene (DPH), DPH fatty acid, dehydroergosterol (DHE), cis-parinaric acid(c-PNA), and trans-parinaric acid (t-PNA). The chemical structures of DPH,DHE, c-PNA, and t-PNA are shown in Figures 14.10–14.13, respectively. DPHand its derivatized fatty acids exhibit strong fluorescence enhancement uponincorporating the lipid membranes and sensitive fluorescence anisotropyresponses to lipid ordering. The ABS and EM of DPH are 348 and 425 nm,respectively. DHE is a naturally fluorescent sterol. Because its chemicalstructure is almost identical to that of cholesterol, DHE has been usedextensively in membrane studies, especially in the study of lipid–cholesteroland cholesterol–protein interactions in membranes. The ABS and EM of DHE

N(CH3)2

SO2Cl

Figure 14.8 DNS-Cl.

NHCH2CH2NH

SO3H

C CH2l

O

Figure 14.7 1,5-IAEDANS.

N(CH3)2

SO2

OCH2CH2NHP

O

CH2O

O–

CHOCCH3(CH2)14

CH2

O

OCCH3(CH2)14

O

+

Et3NH

Figure 14.9 DDHPE.

696j 14 Data

Page 43: FRET - Förster Resonance Energy Transfer || Data

in aqueous buffer are 324 and 426 nm, respectively. The parinaric acids (both cisand trans) are the closest structural analogues of intrinsic membrane lipidsamong currently available fluorescent probes and can be biosyntheticallyincorporated into cellular membranes [26,104]. Probes for membranes andother macromolecular biological systems have been reviewed in Ref. [184]. TheABS of parinaric acid is about 320 nm and its EM is about 410 nm. The lipid–protein interactions have been extensively studied by the use of FRET betweenparinaric acids and tryptophan [71].

C CH

H

C CH

HCH3CH2

C CH

H

C CH

H

(CH2)7 C OH

O

Figure 14.13 t-PnA.

C CH

H

C CH

H

C CH

H

Figure 14.10 DPH.

HO

Figure 14.11 DHE.

C CCH3CH2

HH

C CH

H

C CH

H

C CH

(CH2)7

H

C OH

O

Figure 14.12 c-PnA.

14.2 Introduction to the Table of Traditional Chromophores j697

Page 44: FRET - Förster Resonance Energy Transfer || Data

7) Pyrene family (P). This family consists of all pyrene derivatives. The chemicalstructure of pyrene is shown in Figure 14.14 as an example of this family. TheABS and EM of pyrene are 342 and 377 nm, respectively. When an excitedpyrene collides with a ground-state pyrene, they form an excited-state dimer(excimer) with altered fluorescence emission. A broad excimer band centered at475 nm can be observed in the emission spectrum if the excimer is formed. Thisproperty has been used extensively to study the lateral diffusion rate of lipids inmembranes [70].

8) Stilbene family (S). The stilbene maleimides and stilbene disulfonates aremembers of this family. The ABS and EM of all stilbene derivatives are inthe range of 340–360 and 420–450 nm, respectively. The chemical structures of2,5-dimethyoxystilbene-40-maleimide (DMSM) and 4,40-dinitrostilbene-2,20-disulfonate (DNDS) are shown in Figures 14.15 and 14.16, respectively.

9) Anthracene family (H). This family is formed by some anthracene derivativesand anthroyloxy fatty acids. Members of this family have been used extensivelyas FRET donors. The absorption and emission spectra of the anthroyloxy fattyacids are insensitive to their chemical structure. The ABS and EM of allanthroyloxy fatty acids are about 360 and 470 nm, respectively. Figure 14.17exhibits the chemical structure of anthracene and Figure 14.18 shows thestructure of 2-(9-anthroyloxy) stearic acid (2-AS).

10) Coumarin family (C). This family is formed by all coumarin derivatives. Thestructure of the most popular coumarin derivative, 3-(4-maleimidylphenyl)-7-(diethylamino)-4-methylcoumarin (CPM), is shown in Figure 14.19. Coumarin

CH

OCH3

CH3O

CH N

O

O

Figure 14.15 DMSM.

Figure 14.14 Pyrene.

CH

SO3–

O2N CH NO2

–O3S

Figure 14.16 DNDS.

698j 14 Data

Page 45: FRET - Förster Resonance Energy Transfer || Data

is the most fluorescent UV excitable dye and generally an excellent donor tofluorescein. Its ABS and EM are about 385 and 465 nm, respectively [82,83].

11) Bimane family (B). Two bimane derivatives monobromotrimethyl-ammoniobi-mane (qBBr) and monobromobimane (mBBr) are members of this family.The chemical structure of qBBr is shown in Figure 14.20 and that of mBBr inFigure 14.21.

12) NBD family (N). Nitrobenzyloxadiazole (NBD) derivatives are members of thisfamily. They have spectral features similar to those of fluorescein, but with afluorescence that is strongly quenched by water. The ABS and EM of most NBDderivatives are about 480 and 530nm, respectively. The NBD-labeled fatty acidshave been used to monitor lipid transfer and distribution between vesicles [99].The chemical structure of 6-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)aminohexanoicacid (NBDAH) is shown in Figure 14.22.

C

O

CH C OH

O

O

CH3(CH2)15

Figure 14.18 2-AS.

Figure 14.17 Anthracene.

O

CH3

O(CH3CH2)2N

N

O

O

Figure 14.19 CPM.

N

NH3C

BrH2C

O O

CH2N(CH3)3

CH3

+Br–

Figure 14.20 qBBR.

14.2 Introduction to the Table of Traditional Chromophores j699

Page 46: FRET - Förster Resonance Energy Transfer || Data

13) Fluorescein family (F). Fluorescein has very strong absorbance and a highfluorescence quantum yield. This combination of attributes makes fluoresceinan excellent candidate for FRET experiments. The ABS and EM of fluoresceinare 490 and 520 nm, respectively. Fluorescein isothiocyanate (FITC) is by far themost common fluorescent derivatization reagent, especially for immuno-fluorescence. The structure of FITC is shown in Figure 14.23.

14) Eosin family (E). Eosin is less fluorescent than fluorescein. Its ABS and EM are520 and 550 nm, respectively. However, eosin and its derivatives efficientlyabsorb the fluorescence from fluorescein and other fluorophores such as dansyland coumarin, making them good FRET acceptors. The chemical structure ofeosin-5-maleimide (EM) is shown in Figure 14.24.

15) Rhodamine family (R). This family contains all rhodamine derivatives. Thechemical structure of rhodamine B (RB) is shown in Figure 14.25. The ABS andEM of rhodamine derivatives are about 550 and 570 nm, respectively. Thefluorescence quantum yield of rhodamine derivatives is usually about one-fourth of that of fluorescein derivatives. However, because tetramethylrhod-amine is readily excited by the intense mercury line at 546 nm used in mostmicroscopes, it often appears brighter. Moreover, rhodamines are invariablymore stable to photobleaching than fluoresceins, and their absorption and

N

NH3C

BrH2C

O O

CH2Br

CH3

Figure 14.21 mBBR.

NO

N

HN(CH2)5

NO2

C

O

OH

Figure 14.22 NBDAH.

O

N

O

COOH

OH

C S

Figure 14.23 FITC.

700j 14 Data

Page 47: FRET - Förster Resonance Energy Transfer || Data

emission spectra are less sensitive to pH [9]a). “Rigidified” rhodamines aremorephotostable and have higher quantum yields.

16) Lanthanide and transition elements family (L). This family consists of thelanthanide and transition elements that have been utilized as FRET donorsor acceptors. Because the luminescent transitions in the lanthanides are inner-shell electronic transitions, they are shielded from solvent and, as a result, thesefluorophores have a high quantum yield and exhibit sharply spiked emissionsspectra. Good overlap can be obtained with acceptors that absorb in the regionof one of these emission spikes. Since the emission spectra of the lanthanidescontain relatively large dark regions, it is possible to measure sensitizedacceptor emissions without interference from donor fluorescence when usinglanthanides as donors. The lanthanide emission decays as a single exponentialwith an extremely long lifetime. Terbium has a lifetime between 1.5 and 2.2ms,while europium has between 0.6 and 2.3ms [97]. Because of the degeneracy ornear degeneracy of the energy levels for the lanthanide ions, the emissionis expected to be of low polarization and the uncertainty in k2 is relatively small(k2 is near 2/3) (see Chapter 3) [185]. A disadvantage of using lanthanides is theirextremely weak absorption. Hence, it is necessary to covalently attach a sensitizerto them [97,109]. Chelates of terbium are excellent energy donors to the retinalchromophores of purple membrane, having a maximum F€orster distance of6.2 nm [108]. Distances between calcium binding sites in proteins have beenmeasured extensively by theuse of FRETbetweenprotein-bound lanthanide ions.

OO

COOH

OH

Br

Br Br

N OO

Br

Figure 14.24 EM.

O

C

N(CH2CH3)2

O(CH2)5CH3

O

(CH3CH2)2N Cl–+

Figure 14.25 RB.

a) Prieto, M. (1991) Personal communication.

14.2 Introduction to the Table of Traditional Chromophores j701

Page 48: FRET - Förster Resonance Energy Transfer || Data

17) Others (O). This family includes some other more recent FRET donors andacceptors that are not covered by the preceding families. In particular, weinclude fluorescent proteins and semiconductor quantum dots:Fluorescent protein family (FP). Although this family can be quite diverse in

terms of structure and emission, the vast majority consists of b-barrelprotein structures that surround the central chromophore. The seminalwork of Roger Tsien with green fluorescent protein (GFP) highlighted thepotential of these fluorophores that can be expressed in vivo in both cells andanimals independently or as FRET fusions with other FPs. The latterconfiguration allows FRET-based sensing by judicious placement of asensing element that responds and transduces signal by altering theFRET efficiency. Many variants are available and are usually designatedby their particular emission color or a fruit color, that is, red fluorescentprotein or mTangerine (m designating monomeric structure). These pro-teins are undergoing continuous engineering to improve their long-termphotostability, pH/ionic sensitivity, quantum yield, robustness, and theirspectral range. They can, however, behindered by theneed toundergo in vivomaturation processes that form the active chromophore from key residues.Another commonly utilized FP is the b-phycoerythrin light harvestingcomplex that consists of a supramacromolecular protein complex displayingmore than 30 phycobilin chromophores in one protein structure. Thecumulative effect of all these chromophores is to endow the protein complexwith an extinction coefficient approach 2.5� 106 M�1 cm�1 and a quantumyield �98%. Overall, as these are protein-based fluorophores, they aresusceptible to environments that deteriorate biological molecules.

Semiconductor quantum dot family (QD). For these purposes, these nano-crystals consist almost exclusively of binary combinations of semi-conductor materials in either a core-only or a core–shell structure.The latter consists of a shell of wider bandgap material that is usedto both passivate and protect the core, especially for biological or aqueousapplications. The photoluminescence of these materials arises fromcontrolling their energy levels by the size of the crystal and forcingthem to be in a quantum confined regime that is smaller than the Bohrradius of the corresponding bulk material. For FRET-based applications,QDs offer many advantages that are not cumulatively available to organicdyes or fluorescent proteins [186]. These include (i) high quantum yieldsand absorption spectra that continuously increase toward the UVcoupled to remarkably strong photostability; (ii) the ability to size-tune the QDs photoluminescence that allows matching spectral overlapwith a particular acceptor; (iii) the ability to be excited at almost anywavelength short of their emission due to their large effective Stokesshift – this allows minimal direct excitation of an acceptor; (iv) some ofthe highest multiphoton action cross sections known that allows accessto multiphoton FRET configurations; and (v) the ability to array multipleacceptors (or donors) around the QD that can proportionally increase the

702j 14 Data

Page 49: FRET - Förster Resonance Energy Transfer || Data

FRET acc eptor cross sec tion a nd all ow control over FRET effi ciency in agiven c ons truct [186]. These combined p rope rties have driven a stronginte rest in de ve loping QDs for FRET purp oses; howe ve r, their specifi cbiological ap plication, espe cially in biosens ing, continues t o be hind ere dby di ffi culties in c ont rollably a ttaching biomo l ecules to t heir surfac esuc h that they can engage in optimal i nteract ions with a t arget.

14.3F €orster Distances and Other FRET Data before 1994

Table 14.5 lists the official names and, if available, abbreviated names of thechromophores considered in Ref. [4]. Table 14.6 lists a large number of donor –acceptor pairs with data on the donor quantum yield in the absence of FRET, theoverlap integral, and the F €orster distance of the pairs. This table allows one to searchfor an appropriate pair by donor. The data gathered by Dos Remedios et al. [191] havebeen completely incorporated in Table 14.6.Table 14.7 is useful if one has a particular acceptor in mind and would like to

identify suitable donors for it. When a donor for the acceptor has been found, thecomplete information on the pair should be obtained from Table 14.6.

14.4F €orster Distances for Traditional Probes More Recent Than 1993

An extensive search of sources produced after the publication of Ref. [4] resulted inTable 14.8. This table contains FRET data on traditional probes more recent than1993 and on traditional probes before 1993 that were overlooked in Ref. [4]. Inpapers published after 1994, values for kappa-squared, the quantum yield of thedonor in the absence of transfer, and the overlap integral are often not reported.Accordingly, Table 14.8 lists only the donor– acceptor pairs with the pair number, theF€orster distance R0, and the reference number.

14.5FRET Data on Fluorescent Proteins

Many genetically encoded FRET probes that employ fluorescent proteins have beendeveloped and are widely used (see Chapters 9 and 10). Table 14.9 presentsinformation on FRET using fluorescent proteins. Wherever appropriate, shortdescriptions of applications and comments have been included in the table.Table 14.9 consists of five parts: 14.9a with blue fluorescent proteins as donors,14.9b with cyan fluorescent proteins as donors, 14.9c with green fluorescentproteins as donors, 14.9d with yellow fluorescent proteins as donors, and 14.9ein which quantum dots are donors and fluorescent proteins are acceptors. Addi-tional information is available in http://www.microscopyu.com/tutorials/java/fluorescence/fpfret/index.htm.

14.5 FRET Data on Fluorescent Proteins j703

Page 50: FRET - Förster Resonance Energy Transfer || Data
Page 51: FRET - Förster Resonance Energy Transfer || Data
Page 52: FRET - Förster Resonance Energy Transfer || Data
Page 53: FRET - Förster Resonance Energy Transfer || Data
Page 54: FRET - Förster Resonance Energy Transfer || Data
Page 55: FRET - Förster Resonance Energy Transfer || Data
Page 56: FRET - Förster Resonance Energy Transfer || Data
Page 57: FRET - Förster Resonance Energy Transfer || Data
Page 58: FRET - Förster Resonance Energy Transfer || Data
Page 59: FRET - Förster Resonance Energy Transfer || Data
Page 60: FRET - Förster Resonance Energy Transfer || Data
Page 61: FRET - Förster Resonance Energy Transfer || Data
Page 62: FRET - Förster Resonance Energy Transfer || Data
Page 63: FRET - Förster Resonance Energy Transfer || Data
Page 64: FRET - Förster Resonance Energy Transfer || Data
Page 65: FRET - Förster Resonance Energy Transfer || Data
Page 66: FRET - Förster Resonance Energy Transfer || Data
Page 67: FRET - Förster Resonance Energy Transfer || Data
Page 68: FRET - Förster Resonance Energy Transfer || Data
Page 69: FRET - Förster Resonance Energy Transfer || Data
Page 70: FRET - Förster Resonance Energy Transfer || Data
Page 71: FRET - Förster Resonance Energy Transfer || Data
Page 72: FRET - Förster Resonance Energy Transfer || Data
Page 73: FRET - Förster Resonance Energy Transfer || Data
Page 74: FRET - Förster Resonance Energy Transfer || Data
Page 75: FRET - Förster Resonance Energy Transfer || Data
Page 76: FRET - Förster Resonance Energy Transfer || Data
Page 77: FRET - Förster Resonance Energy Transfer || Data
Page 78: FRET - Förster Resonance Energy Transfer || Data
Page 79: FRET - Förster Resonance Energy Transfer || Data
Page 80: FRET - Förster Resonance Energy Transfer || Data
Page 81: FRET - Förster Resonance Energy Transfer || Data
Page 82: FRET - Förster Resonance Energy Transfer || Data
Page 83: FRET - Förster Resonance Energy Transfer || Data
Page 84: FRET - Förster Resonance Energy Transfer || Data
Page 85: FRET - Förster Resonance Energy Transfer || Data
Page 86: FRET - Förster Resonance Energy Transfer || Data
Page 87: FRET - Förster Resonance Energy Transfer || Data

Table 14.13 Donor–acceptor pairs with a F€orster distance in a given range.

R0 range (nm) D:A No.

>7.00 415, 416, 421, 422, 423, 424, 438, 439, 440, 454, 503, 834, 868, 901, 925,937, 938, 943, 954, 955, 966, 967, 969, 972, 979, 980, 981, 982, 995, 997,999, 1011, 1015, 1020, 1021, 1027, 1029, 1030, 1034, 1036

6.50–7.00 338, 367, 407, 413, 414, 425, 476, 503, 504, 621, 660, 704, 750, 760, 762,778, 820, 821, 848, 850, 859, 860, 870, 882, 897, 900, 926, 954, 1006,1022

6.00–6.49 30, 317, 321, 327, 349, 398, 405, 406, 408, 409, 473, 477, 478, 479, 480,485, 503, 504, 515, 516, 559, 583, 588, 596, 602, 603, 609, 687, 688, 706,727, 735, 746, 760, 788, 817, 874, 897, 905, 908, 909, 915, 922, 941, 950,954, 975, 1010, 1014

5.50–5.99 29, 135, 158, 163, 291, 301, 302, 303, 304, 306, 307, 315, 316, 317, 319,335, 366, 390, 398, 410, 420, 436, 437, 464, 474, 475, 482, 484, 487, 503,504, 506, 563, 565, 572, 578, 584, 648, 667, 674, 698, 699, 723, 760, 766,772, 777, 780, 790, 793, 803, 815, 855, 873, 906, 907, 911, 912, 917, 918,954, 956, 965, 1019, 1028

5.00–5.49 49, 50, 79, 83, 113, 127, 130, 144, 253, 286, 305, 313, 314, 317, 320, 323,324, 325, 335, 336, 366, 388, 399, 401, 402, 419, 443, 445, 446, 450, 451,452, 453, 481, 495, 497, 503, 504, 518, 519, 520, 546, 547, 552, 558, 561,562, 566, 568, 569, 570, 575, 583, 586, 594, 595, 597, 654, 659, 662, 664,690, 691, 701, 724, 726, 729, 731, 733, 740, 745, 753, 760, 773, 774, 789,816, 840, 841, 886, 910, 916, 1009

4.50–4.99 43, 49, 84, 94, 128, 134, 137, 138, 139, 140, 142, 145, 149, 152, 154, 177,178, 183, 184, 190, 195, 203, 233, 234, 237, 248, 252, 256, 264, 265, 276,279, 280, 281, 282, 283, 299, 300, 311, 312, 317, 333, 334, 337, 366, 372,376, 387, 394, 395, 397, 400, 404, 417, 418, 426, 444, 447, 448, 449, 472,481, 483, 486, 488, 490, 503, 504, 507, 510, 511, 542, 551, 552, 554, 567,571, 573, 574, 582, 583, 600, 604, 605, 607, 637, 647, 649, 678, 683, 689,692, 693, 694, 695, 712, 713, 722, 731, 739, 741, 758, 767, 781, 792, 927,928, 1017

4.00–4.49 40, 43, 44, 51, 85, 93, 102, 103, 110, 117, 121, 123, 124, 131, 132, 133,134, 136, 141, 143, 146, 147, 148, 150, 151, 153, 155, 156, 164, 166, 167,168, 169, 171, 173, 187, 188, 189, 191, 192, 199, 200, 201, 202, 205, 226,235, 241, 244, 257, 266, 267, 272, 284, 310, 317, 318, 332, 350, 356, 361,391, 393, 397, 403, 429, 434, 442, 458, 459, 460, 467, 468, 503, 512, 522,538, 542, 553, 554, 593, 598, 599, 601, 606, 638, 639, 640, 652, 657, 658,663, 697, 700, 702, 722, 731, 734, 748, 763, 764, 801, 823, 825, 831, 838,894, 902, 977, 996

3.50–3.99 18, 40, 43, 45, 46, 48, 95, 111, 122, 157, 161, 165, 170, 172, 174, 176,181, 182, 185, 186, 196, 198, 204, 216, 221, 229, 230, 240, 243, 245, 246,250, 251, 255, 258, 260, 261, 262, 268, 269, 275, 277, 285, 287, 289, 290,297, 328, 384, 391, 428, 429, 431, 441, 455, 456, 457, 458, 462, 467, 471,489, 493, 494, 496, 500, 514, 522, 523, 524, 529, 530, 531, 539, 541, 543,555, 577, 591, 592, 611, 614, 634, 641, 650, 676, 677, 696, 714, 824, 826,828, 875, 889, 892, 971, 1015

(continued )

14.5 FRET Data on Fluorescent Proteins j741

Page 88: FRET - Förster Resonance Energy Transfer || Data

14.6FRET Data on Quantum Dots

Quantum dots have been used very frequently since the mid-1990s in FRET.Tables 14.10–14.12 list FRET data involving quantum dots. In Table 14.10, thedonors are quantum dots, but the acceptors are not. In Table 14.11, the acceptors arequantum dots, but the donors are not. Table 14.12 shows FRETdata for which bothdonors and acceptors are quantum dots.

14.7Donor–Acceptor Pairs with a F€orster Distance in a Given Range

Often researchers have an approximate F€orster distance in mind and would like todetermine donor–acceptor pairs with a R0 near this distance. They can find thesepairs in Table 14.13, which lists all the pairs of Tables 14.1–14.3, 14.6, and 14.8–14.12

3.00–3.49 18, 40, 41, 43, 45, 46, 48, 69, 87, 90, 97, 98, 100, 101, 104, 107, 109, 114,115, 118, 119, 120, 129, 162, 194, 197, 210, 211, 219, 220, 222, 223, 228,236, 238, 239, 242, 247, 249, 259, 263, 274, 288, 295, 308, 326, 331, 351,364, 369, 370, 385, 391, 427, 435, 458, 461, 463, 465, 469, 470, 499, 500,505, 513, 517, 521, 522, 523, 524, 525, 526, 527, 528, 536, 537, 544, 545,550, 577, 613, 624, 650, 674, 675, 676, 685, 747, 754, 756, 757, 769, 806,828, 829, 887, 889, 892, 936, 962, 971

2.50–2.99 17, 19, 37, 38, 39, 41, 46, 56, 57, 58, 64, 66, 67, 70, 71, 72, 76, 77, 78, 82,86, 88, 89, 96, 125, 126, 179, 207, 209, 214, 217, 224, 227, 232, 254, 296,329, 347, 358, 359, 363, 374, 378, 380, 382, 392, 411, 412, 432, 463, 466,491, 498, 521, 522, 523, 524, 525, 526, 535, 540, 675, 679, 680, 684, 685,686, 755, 828, 829, 843, 888, 889, 892, 970

2.00–2.49 2, 16, 26, 27, 31, 32, 33, 36, 42, 47, 52, 53, 60, 61, 62, 63, 65, 68, 81, 116,180, 193, 208, 215, 218, 273, 294, 348, 357, 360, 362, 365, 368, 373, 375,377, 383, 389, 433, 492, 498, 501, 502, 521, 522, 523, 524, 525, 526, 534,625, 675, 685, 715, 888

1.50–1.99 1, 2, 3, 6, 10, 11, 22, 25, 33, 35, 52, 53, 54, 59, 73, 75, 80, 99, 105, 206,231, 270, 322, 430, 508, 509, 521, 525, 526, 532, 533, 832

1.00–1.49 1, 5, 7, 10, 11, 14, 20, 21, 24, 55, 74, 91, 159, 175, 212, 213, 271, 292,293, 298, 330, 371, 379, 381, 386, 526, 532, 792

0.50–0.99 4, 9, 13, 14, 23, 28, 34,, 92, 106, 160, 225, 339, 340, 341, 342, 343, 344,345, 346, 352, 353, 354, 355

0–0.49 8, 12, 15

R0 is the F€orster distance in the range indicated in nanometers, summarizing data fromTables 14.1–14.12except Tables 14.4 and 14.5. D:A No. is the donor–acceptor pair number.

Table 14.13 (Continued )

R0 range (nm) D:A No.

742j 14 Data

Page 89: FRET - Förster Resonance Energy Transfer || Data
Page 90: FRET - Förster Resonance Energy Transfer || Data

rearranged by the range of the F€orster distance for the pairs. Note that R0 values ofabout 900 pairs listed here are distributed as follows:

Numberof pairs

Range innanometer

Numberof pairs

Range innanometer

Numberof pairs

Range innanometer

3 0–0.49 75 2.50–2.99 108 5.00–5.4923 0.50–0.99 101 3.00–3.49 65 5.50–5.9928 1.00–1.49 97 3.50–3.99 49 6.00–6.4932 1.50–1.99 110 4.00–4.49 30 6.50–7.0055 2.00–2.49 110 4.50–4.99 40 >7.00

Figure 14.26 shows the frequency distribution of donor–acceptor pairs in agraphical form. Note that of the 40 pairs with F€orster distances larger than about7 nm, 29 pairs involve quantum dots (pairs containing quantum dots start at pairnumber 609). Pairs with a relatively large uncertainty in the F€orster distance appearmore than once in Figure 14.26 and in Table 14.13. For example, pair number 1 hasan R0 of 1.1–1.7 nm [1]. As a result, it is listed four times in Figure 14.26 in intervals:1.0 nm < R0� 1.2 nm, 1.2 nm < R0� 1.4 nm, 1.4 nm < R0� 1.6 nm, and 1.6 nm< R0� 1.8 nm; this pair is listed twice in Table 14.13: in the 1.00–1.49 nm range andin the 1.50–1.99 nm range.

14.8Table–Reference Directory

Most of the references refer to specific tables as indicated below:

Table Reference

Table 14.1 [1]Table 14.2 [2]Table 14.3 [3]Table 14.6 [5–124,184,185,187]a),b)

Table 14.8 [125–181,183]Table 14.9 [188–235]Table 14.10 [186,236–439]Table 14.11 [440–482]Table 14.12 [483–517]

a) Griep, M.A. (1991) Personal communication.b) Sklar, L.A. (1992) Personal communication.

744j 14 Data

Page 91: FRET - Förster Resonance Energy Transfer || Data

References

1 Steinberg, I.Z. (1971) Annual ReviewBiochemistry, 40, 83–114.

2 Fairclough, R.H. et al. (1978)Methods inEnzymology, 48, 347–379.

3 Kawski, A. (1983) Photochemistry andPhotobiology, 38, 487–508.

4 Van der Meer, B.W. et al. (1994) ResonanceEnergy Transfer: Theory and Data,Wiley-VCH Verlag GmbH.

5 Griep, M.A. et al. (1990) The Journal ofBiological Chemistry, 265, 20356–20363.

6 Dunn, B.M. et al. (1981) Biochemistry, 20,7206–7211.

7 Bigelow, D.J. et al. (1991) Biochemistry,30, 2113–2125.

8 Kawata, Y. et al. (1991) Biochemistry, 30,4367–4373.

9 Lakey, J.H. et al. (1991) Journal ofMolecular Biology, 218, 639–653.

10 Berde, C.B. et al. (1979) The Journal ofBiological Chemistry, 254, 12609–12614.

11 Schroeder, F. et al. (1990) The Journal ofBiological Chemistry, 265, 151–157.

12 Angelides, K. (1981) Biochemistry, 20,4107–4118.

13 Tsai, A. et al. (1989) Biochimica etBiophysica Acta, 993, 74–82.

14 Kleinfeld, A.M. et al. (1985) Biochemistry,24, 1883–1890.

15 Hyono, A. et al. (1985) Biochimica etBiophysica Acta, 813, 111–116.

16 Eames, T.C.M. et al. (1989) Biochemistry,28, 6269–6275.

17 Lakowicz, J.R. et al. (1990) The Journal ofPhysical Chemistry, 94, 8413–8416.

18 Dos Remedios, C.G. et al. (1984)Biochimica et Biophysica Acta, 788,193–205.

19 Miki, M. et al. (1986) Biochimica etBiophysica Acta, 871, 137–141.

20 Aguirre, R. et al. (1989) Biochemistry, 28,799–807.

21 Kasprzak, A.A. et al. (1989) Biochemistry,28, 9230–9238.

22 Miki, M. et al. (1984) Biochimica etBiophysica Acta, 790, 275–283.

23 Perkins, W.J. et al. (1984) TheJournal of Biological Chemistry, 259,8786–8793.

24 Grossman, S.H. (1989) Biochemistry, 28,4894–4902.

25 Koland, J.G. et al. (1982) Biochemistry, 21,4438–4442.

26 Grossman, S.H. (1990) Biochimica etBiophysica Acta, 1040, 276–280.

27 Hall, J. et al. (1988) The Journal ofBiological Chemistry, 263, 8142–8149.

28 Luedtke, R. et al. (1981) Biochemistry, 20,2927–2936.

29 Sassaroli, M. et al. (1984) Biochemistry, 23,2487–2491.

30 Shepherd, G.B. et al. (1977) Biochemistry,16, 5234–5241.

31 Kella, N.K.D. et al. (1984) The Journal ofBiological Chemistry, 259, 4777–4781.

32 Squier, T.C. et al. (1987) The Journal ofBiological Chemistry, 262, 4748–4754.

33 Cheung, H.C. et al. (1985) Biochimica etBiophysica Acta, 832, 52–62.

34 Tao, T. et al. (1983) Biochemistry, 22,3059–3066.

35 Maurizi, M.R. et al. (1986) Biochemistry,25, 141–151.

36 Dalbey, R.E. et al. (1983) Biochemistry, 22,4696–4706.

37 Franzen, J.S. et al. (1980) Biochemistry, 19,6080–6089.

38 First, E.A. et al. (1989) Biochemistry, 28,3606–3613.

39 Chantler, P.D. et al. (1986) Journal ofMolecular Biology, 192, 87–99.

40 Dewey, T.G. et al. (1989) BiophysicalJournal, 56, 415–420.

41 Eshaghpour, H. et al. (1980) Biochemistry,19, 1797–1805.

42 Gettins, P. et al. (1990) Biochemistry, 29,7747–7753.

43 Gingold, M.P. et al. (1981) Biochimie, 63,923–925.

44 Lin, T.I. and Dowben, R.M. (1983)Journal of Biological Chemistry, 258,5142–5150.

45 Marsh, D.J. et al. (1980) Biochemistry, 19,774–784.

46 Bhandari, D.G. et al. (1985) FEBS Letters,187, 160–166.

47 Takashi, R. (1979) Biochemistry, 18,5164–5169.

48 Birmachu, W. et al. (1989) Biochemistry,28, 3940–3947.

49 Huang, K.H. et al. (1975) Journal ofMolecular Biology, 97, 443–470.

References j745

Page 92: FRET - Förster Resonance Energy Transfer || Data

50 Miki, M. (1987) European Journal ofBiochemistry, 164, 229–235.

51 Epe, B. et al. (1982) European Journal ofBiochemistry, 129, 211–219.

52 Lee, C.C. (1981) The Journal of BiologicalChemistry, 256, 49–53.

53 Miki, M. et al. (1985) Biochimica etBiophysica Acta, 828, 188–195.

54 Dockter, M.E. et al. (1978) The Journal ofBiological Chemistry, 253, 311–317.

55 Takashi, R. et al. (1982) Biochemistry, 21,5661–5668.

56 Shahrokh, Z. et al. (1991) The Journalof Biological Chemistry, 266, 12082–12089.

57 Dissing, S. et al. (1979) Biochimica etBiophysica Acta, 553, 66–83.

58 Miki, M. et al. (1986) BiochemistryInternational, 12, 725–731.

59 Fung, B.K.K. et al. (1978) Biochemistry, 17,5241–5248.

60 Lakowicz, J.R. (1983) Principles ofFluorescence Spectroscopy, Plenum Press,New York.

61 Gibson, G.A. et al. (1979) Biochemical andBiophysical Research Communications, 88,135–140.

62 Cheung, H.C. et al. (1982) Biochemistry,21, 5135–5142.

63 Miki, M. (1991) Biochemistry, 30,10878–10884.

64 Miki, M. et al. (1990) BiochemistryInternational, 22, 125–132.

65 Wagner, R. et al. (1988) European Journalof Biochemistry, 173, 561–568.

66 Baird, B.A. et al. (1979) The Journal ofBiological Chemistry, 254, 3818–3825.

67 Husten, E.J. et al. (1987) The Journal ofBiological Chemistry, 262, 12953–12961.

68 Armstrong, S.A. et al. (1990) The Journalof Biological Chemistry, 265, 6210–6218.

69 Lu, R. et al. (1989) The Journal of BiologicalChemistry, 264, 12956–12962.

70 Davenport, L. et al. (1985) Biochemistry, 24,4097–4108.

71 Frolov, A.A. et al. (1990) Photochemistryand Photobiology, 7, 43–56.

72 Rehorek, M. et al. (1983) BiophysicalJournal, 43, 39–45.

73 Sklar, L.A. et al. (1981) The Journal ofBiological Chemistry, 256, 4286–4292.

74 Kasprzyk, P.G. et al. (1983) Biochemistry,22, 1877–1882.

75 Rao, A. et al. (1979) Biochemistry, 18,4505–4516.

76 Fay, P.J. et al. (1989) The Journalof Biological Chemistry, 264,14005–14010.

77 Holowka, D.A. et al. (1977) Biochemistry,16, 5538–5545.

78 Foster, R.J. et al. (1985) The Journal ofBiological Chemistry, 260, 2826–2831.

79 Yuan, Z. et al. (1986) The Journal ofBiological Chemistry, 261, 13643–13651.

80 Mergny, J.L. et al. (1991) Photochemistryand Photobiology, 53, 555–558.

81 Angelides, K. et al. (1984) The Journal ofBiological Chemistry, 259, 6117–6126.

82 Eisinger, J. et al. (1983) BiophysicalJournal, 41, 367–379.

83 Kleinfeld, A.M. (1985) Biochemistry, 24,1874–1882.

84 Berberan-Santos, M.N. et al. (1987)Journal of the Chemical Society: FaradayTransactions 2, 83, 1391–1409.

85 Shaklai, N. et al. (1977) Biochemistry, 16,5585–5592.

86 Estep, T.N. et al. (1979) BiophysicalJournal, 26, 195–207.

87 Carilli, C.T. et al. (1982) The Journal ofBiological Chemistry, 257, 5601–5606.

88 Jesaitis, A.J. et al. (1980) The Journal ofBiological Chemistry, 255, 459–467.

89 Amler, E. et al. (1992) Biophysical Journal,61, 553–568.

90 Mitra, B. et al. (1990) Biochemistry, 29,9879–9884.

91 Holowka, D.A. et al. (1983) Biochemistry,22, 3475–3484.

92 Grossman, S.H. (1983) Biochemistry, 22,5369–5375.

93 Angelides, K. et al. (1989) The Journal ofCell Biology, 108, 1495–1506.

94 Griep, M.A. et al. (1992) The Journal ofBiological Chemistry, 267, 3052–3059.

95 Tompa, P. et al. (1990) BiochemistryInternational, 20, 487–494.

96 Connor, J. et al. (1987) Biochemistry, 26,5099–5105.

97 Selvin, P.R. (1995)Methods in Enzymology,246, 300–334.

98 Chen, R.F. et al. (1988) AnalyticalBiochemistry, 172, 61–77.

99 Johnson, D.A. et al. (1984) The Journal ofBiological Chemistry, 259, 5717–5725.

100 Carraway, K.L. et al. (1989) The Journal ofBiological Chemistry, 264, 8699–8707.

101 Jenis, D.M. et al. (1984) Journal of CellularPhysiology, 121, 501–507.

746j 14 Data

Page 93: FRET - Förster Resonance Energy Transfer || Data

102 Chan, S.S. et al. (1979) The Journal ofHistochemistry and Cytochemistry, 27 ,56 –64.

103 Harris, R.W. et al. (1991) The Journal ofBiological Chemistry, 266, 6936–6941.

104 Liegler, T. et al. (1991) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 88, 6755– 6759.

105 Holowka, D.A. et al. (1983) Biochemistry,22 , 3466–3474.

106 Khanna, P.L. et al. (1980) AnalyticalBiochemistry, 108, 156–161.

107 Hasselbacher, C.A. et al. (1984)Biochemistry, 23, 6445–6452.

108 Leder, R.O. et al. (1989) Journal ofMolecular Biology, 209, 683–701.

109 Thomas, D.D. et al. (1978) Proceedings ofthe National Academy of Sciences ofthe United States of America, 75,5746–5750.

110 Wang, C.L.A. (1989) Biochemistry, 28,4816–4820.

111 Kometani, T. et al. (1987) BiophysicalJournal, 52 , 509–517.

112 Berman, H.A. et al. (1978) Biochemistry,17 , 1704–1713.

113 Jacobson, M.A. et al. (1984) Biochemistry,23 , 3781–3799.

114 Chang, S.I. et al. (1989) Biochemistry, 28 ,3781–3788.

115 Glazer, A.N. et al. (1983) BiophysicalJournal, 43 , 383–386.

116 Jacobson, M.A. et al. (1983) Biochemistry,22 , 4247–4257.

117 Rice, K.G. et al. (1991) Biochemistry, 30,6646–6655.

118 Miki, M. et al. (1992) Journal of MuscleResearch and Cell Motility, 13,132–145.

119 Barden, J.A. et al. (1987) European Journalof Biochemistry, 168, 103–109.

120 Aranda, F.J. et al. (1989) Biochimica etBiophysica Acta, 985, 26–32.

121 Costa, S.M.B. et al. (1983) Journal ofPhotochemistry, 23, 343–354.

122 Doody, M.C. et al. (1983) BiophysicalChemistry, 17, 139–152.

123 Munkonge, F. et al. (1989) Biochimica etBiophysica Acta, 979, 113–120.

124 Dobryszycki, P. et al. (1988) Biochimica etBiophysica Acta, 956, 217–223.

125 Lakowicz, J.R. (1999) Principles ofFluorescence Spectroscopy, 2nd edn,Plenum Press, New York.

126 http://www.mobitec.com/probes/docs/media/pis/mp03792.pdf, MolecularProbes, Bodipy Lipid Probes, ProductInformation, 2001, accessed 2013.

127 Sivasothy, P. et al. (2000) Journal ofBiological Chemistry, 275, 33663–33668.

128 Xie, Y. et al. (2009) Journal of the AmericanChemical Society, 131, 17605–17614.

129 Bacchiocchi, C. et al. (2002) BiophysicalJournal, 82 , 1524–1536.

130 Lin, Z. et al. ( 2000 ) Mo lecular Cell, 16, 23–34.131 Zigurts, K.M. et al. (2005) Journal of

Molecular Biology, 351, 1123–1145.132 Trexler, A.J. et al. (2009) Biochemistry, 48 ,

2304–2306.133 Johnson, I. et al. (eds) (2010) Molecular

Probes Handbook, 11th edn, MolecularProbes, Invitrogen.

134 Leica Micosystems (2006) ConfocalApplication Notes, vol. 4, LeicaMicrosystems Inc., September.

135 Malicka, J. et al. (2003) AnalyticalBiochemistry, 315, 160–169.

136 Peerce, B.E. et al. (1986) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 83, 8092–8096.

137 Szarka, K. et al. (2001) Biochemistry, 40,14806–14811.

138 Hirata, S. et al. (2008) Advanced FunctionalMaterials, 18, 2869–2879.

139 http://www.olympusmicro.com/primer/techniques/fluorescence/fret/fretintro.html, Microscopy Resource Center, 2012Olympus America Inc., accessed 2013.

140 Gaind, V. et al. (2009) The Journal ofthe Optical Society of America A, 26,1805–1813.

141 Kochendoerfer, G.G. et al. (2002) U.S.Patent Number 6,451,543 B1.

142 Ozinskas, A. et al. (1993) AnalyticalBiochemistry, 213, 264–270.

143 http://chemwiki.ucdavis.edu/Theoretical_Chemistry/Fundamentals/Fluorescence_Resonance_Energy_Transfer, Fluorescence Resonance EnergyTransfer, UC Davis Chemwiki byUniversity of California, 2010, accessed2013.

144 Tyson, D.S. et al. (2000) The Journal ofPhysical Chemistry A, 104, 2919–2924.

145 Maher, M.P. et al. (2007) Journal ofBiomolecular Screening, 12, 656–667.

146 Johnson, D.P. et al. (1993) Biochemistry,32, 6402–6410.

References j747

Page 94: FRET - Förster Resonance Energy Transfer || Data

147 Thielen, A.P.G.M. et al. (1984)Biochemistry, 23, 6668–6674.

148 Odom, O.W. et al. (1984) Biochemistry, 23,5069–5076.

149 Malicka, J. et al. (2003) Biopolymers, 70 ,595–603.

150 Albaugh, S. et al. (1989) The Journal ofPhysical Chemistry, 93, 8013–8016.

151 Lehto, M.T. et al. (2002) Biochemistry, 41,8368–8376.

152 Nalin, C.M. et al. (1985) Biochemistry, 28,2318–2324.

153 Wong, A.P. et al. (2002) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 99, 14147–14152.

154 Frigoli, M. et al. (2009) Chemistry: AEuropean Journal, 15, 8319– 8330.

155 Loura, L.M.S. et al. (2006) The Journal ofPhysical Chemistry B, 110, 8130–8141.

156 DiFranco, M. et al. (2007) The Journal ofGeneral Physiology, 130, 581–600.

157 Kosk-Kosicka, D. et al. (1989) The Journalof Biological Chemistry, 264, 19495–19499.

158 Robbins, D. et al. (1981) Biochemistry, 20,5301–5309.

159 Brewer, B.Y. et al. (2004) The Journal ofBiological Chemistry, 279, 27870–27877.

160 (a) Jona, I. et al. (1990) Biochimica etBiophysica Acta, 1028, 183– 199 (b)Birmachu, W. et al. (1989) Biochemistry,28 , 3940–3947.

161 Taylor, D.L. et al. (1981) The Journal of CellBiology, 89, 362–367.

162 Kasprzyk, P.G. et al. (1983) Biochemistry,22 , 1877–1882.

163 Shapiro, A.B. et al. (1991) The Journal ofBiological Chemistry, 266, 17276–17285.

164 Qu, Q. et al. (2001) Biochemistry, 40 ,1413–1422.

165 Amir, D. et al. (1987) Biochemistry, 26,2162–2175.

166 McWheter, C.A. et al. (1986) Biochemistry,25 , 1951–1963.

167 Haas, E. et al. (1975) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 72, 1807–1811.

168 Wolf, E. et al. (1992) Biochemistry, 31,2865–2873.

169 Mitra, B. et al. (1989) Biochemistry, 28,3063–3069.

170 Childress, E.S. et al. (2012) AnalyticalChemistry, 84, 1235–1239.

171 Miyake-Stoner, S.J. et al. (2009)Biochemistry, 48 , 5953–5962.

172 Borochov-Neori, H. et al. (1989)Biochemistry, 28 , 1711–1718.

173 Ha , T. et al. (1996) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 93, 6264–6268.

174 Deniz, A.A. et al. (1999) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 96, 3670–3675.

175 Algar, W.R. et al. (2006) Journal ofFluorescence, 16, 555–567.

176 Recchia, J. et al. (1982) Biochimica etBiophysica Acta, 702, 105–111.

177 Wiczk, W. et al. (1991) Journal ofFluorescence, 1, 273–286.

178 Wu, P.G. et al. (1992) Biochemistry, 31,7939–7947.

179 Steiner, R.F. et al. (1991) Journal ofFluorescence, 1, 15–22.

180 Le Doan, T. et al. (1983) Biochimica etBiophysica Acta, 735, 259–270.

181 Miki, M. et al. (1984) Biochimica etBiophysica Acta, 790, 201–207.

182 Haugland, R.P. (1992)Handbook ofFluorescent Probes and Research Chemicals,5th edn, Molecular Probes, Inc., Eugene,OR.

183 http://www.invitrogen.com/site/us/en/home/References/Molecular-Probes-The-Handbook/Technical-Notes-and-Product-Highlights/Fluorescence-Resonance-Energy-Transfer-FRET.html, FluorescenceResonance Energy Transfer (FRET)-Note1.2, 2013 Life Technologies Corporation,accessed 2013.

184 Sinkeldam, R.W. et al. (2010) ChemicalReviews, 110, 2579–2619.

185 Horrocks, W.D. et al. (1980) Journalof the American Chemical Society, 102,3650–3652.

186 Clapp, A.R. et al. (2004) Journal of theAmerican Chemical Society, 126 (1), 301–310.

187 Dos Remedios, C.G. et al. (1987) Journalof Muscle Research and Cell Motility, 8,97–117.

188 Patterson, G.H. et al. (2000) AnalyticalBiochemistry, 284 (2), 438–440.

189 Hink, M.A. et al. (2003) Journal ofFluorescence, 13 (2), 185–188.

190 Akrap, N. et al. (2010) AnalyticalBiochemistry, 402 (1), 105–106.

191 Subach, O.M. et al. (2008) Chemistry &Biology, 15 (10), 1116–1124.

192 Kao, T.H. et al. (2011) Journal of StructuralBiology, 174 (3), 485–493.

748j 14 Data

Page 95: FRET - Förster Resonance Energy Transfer || Data

193 Kal�ab, P. et al. (2010)Methods (San Diego,Calif.), 51 (2), 220–232.

194 Esposito, A. et al. (2008) Biochemistry, 47(49), 13115–13126.

195 Pan, W. et al. (2009) European BiophysicsJournal, 38 (4), 447–456.

196 Hoffmann, C. et al. (2005) NatureMethods, 2 (3), 171–176.

197 Ouyang, M. et al. (2008) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 105 (38), 14353–14358.

198 Honda, A. et al. (2005) Methods inMolecular Biology (Clifton, NJ), 307, 27–43.

199 Yamada, A. et al. (2005) The BiochemicalJournal, 385 (Part 2), 589–594.

200 Johansson, D.X. et al. (2007) Biochemicaland Biophysical Research Communications,352 (2), 449–455.

201 Quitterer, U. et al. (2011) Biochemical andBiophysical Research Communications, 409(3), 544–549.

202 Koushik, S.V. et al. (2006) BiophysicalJournal, 91 (12), L99–L101.

203 Shyu, Y.J. et al. (2008) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 105 (1), 151–156.

204 Kremers, G.J. et al. (2012) http://www.microscopyu.com/articles/fl uorescence/fret/fretintro.html, January 12.

205 Kinoshita, K. et al. (2007) FEBS Journal,274 (21), 5567–5575.

206 Ai, H.W. et al. (2006) Biochemical Journal,400, 531–540.

207 Kuhn, S.M. et al. (2011) Journal of theAmerican Chemical Society, 133 (11),3708–3711.

208 Kremers, G.J. et al. (2006) Biochemistry,45 (21), 6570–6580.

209 Karasawa, S. et al. (2004) The BiochemicalJournal, 381 (Part 1), 307–312.

210 Nguyen, A.W. et al. (2005) NatureBiotechnology, 23 (3), 355–360.

211 Buntru, A. (2009) BMC Biology, 7 (1), 81.212 Song, Y. et al. (2012) Assay and Drug

Development Technologies, 10 (4), 336–343.213 Lee, J.D. et al. (2008)Microscopy and

Microanalysis, 14 (6), 507–518.214 George, C.H. et al. (2004)Molecular

Biology of the Cell, 15 (6), 2627–2638.215 Albertazzi, L. et al. (2009) Photochemistry

and Photobiology, 85 (1), 287–297.216 Slaughter, B.D. et al. (2007) Proceedings of

the National Academy of Sciences of the

United States of America, 104 (51),20320–20325.

217 Duckworth, B.P. et al. (2007)Chembiochem: A European Journal ofChemical Biology, 8 (1), 98–105.

218 Croall, D.E. et al. (2008) Biochimica etBiophysica Acta, 1784 (11), 1676–1686.

219 Harbaugh, S. et al. (2009)Biomacromolecules, 10 (5), 1055–1060.

220 Ganesan, S. et al. (2006) Proceedings ofthe National Academy of Sciences of theUnited States of America, 103 (11),4089–4094.

221 Nagai, T. et al. (2002) Nature Biotechnology,20 (1), 87–90.

222 Cornea, A. et al. (2002)Methods (SanDiego, Calif.), 27 (4), 333–339.

223 Mizuno, H. et al. (2001) Biochemistry,40 (8), 2502–2510.

224 Elphick, L.M. et al. (2006) AnalyticalBiochemistry, 349 (1), 148–155.

225 Fradkov, A.F. et al. (2002) The BiochemicalJournal, 368 (Part 1), 17–21.

226 Kukolka, F. et al. (2007) BioconjugateChemistry, 18 (3), 621–627.

227 Subach, F.V. et al. (2010) Chemistry &Biology, 17 (7), 745–755.

228 Goedhart, J. et al. (2007) PLoS One, 2 (10),e1011.

229 Shaner, N.C. et al. (2008) Nature Methods,5 (6), 545–551.

230 Grant, D.M. et al. (2008) BiophysicalJournal, 95 (10), L69–L71.

231 Medintz, I.L. et al. (2009) The Journal ofPhysical Chemistry C: Nanomaterials andInterfaces, 113 (43), 18552–18561.

232 Lu, H. et al. (2008) Journal of the AmericanChemical Society, 130 (14), 4815–4827.

233 Sun, Z. et al. (2009) Journal of BiomedicalOptics, 14 (4), 040502.

234 Dennis, A.M. et al. (2010) BioconjugateChemistry, 21 (7), 1160–1170.

235 Zhang, Y. et al. (2011) Physical ChemistryChemical Physics, 13 (43), 19427–19436.

236 Yang, L.X. et al. (2010) EnvironmentalScience & Technology, 44 (20), 7884–7889.

237 Heliotis, G. et al. (2006) AdvancedMaterials, 18 (3), 334.

238 Patolsky, F. et al. (2003) Journal of theAmerican Chemical Society, 125 (46),13918–13919.

239 Li, X.P. et al. (2008) Applied Physics Letters,92 (6), 063309.

References j749

Page 96: FRET - Förster Resonance Energy Transfer || Data

240 Chowdhury, P.S. et al. (2005) ChemicalPhysics Letters, 413 (4–6), 311–314.

241 Emin, S.M. et al. (2009) The Journal ofPhysical Chemistry C, 113 (10),3998–4007.

242 Krooswyk, J.D. et al. (2010) The Journalof Physical Chemistry C, 114 (49),21348–21352.

243 Lai, S.J. et al. (2009) Revue Roumaine deChimie, 54 (10), 815.

244 Sadhu, S. et al. (2009) The Journal ofPhysical Chemistry C, 113 (45),19488–19492.

245 Sarkar, S. et al. (2010) The Journal ofPhysical Chemistry Letters, 1 (3), 636–640.

246 Kim, J.H. et al. (2004) Sensors andActuators B: Chemical, 102 (2), 315–319.

247 Bagalkot, V. et al. (2007) Nano Letters,7 (10), 3065–3070.

248 Galvez, E.M. et al. (2008) EuropeanBiophysics Journal: With Biophysics Letters,37 (8), 1367–1371.

249 Suzuki, M. et al. (2008) Journal of theAmerican Chemical Society, 130 (17),5720–5725.

250 Funston, A.M. et al. (2008) AdvancedMaterials, 20 (22), 4274–4280.

251 Peng, H. et al. (2007) Journal of theAmerican Chemical Society, 129 (11),3048.

252 Sabella, S. et al. (2008) Langmuir, 24 (23),13266–13269.

253 Choi, Y. et al. (2010) ChemicalCommunications, 46 (48), 9146–9148.

254 Hering, V.R. et al. (2009) BioconjugateChemistry, 20 (6), 1237–1241.

255 Kurbanov, S.S. et al. (2007) OpticsCommunications, 276 (1),127–130.

256 Medintz, I.L. et al. (2006) Nature Materials,5 (7), 581–589.

257 Medintz, I.L. et al. (2005) AdvancedMaterials, 17 (20), 2450.

258 Snee, P.T. et al. (2011) The Journal ofPhysical Chemistry C, 115 (40),19578–19582.

259 Zenkevich, E. et al. (2005) The Journal ofPhysical Chemistry B, 109 (18), 8679–8692.

260 Maurel, V. et al. (2006) The Journal ofPhysical Chemistry B, 110 (33),16353–16358.

261 Finlayson, C.E. et al. (2001) ChemicalPhysics Letters, 338 (2–3), 83–87.

262 Sugawa, M. et al. (2010) Small, 6 (3),346–350.

263 Zhang, B.Q. et al. (2011) ACS Nano, 5 (1),129–138.

264 Dennis, A.M. et al. (2008) Nano Letters,8 (5), 1439–1445.

265 Rakshit, S. et al. (2009) The Journalof Physical Chemistry C, 113 (37),16424–16431.

266 Zhang, K. et al. (2010) AnalyticalChemistry, 82 (22), 9579–9586.

267 Pons, T. et al. (2006) Journal of theAmerican Chemical Society, 128 (47),15324–15331.

268 Lee, J.I. et al. (2008) Acta Biomaterialia,4 (4), 791–798.

269 Freeman, R. et al. (2009) Nano Letters,9 (5), 2073–2076.

270 Narayanan, S.S. et al. (2008) The Journalof Physical Chemistry C, 112 (33),12716–12720.

271 Yang, W.S. et al. (2008) InternationalJournal of Radiation Oncology, Biology,Physics, 72 (3), 633–635.

272 Chen, L. et al. (2011) Analytical andBioanalytical Chemistry, 399 (1),133–141.

273 Achermann, M. et al. (2011) ACS Nano,5 (3), 1761–1768.

274 Levy, M. et al. (2005) Chembiochem: AEuropean Journal of Chemical Biology,6 (12), 2163–2166.

275 Cady, N.C. et al. (2007)Molecular andCellular Probes, 21 (2), 116–124.

276 Kim, J.H. et al. (2007) Nanotechnology,18 (19), 195105.

277 Huang, Y. et al. (2011) AnalyticalChemistry, 83 (23), 8913–8918.

278 Lim, T.C. et al. (2008) Nanotechnology,19 (7), 075701.

279 Liao, K.C. et al. (2008) Biosensors &Bioelectronics, 23 (10), 1458–1465.

280 Chen, H.H. et al. (2009) Nano Today, 4 (2),125–134.

281 Pai, R.K. et al. (2011) The Journal ofPhysical Chemistry C, 115 (5), 1674–1681.

282 Zhou, D.J. et al. (2011) Nanoscale, 3 (1),201–211.

283 Algar, W.R. et al. (2011) Journal of Colloidand Interface Science, 359 (1), 148–154.

284 Dang, Y.Q. et al. (2012) ACSApplied Materials & Interfaces, 4 (3),1267–1272.

750j 14 Data

Page 97: FRET - Förster Resonance Energy Transfer || Data

285 Park, H.Y. et al. (2010) Langmuir, 26 (10),7327–7333.

286 Algar, W.R. et al. (2009) AnalyticalChemistry, 81 (15), 6562–6562.

287 Alphandery, E. et al. (2004) ChemicalPhysics Letters, 388 (1–3), 100–104.

288 Dezhurov, S.V. et al. (2011) BioconjugateChemistry, 22 (3), 338–345.

289 Mutlugun, E. et al. (2010) Optics Express,18 (10), 10720–10730.

290 Algar, W.R. et al. (2006) Langmuir, 22 (26),11346–11352.

291 Algar, W.R. et al. (2007) Analytica ChimicaActa, 581 (2), 193–201.

292 Algar, W.R. et al. (2010) AnalyticalChemistry, 82 (1), 400–405.

293 Algar, W.R. et al. (2010) Langmuir, 26 (8),6041–6047.

294 Boeneman, K. et al. (2010) Journal of theAmerican Chemical Society, 132 (51),18177–18190.

295 Medintz, I.L. et al. (2003) Nature Materials,2 (9), 630–638.

296 Schmitt, F.J. et al. (2011) Photonics andNanostructures, 9 (2), 190–195.

297 Cheng, A.K.H. et al. (2009) AnalyticalChemistry, 81 (15), 6130–6139.

298 Goldman, E.R. et al. (2005) Journal ofthe American Chemical Society, 127 (18),6744–6751.

299 Ruedas-Rama, M.J. et al. (2010) AnalyticalChemistry, 82 (21), 9043–9049.

300 Wu, C.S. et al. (2010) ACS Nano, 4 (10),5897–5904.

301 Sukhanova, A. et al. (2007) Nano Letters,7 (8), 2322–2327.

302 Chen, Q.D. et al. (2005) Luminescence,20 (4–5), 251–255.

303 Rakovich, A. et al. (2010) Nano Letters,10 (7), 2640–2648.

304 Wang, Q.L. et al. (2009) The Journal ofBiological Chemistry, 284 (18), 12000–12007.

305 Dif, A. et al. (2008) Journal of the AmericanChemical Society, 130 (26), 8289–8296.

306 Orlova, A.O. et al. (2008) Optics andSpectroscopy, 105 (6), 889–895.

307 Li, J. et al. (2008) Spectrochimica Acta: PartA, 70 (4), 811–817.

308 Hiromitsu, I. et al. (2011) Chemical PhysicsLetters, 501 (4–6), 385–389.

309 Wu, C.S. et al. (2011) Biosensors &Bioelectronics, 26 (9), 3870–3875.

310 Freeman, R. et al. (2011) Nano Letters,11 (10), 4456–4461.

311 Biswas, P. et al. (2011) ChemicalCommunications, 47 (18), 5259–5261.

312 Ruedas-Rama, M.J. et al. (2007) ChemicalCommunications, 15, 1544–1546.

313 Zhang, Y. et al. (2011) Physical ChemistryChemical Physics, 13 (43), 19427–19436.

314 Stringer, R.C. et al. (2008) Sensors andActuators B: Chemical, 134 (2), 427–431.

315 Kwon, H. et al. (2010) ChemicalCommunications, 46 (47), 8959–8961.

316 Yildiz, I. et al. (2010) Langmuir, 26 (13),11503–11511.

317 Willard, D.M. et al. (2001) Nano Letters,1 (9), 469–474.

318 Crivat, G. et al. (2010) Journal of theAmerican Chemical Society, 132 (5), 1460.

319 Algar, W.R. et al. (2009) Langmuir, 25 (1),633–638.

320 Nagasaki, Y. et al. (2004) Langmuir,20 (15), 6396–6400.

321 Halpert, J.E. et al. (2009) The Journal ofPhysical Chemistry C, 113 (23), 9986–9992.

322 Kowerko, D. et al. (2009) InternationalJournal of Molecular Sciences, 10 (12),5239–5256.

323 Fernandez-Arguelles, M.T. et al. (2007)Nano Letters, 7 (9), 2613–2617.

324 Shi, L.F. et al. (2007) Analytical Chemistry,79 (1), 208–214.

325 Shi, L.F. et al. (2006) Journal of theAmerican Chemical Society, 128 (32),10378–10379.

326 Tsay, J.M. et al. (2007) Journal of theAmerican Chemical Society, 129 (21), 6865–6871.

327 Diaz, S.A. et al. (2011) ACS Nano, 5 (4),2795–2805.

328 Huang, S. et al. (2008) ChemicalCommunications, 45, 5990–5992.

329 Bae, S.H. et al. (2008) Chemistry ofMaterials, 20 (13), 4185–4187.

330 Wang, Q.B. et al. (2008) AngewandteChemie, International Edition, 47 (2),316–319.

331 McLaurin, E.J. et al. (2009) Journal of theAmerican Chemical Society, 131 (36),12994–13001.

332 Yakovlev, A.V. et al. (2009) Langmuir,25 (5), 3232–3239.

333 Hering, V.R. et al. (2007) BioconjugateChemistry, 18 (6), 1705–1708.

References j751

Page 98: FRET - Förster Resonance Energy Transfer || Data

334 Campbell, I.H. et al. (2006) AdvancedMaterials, 18 (1), 77–79.

335 Duan, H.W. et al. (2010) Chemistry ofMaterials, 22 (15), 4372–4378.

336 Idowu, M. et al. (2009) Polyhedron, 28 (5),891–896.

337 Potapova, I. et al. (2005) AngewandteChemie, International Edition, 44 (16),2437–2440.

338 Duong, H.D. et al. (2011) Chemical PhysicsLetters, 501 (4–6), 496–501.

339 Halivni, S. et al. (2012) ACS Nano, 6 (3),2758–2765.

340 Tomasulo, M. et al. (2006) Langmuir,22 (24), 10284–10290.

341 Tomasulo, M. et al. (2006) The Journal ofPhysical Chemistry B, 110 (9), 3853–3855.

342 Zhou, D.J. et al. (2005) ChemicalCommunications, 38, 4807–4809.

343 Zhou, D.J. et al. (2008) Langmuir, 24 (5),1659–1664.

344 Medintz, I.L. et al. (2004) Proceedings of theNational Academy of Sciences of the UnitedStates of America, 101 (26), 9612–9617.

345 Liu, L.Z. et al. (2011) ChemicalCommunications, 47 (9), 2622–2624.

346 Ebenstein, Y. et al. (2004) The Journal ofPhysical Chemistry B, 108 (1), 93–99.

347 Vinayaka, A.C. et al. (2011) BioconjugateChemistry, 22 (5), 968–975.

348 Liu, W. et al. (2008) Journal of the AmericanChemical Society, 130 (4), 1274–1284.

349 Freeman, R. et al. (2010) Nano Letters,10 (6), 2192–2196.

350 Kawashima, N. et al. (2010) Chemistry: AEuropean Journal, 16 (4), 1186–1192.

351 Sandros, M.G. et al. (2005) ChemicalCommunications, 22, 2832–2834.

352 Geissbuehler, I. et al. (2005) AngewandteChemie, International Edition, 44 (9),1388–1392.

353 Shi, L.X. et al. (2006) Journal of theAmerican Chemical Society, 128 (19),6278–6279.

354 Feng, C.L. et al. (2008) Small, 4 (5),566–571.

355 Kowerko, D. et al. (2010) PhysicalChemistry Chemical Physics, 12 (16),4112–4123.

356 Bahshi, L. et al. (2009) Small, 5 (6),676–680.

357 Ramadurai, D. et al. (2008) IETNanobiotechnology, 2 (2), 47–53.

358 Chi, C.W. et al. (2011) Biosensors &Bioelectronics, 26 (7), 3346–3352.

359 Nikiforov, T.T. et al. (2006) AnalyticalBiochemistry, 357 (1), 68–76.

360 Wei, O.D. et al. (2006) AnalyticalBiochemistry, 358 (1), 31–37.

361 Jares-Erijman, E. et al. (2005)MolecularCrystals and Liquid Crystals, 430, 257–265.

362 Samia, A.C.S. et al. (2003) Journal of theAmerican Chemical Society, 125 (51),15736–15737.

363 Freeman, R. et al. (2009) Analyst, 134 (4),653–656.

364 Elbaz, J. et al. (2009) Angewandte Chemie,International Edition, 48 (1), 133–137.

365 Cui, S.C. et al. (2011) The Journal ofPhysical Chemistry C, 115 (5),1824–1830.

366 Freeman, R. et al. (2009) ChemicalCommunications, 7, 764–766.

367 Kloepfer, J.A. et al. (2004) The Journalof Physical Chemistry B, 108 (44),17042–17049.

368 Ren, T. et al. (2010) Langmuir, 26 (23),17981–17988.

369 Jung, H. et al. (2010) The Journal ofPhysical Chemistry B, 114 (45), 14544–14549.

370 Griep, M.H. et al. (2010) Biosensors &Bioelectronics, 25 (6), 1493–1497.

371 Wu, S.M. et al. (2010) Biosensors &Bioelectronics, 26 (2), 491–496.

372 Zhu, L.Y. et al. (2005) Journal of theAmerican Chemical Society, 127 (25),8968–8970.

373 Gill, R. et al. (2005) The Journal of PhysicalChemistry B, 109 (49), 23715–23719.

374 Bakalova, R. et al. (2005) Journal of theAmerican Chemical Society, 127 (32),11328–11335.

375 Chen, Y. et al. (2008) Journal of theAmerican Chemical Society, 130 (12), 3744.

376 Liu, Z.Z. et al. (2011) ChemicalCommunications, 47 (5), 1482–1484.

377 Bailey, V.J. et al. (2009) Genome Research,19 (8), 1455–1461.

378 Grecco, H.E. et al. (2004)MicroscopyResearch and Technique, 65 (4–5),169–179.

379 Hohng, S. et al. (2005) ChemPhysChem,6 (5), 956–960.

380 Li, Y.Q. et al. (2011) Biosensors &Bioelectronics, 26 (5), 2317–2322.

752j 14 Data

Page 99: FRET - Förster Resonance Energy Transfer || Data

381 Hardzei, M. et al. (2012) ChemPhysChem,13 (1), 330–335.

382 Tran, P.T. et al. (2002) Physica StatusSolidi B: Basic Research, 229 (1), 427–432.

383 Orlova, A.O. et al. (2006) Optics andSpectroscopy, 101 (4), 582–589.

384 Dayal, S. et al. (2006) Applied Physics B:Lasers and Optics, 84 (1–2),309–315.

385 Gorbatsevich, S.K. et al. (2004) Optics andSpectroscopy, 97 (2), 238–243.

386 Yildiz, I. et al. (2007) Journal ofBiomedicine & Biotechnology, 97, 18081.

387 Shubeita, G.T. et al. (2003) Journal ofMicroscopy: Oxford, 210, 274–278.

388 Erker, W. et al. (2010) Journal ofLuminescence, 130 (9), 1624–1627.

389 Ren, T. et al. (2008) Journal of the AmericanChemical Society, 130 (51), 17242.

390 Jiang, G.X. et al. (2009) ACS Nano, 3 (12),4127–4131.

391 Qi, Z.D. et al. (2011) Journal of MaterialsChemistry, 21 (8), 2455–2458.

392 Robinson, A. et al. (2005) Chembiochem: AEuropean Journal of Chemical Biology,6 (10), 1899–1905.

393 So, M.K. et al. (2006) Nature Biotechnology,24 (3), 339–343.

394 Zhang, Y. et al. (2012) AnalyticalChemistry, 84 (1), 224–231.

395 Xu, C.J. et al. (2006) Biochemical andBiophysical Research Communications,344 (3), 931–935.

396 Zhang, C.Y. et al. (2006) Journal of theAmerican Chemical Society, 128 (16),5324–5325.

397 Zhang, C.Y. et al. (2007) AnalyticalChemistry, 79 (20), 7775–7781.

398 Zhang, C.Y. et al. (2005) Nature Materials,4 (11), 826–831.

399 Ho, Y.P. et al. (2006) Journal of ControlledRelease, 116 (1), 83–89.

400 Zhang, C.Y. et al. (2009) AnalyticalChemistry, 81 (8), 3051–3055.

401 Zhang, C.Y. et al. (2010) AnalyticalChemistry, 82 (5), 1921–1927.

402 Onoshima, D. et al. (2008) AnalyticalSciences, 24 (2), 181–183.

403 Mok, H. et al. (2009) Langmuir, 25 (3),1645–1650.

404 Chen, Z. et al. (2008) Analytical andBioanalytical Chemistry, 392 (6),1185–1188.

405 Ho, Y.P. et al. (2009) Nanotechnology,20 (9), 095103.

406 Chen, H.H. et al. (2008)MolecularTherapy: The Journal of the AmericanSociety of Gene Therapy, 16 (2), 324–332.

407 Xu, C.S. et al. (2008) The Journal ofPhysical Chemistry B, 112 (19),5917–5923.

408 Xu, C.S. et al. (2007) Journal of theAmerican Chemical Society, 129 (36),11008.

409 Zhang, C.Y. et al. (2006) AnalyticalChemistry, 78 (15), 5532–5537.

410 Deng, C.Y. et al. (2010) Talanta, 82 (2),771–774.

411 Long, F. et al. (2012) Analytical Chemistry,84 (8), 3646–3653.

412 Zhang, C.Y. et al. (2007) AngewandteChemie, International Edition, 46 (19),3482–3485.

413 Ghadiali, J.E. et al. (2011) AngewandteChemie, International Edition, 50 (15),3417–3420.

414 Ghadiali, J.E. et al. (2010) ACS Nano, 4 (8),4915–4919.

415 Han, H.S. et al. (2010) Journal of theAmerican Chemical Society, 132 (23),7838.

416 Lee, J. et al. (2009) ChemPhysChem, 10 (5),806–811.

417 Soujon, D. et al. (2007) The Journal ofPhysical Chemistry C, 111 (31), 11511–11515.

418 Yang, P. et al. (2011) ACS Nano, 5 (3),2147–2154.

419 Coto-Garcia, A.M. et al. (2009) ChemicalCommunications, 36, 5454–5456.

420 Becker, K. et al. (2006) Nature Materials,5 (10), 777–781.

421 Wang, J. et al. (2012) Analytica ChimicaActa, 709 (1), 120–127.

422 Wilson, R. et al. (2010) Chemistry ofMaterials, 22 (23), 6361–6369.

423 Skajaa, T. et al. (2010) Nano Letters,10 (12), 5131–5138.

424 Muller, F. et al. (2004) The Journal ofPhysical Chemistry B, 108 (38),14527–14534.

425 Snee, P.T. et al. (2006) Journal of theAmerican Chemical Society, 128 (41),13320–13321.

426 Lee, H. et al. (2010) BioconjugateChemistry, 21 (2), 289–295.

References j753

Page 100: FRET - Förster Resonance Energy Transfer || Data

427 Dayal, S. et al. (2008) Photochemistry andPhotobiology, 84 (1), 243–249.

428 Jander, S. et al. (2011) Nano Letters,11 (12), 5179–5183.

429 Becker, K. et al. (2009) Applied PhysicsLetters, 95 (14), 143101.

430 Idowu, M. et al. (2009) Journal ofLuminescence, 129 (4), 356–362.

431 Freeman, R. et al. (2009) AngewandteChemie, International Edition, 48 (2),309–313.

432 Wu, W.T. et al. (2009) ChemicalCommunications, 29, 4390–4392.

433 Ma, J. et al. (2008) The Journal of PhysicalChemistry B, 112 (15), 4465–4469.

434 Lowe, S.B. et al. (2012) ACS Nano, 6 (1),851–857.

435 Jablonski, A.E. et al. (2010) The Journalof Physical Chemistry Letters, 1 (9),1312–1315.

436 Schwartz, D.E. et al. (2008) Biosensors &Bioelectronics, 24 (3), 383–390.

437 Moeno, S. et al. (2010) DaltonTransactions, 39 (14), 3460–3471.

438 Tang, R. et al. (2012) Journal of theAmerican Chemical Society, 134 (10),4545–4548.

439 Chen, A.K. et al. (2007) Nucleic AcidsResearch, 35 (16), e105.

440 Datta, A. et al. (2006) Journal ofLuminescence, 121 (2), 553–560.

441 Du, J.J. et al. (2010) Journal of theAmerican Chemical Society, 132 (37),12780–12781.

442 Yang, D.Z. et al. (2008) Colloids andSurfaces A, 329 (1–2), 38–43.

443 Sarkar, R. et al. (2007) The Journal ofPhysical Chemistry B, 111 (42),12294–12298.

444 Geissler, D. et al. (2010) AngewandteChemie, International Edition, 49 (8),1396–1401.

445 Li, Z. et al. (2010) Journal of Luminescence,130 (6), 995–999.

446 Lutich, A.A. et al. (2009) Nano Letters,9 (7), 2636–2640.

447 Pompa, P.P. et al. (2006) Chemical PhysicsLetters, 417 (4–6), 351–357.

448 Fang, C. et al. (2008) The Journal ofPhysical Chemistry C, 112 (18),7278–7283.

449 Zhao, S.L. et al. (2010) AnalyticalChemistry, 82 (5), 2036–2041.

450 Zhao, S.L. et al. (2010) Chemistry: AEuropean Journal, 16 (21), 6142–6145.

451 Huang, X.Y. et al. (2006) AngewandteChemie, International Edition, 45 (31),5140–5143.

452 Mamedova, N.N. et al. (2001) Nano Letters,1 (6), 281–286.

453 Nadeau, J.L. et al. (2006) 28th AnnualInternational Conference of the IEEEEngineering in Medicine and BiologySociety, 1–15, 6285–6288.

454 Jing, P.T. et al. (2010) The Journal of PhysicalChemistry C, 114 (45), 19256–19262.

455 Achermann, M. et al. (2004) Nature,429 (6992), 642–646.

456 Anni, M. et al. (2004) Applied PhysicsLetters, 85 (18), 4169–4171.

457 Achermann, M. et al. (2006) Nano Letters,6 (7), 1396–1400.

458 Wang, J.H. et al. (2007) Colloids andSurfaces A, 302 (1–3), 168–173.

459 Wang, H.Q. et al. (2008) AnalyticaChimica Acta, 610 (1), 68–73.

460 Odoi, M.Y. et al. (2008) Journal of theAmerican Chemical Society, 128 (11),3506–3507.

461 Javier, A. et al. (2005) The Journal ofPhysical Chemistry B, 109 (15),6999–7006.

462 Anni, M. et al. (2010) The Journal ofPhysical Chemistry A, 114 (5), 2086–2090.

463 Jiang, G.X. et al. (2009) ACS Nano, 3 (12),4127–4131.

464 Roberti, M.J. et al. (2011) ChemPhysChem,12 (3), 563–566.

465 Liu, X.Q. et al. (2011) ACS Nano, 5 (9),7648–7655.

466 Freeman, R. et al. (2011) Journal of theAmerican Chemical Society, 133 (30),11597–11604.

467 Fu, R.H. et al. (2010) Acta Biomaterialia,6 (9), 3621–3629.

468 Chin, P.T.K. et al. (2008) Journal of AppliedPhysics, 104 (1), 013108.

469 Walker, B.J. et al. (2009) Journal of theAmerican Chemical Society, 131 (28),9624–9625.

470 Hering, V.R. et al. (2007) BioconjugateChemistry, 18 (6), 1705–1708.

471 Xing, Y. et al. (2008) Biochemical andBiophysical Research Communications,372 (3), 388–394.

754j 14 Data

Page 101: FRET - Förster Resonance Energy Transfer || Data

472 Hildebrandt, N. et al. (2005) AngewandteChemie, International Edition, 44 (46),7612–7615.

473 Hildebrandt, N. et al. (2007) Journal ofBiomedicine and Biotechnology, 2007, 1–6.

474 Charbonniere, L.J. et al. (2006) Journal ofthe American Chemical Society, 128 (39),12800–12809.

475 Zhang, Y. et al. (2006) Angewandte Chemie,International Edition, 45 (30),4936–4940.

476 Yao, H.Q. et al. (2007) Angewandte Chemie,International Edition, 46 (23), 4346–4349.

477 Xia, Z.Y. et al. (2008) Analytical Chemistry,80 (22), 8649–8655.

478 Lee, J. et al. (2009) The Journal of PhysicalChemistry C, 113 (1), 109–116.

479 Harma, H. et al. (2007) Analytica ChimicaActa, 604 (2), 177–183.

480 Zhang, S.P. et al. (2010) Optik, 121 (4),312–316.

481 Cissell, K.A. et al. (2008) Analytical andBioanalytical Chemistry, 391 (7), 2577–2581.

482 Warner, J.H. et al. (2005) The Journal ofPhysical Chemistry B, 109 (18),9001–9005.

483 Yatsui, T. et al. (2008) Applied Physics B:Lasers and Optics, 93 (1), 199–202.

484 Miyazaki, J. et al. (2011) Journal ofLuminescence, 131 (3), 539–542.

485 Achermann, M. et al. (2011) ACS Nano,5 (3), 1761–1768.

486 Chen, C.W. et al. (2008) Applied PhysicsLetters, 92 (5), 051906.

487 Wargnier, R. et al. (2004) Nano Letters,4 (3), 451–457.

488 Shiraki, T. et al. (2010) Chemistry Letters,39 (3), 156–158.

489 Xu, L. et al. (2007) Journal of MaterialsScience, 42 (23), 9696–9699.

490 Pai, R.K. et al. (2011) The Journal ofPhysical Chemistry C, 115 (5), 1674–1681.

491 Lee, J. et al. (2005) Nano Letters, 5 (10),2063–2069.

492 Xu, L. et al. (2006) Applied Physics Letters,89 (3), 033121.

493 Crooker, S.A. et al. (2002) Physical ReviewLetters, 89 (18), 186802.

494 Ma, Q. et al. (2005) Talanta, 67 (5),1029–1034.

495 Wang, C.H. et al. (2009) The Journal ofPhysical Chemistry C, 113 (35), 15548–15552.

496 Liu, T.C. et al. (2008) Analytical andBioanalytical Chemistry, 391 (8), 2819–2824.

497 Chen, C.Y. et al. (2006) ChemicalCommunications, 3, 263–265.

498 Mayilo, S. et al. (2008) The Journal ofPhysical Chemistry C, 112 (37), 14589–14594.

499 Wang, S.P. et al. (2002) Nano Letters, 2 (8),817–822.

500 Franzl, T. et al. (2005) Small, 1 (4),392–395.

501 Lu, W. et al. (2008) Japanese Journal ofApplied Physics, 47 (8), 6592–6595.

502 Lunz, M. et al. (2011) Nano Letters, 11 (8),3341–3345.

503 Shepherd, D.P. et al. (2010) The Journalof Physical Chemistry C, 114 (35),14831–14837.

504 Kagan, C.R. et al. (1996) Physical Review B,54 (12), 8633–8643.

505 Kagan, C.R. et al. (1996) Physical ReviewLetters, 76 (9), 1517–1520.

506 Feng, C.L. et al. (2008) Small, 4 (5),566–571.

507 Guo, L. et al. (2006) Applied Physics Letters,89 (6), 061104.

508 Osovsky, R. et al. (2005) The Journalof Physical Chemistry B, 109 (43),20244–20250.

509 Li, Y.B. et al. (2007) Luminescence, 22 (1),60–66.

510 Wang, C.H. et al. (2010) Applied PhysicsLetters, 96 (7), 071906.

511 Su, X.R. et al. (2010) Optics Express, 18 (7),6516–6521.

512 Micic, O.I. et al. (1998) The Journal ofPhysical Chemistry B, 102 (49), 9791–9796.

513 Ebenstein, Y. et al. (2006) The Journal ofPhysical Chemistry A, 110 (27), 8297–8303.

514 Tang, Z.Y. et al. (2004) The Journal ofPhysical Chemistry B, 108 (22), 6927–6931.

515 Lingley, Z. et al. (2011) Nano Letters,11 (7), 2887–2891.

516 Clark, S.W. et al. (2007) The Journal ofPhysical Chemistry C, 111 (20), 7302–7305.

517 Bose, R. et al. (2008) Nano Letters, 8 (7),2006–2011.

References j755

Page 102: FRET - Förster Resonance Energy Transfer || Data

Recommended