+ All Categories
Home > Documents > from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf ·...

from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf ·...

Date post: 19-Jun-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
62
Iron deficiency stress in algae and cyanobacteria from global to molecular Ondrej Prasil IMB Trebon - Algatech
Transcript
Page 1: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron deficiency stress in algae and cyanobacteria

from global to molecular

Ondrej Prasil IMB Trebon - Algatech

Page 2: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite
Page 3: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

• Iron is the most abundant element of Earth (32%) • Iron is the 4th most abundant in Earth’s crust (5%) • yet today, iron limits primary productivity in 30-60%

of aquatic environments

• Q: why? A: iron concentration and chemistry: Iron aqueous chemistry

In aqueous solutions, Fe has two relevant oxidation states Fe(II) and Fe(III) Ferrous ion (Fe(II)) is relatively soluble and bioavailable at usual pH range (but short lifetime ~10 min at pH 8) Ferric ion (Fe(III)) poorly soluble [0.08-0.2 nM]seawater, easily precipitates -> not bioavailable

Ley, Phycology

Page 4: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Atmosphere composition: orginal archean: CO2, N2, H2O, CO + traces of H2, HCN, H2S, NH3 Nonbiological source of O2: photodissociation of water vapours today atmosphere: 78% N2, 21% O2, 0,035% CO2

Falkowski and Raven, 1998

“Perverse twist of fate” for phototrophs Behrenfeld and Mulligan, 2013

Page 5: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Hohmann-Marriott & Blankenship, 2010

Start of increase of O2 in the atmosphere ~2700-2500 MY Rise of [O2] above 1% between 2100-1900 MY Stage 1 (more than 2.3 GY) both atmosphere and ocean free of O2 Stage 2 (~2.3-1.8 GY) atmosphere oxidized, ocean anoxic and sulfidic Stage 3a (~1.8 – 0.75 GY) deep-ocean euxinia (anoxic H2S rich) Stage 3b (from 0.75 GY to present) both atmosphere and ocean oxygenated

Precipitation of transient metals (Fe, Mn) BIF – Banded Iron Formation hematit Fe2O3 magnetit Fe3O4

Page 6: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

pH 0.9-3 (avg 2.3) [Fe] 1.5-20 g/l

Aguilera et al., 2007

Page 7: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite
Page 8: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron is essential micronutrient

Page 9: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron is essential micronutrient

Fe/C quota humans: 1Fe / 32,000 C algae and cyanobacteria Fe replete (culture) 1Fe/6,000 C Fe limited eukaryote 1Fe/50,000 C field Fe limited 1Fe/150,000-500,000 C

Page 10: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron (unlike other essential trace metals) has higher particulate than dissolved concentration in surface ocean waters. The particulate fraction is biologically inert. >99% of the dissolved Fe(III) [i.e. <0.2 μm] is bound by organic ligands. If not for these ligands, Fe would preciptate and sink. This keeps to retain Fe near the sea surface, where it is reused in photosynthesis. [Fe(OH)2

-] should be <200pM two classes of organic ligands: L1 (stronger) - siderophores L2 (weaker) – cell degradation products together they form “Fe-ligand soup”, concentration is 103 to 105 higher than of Fe(III)

Kranzler et al., 2013

Iron in current aquatic systems

In ocean, Fe ~0.5nM, in surface 70pM, in some freshwater systems, dissolved [Fe] ~ 10 mg/l

Page 11: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Classical (demanding, contamination) Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite furnace AAS Recent Flow injection analysis (FIA), detection chemiluminescence or kinetic spectrophotometry

Measurements of dissolved trace metals

Page 12: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

0 50 100 Primary production (gC m-2 month-1)

Productivity of all biosphere = 110 - 120 Gt C year-1

Approx. 50% of productivity on land & 50% in oceans

(annual anthropogenic emisisons 7.1 Gt C)

Hydrothermal vents ~ 0.01 Gt C year-1

Primary productivity of our planet

(Giga = 109)

Page 13: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Behrenfeld and Milligan, 2013

Iron in photosynthesis

3 Fe 6 Fe 14 Fe

Page 14: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Claustre & Maritorena, Science, 2003

What limits primary photosynthetic productivity in aquatic environment? physico-chemical factors: light, temperature, mixing, aerial deposition…. “standard” limiting factors: N,P, (Si for diatoms), light

Page 15: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron limitation hypothesis

Iron is essential micronutrient, only source of iron in contemporary ocean is wind-blown dust

Glacial – interglacial changes in dust (=Fe) deposition (up to 50x higher in glacial) -> threefold increase in photosynthesis and drawdown of CO2 to 200 ppm.

“With half a ship load of iron, I could give you an ice age”

John H. Martin

(1935-1993)

Page 16: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

High nutrient low chlorophyll regions

Repleted with basic nutrients

NO3-, HPO4

2-

Low phytoplankton

abundance

Page 17: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Eolian iron fluxes

Annually ~ 1011 moles of Fe solubility 1-2%

Page 18: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Aeolian iron supply

Feb 26th 2000.

Sand storm above western Sahara.

SeaWiFS, NASA

April 2010.

Eyjafjallajökull eruption

Page 19: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron limitation hypothesis

First bottle experiments

Northeastern Pacific 1980‘s

Page 20: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Southern ocean - SOFeX

January - February 2002

Southern ocean 55° & 66° S, 180° E

R/V Roger Revelle, R/V Melville, R/V Polar Star

Page 21: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite
Page 22: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

SOFeX

South patch evolution

FRR fluorometry

Science 304: 408-414, 2004

Page 23: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Experiments visible from satellites!

A Experiment SOIREE B Crozet C SOFEX

C

Boyd et al., Science, 2007

Page 24: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Mesoscale iron enrichment experiments

Boyd et al., Science, 2007

Page 25: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Mesoscale iron enrichment experiments

Boyd et al., Science, 2007

Page 26: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Limitation of primary productivity by Fe: min. 30% of ocean

Moore et al., 2001

Page 27: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Forms of bioavailable iron

dissolved (<0.2 μm) Fe’- free unchelated pool - readily bioavailable, but at low concentration organically complexed Fe fractions - saccharides for diatoms different siderophores (e.g.ferrated ferroxamine B, aerobactin)- variability in bioavailability decomplexation of siderophores: either reduction of siderophore-bound iron outside of the cells (marine) or import of the Fe-siderophore inside of the cell (freshwater) particulate/colloidal – both organic and anorganic forms

Kranzler et al., 2013

Page 28: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron uptake - siderophores Siderophores – the strongest Fe(III) chelators, produced and secreted under Fe starvation Found in >20 species of cyanobacteria (mostly filamentous and heterocystous)

Kranzler et al., 2013

catecholates hydroxamates

Lee, Phycology

Page 29: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

For details about synthesis, export and uptake of siderophores in cyanobacteria, see reviews by Kranzler et al. (2013), Morrissey and Bowler (2012)

Siderophores in Anabaena sp.

Siderophores – missing in unicellular marine cyanobacteria (Prochlorococcus, Synechococcus…)

Page 30: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Uptake of free, unchelated, inorganic iron

(reductive iron uptake)

advantageous in dilute environments Km ~ sub nM

Uptake – both reductive or by siderophores costs energy and resources – no free lunch!!

Page 31: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Shuttling of dust particles in Trichodesmium

Rubin et al., 2011

Page 32: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Behrenfeld and Milligan, 2013

Iron in photosynthesis

3 Fe 6 Fe 14 Fe

Page 33: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Physiological responses – lab studies

Iron starvation induces - reduced photosynthetic activity on a pigment basis - changes in organization of the photosynthetic apparatus - oxidative stress (Fenton reactions)

Page 34: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

In cyanobacteria, iron limitation decreases rate of synthesis of phycobiliproteins (Fe needed in the synthesis of hemes – precursors of bilins)

Phycobilisomes

Page 35: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Iron starvation induces - concerted decrease in photosynthesis and respiration genes - Photosystem I trimers are monomerized, less effective state transition (psaL depressed) - isiAB operon is upregulated: IsiB (flavodoxin) replaces ferredoxin, IsiA (CP43’) antenna is

highly expressed - idi genes – IdiA protects PSII

Page 36: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

IsiA – chla antenna under Fe stress in cyanos

Page 37: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Proposed role of IdiA protection of acceptor side of PSII when phycobilisomes are lacking

Page 38: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Strzepek, Aquafluo meeting, 2007

Page 39: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Effect of Fe on nitrogen fixation

Howard J B , and Rees D C PNAS 2006

7 Fe atoms S 11 Fe

Page 40: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

How to detect iron limitation in ocean? sampling (cruises) bioassays molecular or protein markers – flavodoxin/ferredoxin, isiA variable fluorescence remote (satellites) natural fluorescence

Page 41: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Molecular markers for iron limitation Metageomic analysis of light harvesting genes Global Ocean Sampling (GOS) Project (C.Venter) isiA – only at low chl regions

Bibby et al., 2009

Page 42: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

BIOSOPE 2004

M.Gorbunov F.Bruyant M.Babin

Page 43: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite
Page 44: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

BIOSOPE

Fe <0.1 nM

N chl

SPG

HNLC HNLC

Page 45: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

ENRICHMENT EXPERIMENTS Pumping of surface seawater (30m-depth) (Teflon pump - clean container)

Control

Enrichments in different nutrients

+ Fe

+ Fe

+ NPSi

+ N + FeNPSi

+ FeN

+ dust + FeNP MAR, HNLC

GYR, EGY

METHODOLOGY

4L bottles

3 REPLICATES

2 incubation times: 24h and 48h 50% ambient light

Page 46: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

0.0

0.10.2

0.30.4

0.50.6

0.7

MAR HNLC EGY GYR

C

C C C

Fe Fe Fe Fe

Fe 48h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

MAR HNLC EGY GYR

MAR H

NLC

GYR

EGY

Photochemical quantum efficiency of PSII (Fv/Fm )

C

C C C

Before Fe addition

Fv/F

m

x2.4 x3.3

x1.4

Page 47: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

CHLOROPHYLL CONCENTRATIONS (mg.m-3) 48h

0

1

2

3

4

5

MAR HNLC EGY GYR

Normalized values

→ GYR, EGY: no effect of Fe alone

x3

x3.3

→ MAR, HNLC: Fe addition increased Chl a C°

Fe Fe

→ GYR, EGY: N-Fe colimitation for Chl a synthesis

0

1

2

3

4

5

EGY GYR

N

N FeN FeN

x1.5

x4

x2.6 x3

Fe Fe

Page 48: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Behrenfeld & Kolber Science 283, 840

(1998)

Page 49: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

050

100150200250300350400450500

20 21 22 23 24 25 26

050

100150200250300350400450500

25 26 27 28 29 30 31

EGY

Transect 1

Fv Fo Fm

Diel cycles in fluorescence yields Fo,

Fm, Fv GYR

EGY

Transect 1

Page 50: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

EGY

Transect 1

GYR

EGY

Diel cycles in photochemical yield

Fv/Fm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

20 21 22 23 24 25 26

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

25 26 27 28 29 30 31

Page 51: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Transect from South Pacific Gyre to Chile: No emission of phycobilisomes in E.Pacific oligotrophic waters

500 550 600 650 700 750 800 85012

1416

1820

22

Wavelength [nm]

Stat

ion

Surface emission spectra

Phycobiliproteins

Page 52: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

GYRE EGY

C.Grob et al.

Page 53: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

660 665 670 675 680 685 690 695 700

1214

1618

2022

Wavelength [nm]

Stat

ion

Surface emission spectra

HNLC: Shift of emission maximum of PSII 685nm 680nm

EGY

Page 54: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Wavelength [nm]

660 680 700 720

Fluo

resc

ence

[r.u

.]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

685 nm679 nm

Wavelength [nm]

660 680 700 720

680 nm679 nm

Room temperature and low temperature (77K) emission spectra for Gyre and HNLC (EGY) stations

HNLC Gyre

RT RT LT LT

Page 55: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

700.9

684.7

678

723.7

650 670 690 710 730

690.7

685

677.3

717.1

650 670 690 710 730

HNLC Gyre

678nm ~ 12% of total PSI + PSII 678nm ~ 22 % of total

Significant increase in the 678 nm peak

Page 56: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

650 670 690 710 730 750wavelenght [nm]

678 nm

Additional band 675-678 nm

Emission from uncoupled light harvesting antenna

Fo @ 9 AM [a.u.]0 50 100 150 200 250 300

T C

hla

[mg/

m3]

0.00

0.02

0.04

0.06

0.08

HNLC

GYRE

Page 57: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

650 670 690 710 730 750

wavelenght [nm]

Schrader et al., 2011

Page 58: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Distance [km]

0 2000 4000 6000 8000

Fv/F

m

0.0

0.1

0.2

0.3

0.4

0.5

Fv/Fm surface

Gyre

Gyre

HNLC HNLC

HNLC

Distinct biogeochemical regions: ultraoligotrophic center of the South Pacific Gyre: low N, Fe; low biomass, high Fv/Fm HNLC margins: high N, low Fe, low Fv/Fm upwelling of the Humboldt current Claustre et al. (2008), Bonnet et al. (2008)

UPW

UPW

Page 59: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Distance [km]

0 2000 4000 6000 8000

FC

max

0.00

0.02

0.04

0.06

0.08

0.10

Fv/F

m

0.0

0.1

0.2

0.3

0.4

0.5

0.6EQ HNLC1 HNLC1GYRE UPW

Uncoupling between maximum quantum yields: Photosystem II photochemistry (Fv/Fm) and photosynthesis (C fix - Fc

max)

Carbon

Photosystem II

These are not operational, but “potential” or maximal possible yields….

Page 60: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Behrenfeld and Milligan, 2013

Page 61: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Can we detect Fe limitation from space?

Yes! The same phenomena, like in surface fluorescence measurements – high fluorescence yield/chl (ϕsat)

Behrenfeld et al., 2009

Page 62: from global to molecular - CASwebserver.umbr.cas.cz/~kupper/Prasil_Iron_Konstanz 2013.pdf · Organic extraction (preconcentration and separation from the seasalt matrix) -> graphite

Thank you for your attention…


Recommended