+ All Categories
Home > Documents > Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7....

Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7....

Date post: 10-Sep-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
41
Fundamentals of Probability Read Wooldridge, Appendix B Fundamentals of Probability: Part One . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat Outline Part One I. Random Variables and Their Probability Distributions II. Joint Distribution, Conditional Distributions, and Independence. III. Features of Probability Distributions Part Two IV. Features of Joint and Conditional Distributions V. The Normal and Related Distributions 2 Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s Probability is of interest for students in business, economics, and other fields. Example: Airline is trying to maximize profits from the available 100 seats. Strategy 1: Should the airline accept reservations at most 100 seats? There is a chance that those who book might not show up. This results in lost revenue to the airline 3 I. Random Variables and Their Probability Distributions Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s I. Random Variables and Their Probability Distributions Introduction Strategy 2: Should the airline accept more than 100 reservations? This policy runs the risk of the airline having to compensate people who are bumped from the overbooked flight. Can we decide on the optimal or the best number of reservations the airline should make? We can use basic probability to arrive at a solution. 4 Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s I. Random Variables and Their Probability Distributions
Transcript
Page 1: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Fundamentals of Probability

Read Wooldridge, Appendix B

Fundamentals of Probability: Part One . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

Outline

Part OneI.  Random Variables and Their Probability DistributionsII. Joint Distribution, Conditional Distributions, and 

Independence.III. Features of Probability Distributions

Part TwoIV. Features of Joint and Conditional DistributionsV. The Normal and Related Distributions 

2Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

• Probability is of interest for students in business, economics, and other fields.

Example: Airline is trying to maximize profits from the available 100 seats.  

• Strategy 1: Should the airline accept reservations at most 100 seats?

• There is a chance that those who book might not show up.  This results in lost revenue to the airline

3

I.  Random Variables and Their Probability Distributions

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Introduction

• Strategy 2:Should the airline accept more than 100 reservations?– This policy runs the risk of the airline having to compensate people 

who are bumped from the overbooked flight.

• Can we decide on the optimal or the best number of reservations the airline should make?

• We can use basic probability to arrive at a solution.

4Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Page 2: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Experiment

• Experiment: flip a coin ten times and count the number of heads.

• Definition:

An experiment is the procedure that can be repeated and has a well‐defined set of outcomes.– Carrying out the coin‐flipping procedure again and again– Number of heads appearing in an integer from 0 to 10.

5Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Random Variables

• DefinitionA random variable is one that takes on numerical values and has an outcome that is determined by an experiment.

• Example: a random number is the number of heads appearing in an experiment (10 flips of a coin).

A. DiscreteB. Continuous

6Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Random Variables and Outcome

Example: Note that the random variable X takes on a value in a set {0, 1, 2, …, 10}  

• NotationsRandom Variables – are denoted by an uppercase letters; eg, X,YParticular Outcomes – are denoted by a smallcaseletters; eg, x,y.

X =“number of heads” appearing in 10 flips of a coin – random variable

x = 6 – particular outcome

A. DiscreteB. Continuous

7Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Random Variables and Outcome

• Subscripts: we indicate large collections of random variables by using subscripts.

Example: Income of 20 randomly chosen households in the United States.– Random variables: X1, X2, … X20– Particular outcomes: x1, x2, … x20

A. DiscreteB. Continuous

8Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Page 3: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Random Variables and Outcome

Example: Consider tossing a single coin1) What are the outcomes?

heads and tails

2) This is an example of qualitative events.

3) Define the random variable as follows.X=1 if the coin turns up headsX=0 if the coin turns up tails. 

A. DiscreteB. Continuous

9Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Bernoulli or Binary Random Variable

• Definition:A random variable that can only take on the values zero or one (0 or 1) is called a Bernoulli (or binary) random variables.

event  X=1 successevent X=0  failure

A. DiscreteB. Continuous

10Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Discrete Random Variable

• Definition:A discrete random variable is one that takes on only a finite or countable infinite number of values.

• “Countable infinite” means even though an infinite number of values can be taken as a random variable, those values can be put in one‐to‐one correspondence with the positive integers.

• For our purpose,– we will concentrate on discrete random variables that takes on only a finite 

number of values.  

A. DiscreteB. Continuous

11Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

• Any discrete random variable is completely described by listing its possible values and associated probabilities that it takes on each value.

• A Bernoulli random variable is the simplest example of a discrete random variable. 

Example: coin flippingP(X=1) = ½   “the probability that X equal one is one‐half”P(X=0) = ½ 

A. DiscreteB. Continuous

12

Discrete Random Variable and Probability Distribution

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Page 4: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

• Suppose X takes on k possible values {x1, x2,,…xk} and their associated probabilities {p1, p2,….,pk}, there are two properties.

(1) P(X=xj) = pj

“The probability that X takes on the value xj is equal to pj.” 

(2) p1+ p2 + … + pk =1

The sum of all probabilities is equal to one (1).

Discrete Random VariableA. DiscreteB. Continuous

13Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Example: airline example.

X=1  if the person shows up for the reservation.X=0 otherwise

– To completely describe the behavior of X, define  as the probability that the customer shows up after making a reservation. 

P(X=1) =  (Interpret! when  equals 0.75)P(X=0) = 1‐

• Special Notation: X = Bernoulli ().• It is read as “X has a Bernoulli distribution with probability of success equal to 

.” 

Discrete Random Variable and Probability Distribution

A. DiscreteB. Continuous

14Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

• Definition: pdf of XThe probability density function (pdf) of X summarizes the information concerning the possible outcomes of X and the corresponding probabilities:

f(xj) = pj ;  j = 1, …, k

• Notes 

1) f(x)=0 for any x not equal to xj for j

2) pdf provides information of the likely outcomes of the random variable.

A. DiscreteB. Continuous

15

Discrete Random Variable and Probability Distribution

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Example: X is the number of free throws made out of two attempts.

• X can take on three values, {0, 1, 2}

• pdf is given byf(0) = 0.2; f(1) =0.44; f(2)=0.36. (see graph)

• What is the probability that the player makes at least one free throw.P(X 1) = P(X=1) + P(X=2) 0.44+0.36 = 0.80

A. DiscreteB. Continuous

16

Discrete Random Variable and Probability Distribution

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Page 5: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Discrete Random VariableA. DiscreteB. Continuous

17Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Continuous Random Variable

• DefinitionA variable X is a continuous random variable if it takes on any real value with probability zero (0).   

• “A function that can be graphed without lifting your pencil from the paper.”

• Idea: a continuous random variable takes on so many possible values.

A. DiscreteB. Continuous

18Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

• Probability density function for continuous rv.– For positive probabilities, a continuous rv X lies between certain values (a and 

b); ie.,

P(a<X<b) (Draw graph!)

Continuous Random VariableA. DiscreteB. Continuous

19Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

The area under the pdfbetween points a and b.

This is the integral of the function f between points a and b.

• Cumulative Distribution Function (cdf)If X is a random variable, then its cdf is defined for any value of x by

F(x) = P(X  x)

• For discrete rv, cdf is obtained by summing the pdf over all values xj such that x<xj.

• For continuous rv, cdf is equal to the area under the pdf [f(x)] to the left of xj.

Continuous Random VariableA. DiscreteB. Continuous

20Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

• A cdf is an increasing (or at least nondecreasing) function of x.Given x1<x2, then 

P(X  x1) < P(X  x2); i.e., F(x1)<F(x2).

Page 6: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Properties:1) For any number c, 

P(X>c) = 1‐F(c)

2) For any numbers a<b, P(a  X b) = F(b) ‐ F(a)

Continuous Random VariableA. DiscreteB. Continuous

21Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

• For econometrics, we will use cdf to compute probabilities only for continuous random variables; eg, normal distribution.  

P(X ≥ c) = P(X > c)P(a  X b) = P(a < X b) = P(a  X < b) = P(a < X < b)

Problem B.1

B.1 Suppose that a high school student is preparing to take the SAT exam. – Explain why his or her eventual SAT score is properly viewed as a random variable.[ans.]

A. DiscreteB. Continuous

22Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Problem B.1B.1

• Before the student takes the SAT exam, we do not know – nor can we predict with certainty – what the score will be.  

• The eventual SAT score clearly satisfies the requirements of a random variable. 

• The actual score depends on numerous factors, many of which we cannot even list, let alone know ahead of time.  (The student’s innate ability, how the student feels on exam day, and which particular questions were asked, are just a few.) 

23

ACK

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

24

Problem B.4B.4 For a randomly selected county in the United States, let  

X represent the proportion of adults over age 65 who are employed, or the elderly employment rate. Then, X is restricted to a value between zero and one. Suppose that the cumulative distribution function for X is given by 

F(x) = 3x2 – 2x3 for 0x 1. 

Find the probability that the elderly employment rate is at least 0.6 (60%). [ans.]

A. DiscreteB. Continuous

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

Page 7: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Problem B.4B.4X: proportion of adults over age 65 who are employedFind the probability that the elderly employment rate at least 0.6 

• We want P(X .6).  

• Because X is continuous, this is the same as P(X > .6) = 1 – P(X .6)

= 1 ‐ F(.6)F(.6) = 3(.6)2 – 2(.6)3 = .648.  

= 1 ‐ .648= .352

• One way to interpret this is that 35% of all counties have an elderly employment rate of .6 or higher.

25Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

I. Random Variables and Their Probability Distributions

II. Joint Distribution, Conditional Distributions, and Independence

• In business and economics, we may be interested in the occurrence of events of more than one random variables.

Example: 

– The airline may be interested in the probability that a person makes a reservation and is a business traveler. This is an example of joint probability.

– The airline may be interested in the probability that a person makes a reservation, conditional that he is a business traveler.  This is an example of conditional probability.

A. Joint Distrib.B. Conditional

26Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Joint Distribution and Independence

• Let X and Y be discrete random variables.  Then, (X,Y) have a joint distribution.

• The joint distribution can be fully described by the joint density function of (X,Y)

fX,Y(x,y) = P(X=x, Y=y) or

f(x,y) = P(X=x, Y=y)

• Given pdfs of X and Y, it is easy to obtain a joint pdf. 

A. Joint Distrib.B. Conditional

27Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Joint Distribution and Independence

• Independence

• Random variables X and Y are said to be independent if and only if

fX,Y(x,y) = fX(x)fY(y)

fX(x) is the pdf of X and fY(y) is the pdf of Y.

• Note that in the context of more than one random variable,  – fX(x) and fY(y) are marginal pdfs.

• Intuitively, independence refers to knowing the outcome of X does not change the probabilities of the possible outcomes of Y and vice versa.

A. Joint Distrib.B. Conditional

28Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Page 8: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Joint Distribution and Independence

• Given

fX,Y(x,y) = fX(x)fY(y)

• It is the same as

P(X=x,Y=y) = P(X=x)P(Y=y)

That is, the probability that X=x and Y=y is the product of the two probabilities P(X=x) and P(Y=y).

A. Joint Distrib.B. Conditional

29Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Example B.1: Free Throw ShootingExample: Free Throw Shooting

– Let X and Y be a Bernoulli random variable.  Note that a Bernoulli random variable is a zero‐one random variable.

X = 1  he makes the first free throwY = 1  he makes the second free throw

– Suppose that she or he is an 80% free‐throw shooter; i.e.,

P(X=1) = P(Y=1) = 0.8. 

Here we are interested in the number of success in a sequence of Bernoulli trials.

• What is the probability of the player making both free throws?

P(X=1)P(Y=1) = (0.8)(0.8) =0.64

A. Joint Distrib.B. Conditional

30Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Example B.1: Free Throw Shooting 

Example: continue

• If the chance of making the second free throw depends on whether the first was make – that is, X and Y are not independent.

• Intuitively, independence refers to knowing the outcome of X does not change the probabilities of the possible outcomes of Y and vice versa.

A. Joint Distrib.B. Conditional

31Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Joint Distribution and Independence

• Useful fact:

If X and Y are independent and we define new variables, g(X) and h(Y)for any function g and h, then

• these two random variables are also independent.

A. Joint Distrib.B. Conditional

32Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

• Given a random variable X and a function g(.), – create g(X) as a new random variable.

• Example– X is a random variable, so are X2, exp(X) and log(X).

Page 9: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Joint Distribution and Independence

Example: Airline

– Suppose the airline accepts n reservations.  For each i=1, …, n, 

– let Yi denote the Bernoulli random variable indicating whether the customer shows up: Yi = 1, if he shows upYi = 0, otherwise

– Let  be the probability of success. Each Yi has a Bernoulli () distribution.

A. Joint Distrib.B. Conditional

33Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Joint Distribution and Independence

Example: Airline (continue)

– Define X be the number of customers showing up out of n reservationsX = Y1 + … + Yn

– Assume Yi has the probability of success  and the Yi are independence.  Then, the probability density function of X is 

– When a random X has a pdf as above, we writeX  Binomial (n, ).

A. Joint Distrib.B. Conditional

34Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Joint Distribution and Independence

– n! = n(n‐1)(n‐2)  1– 0! = 1

!!( )!

n nx x n x

A. Joint Distrib.B. Conditional

35Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Joint Distribution and Independence

Example: Let n=100,  = 0.95• What is the probability that none shows up?

P(X=0) = 1*(.95)0*(.05)100 = 1*1*(7.8886E‐131) = 7.8866E‐131

Let n=100,  = 0.5• What is the probability that at least one person shows up?

P(X1) = 1 – P(X=0) = 1 ‐ (7.8886E‐131)  = 1

! 100! 1!( )! 100!

n nx x n x

A. Joint Distrib.B. Conditional

36Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Page 10: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Conditional Distributions

• Generally, Y is related to one or two or more variables.  

• How X affects Y is contained in the conditional distribution of Y given X.  

A. Joint Distrib.B. Conditional

37Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Conditional Distributions

• This information is summarized in the conditional probability density function, defined as

fYX(yx) = fX,Y(x,y)/fX(x) f(yx) = f(x,y)/f(x)

for all values of x such that fX(x)>0.

• The conditional pdf when X and Y are discrete is

fYX(yx) = P(Y=yX=x) = P(X=x,Y=y)/P(X=x)

A. Joint Distrib.B. Conditional

38Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Conditional Distributions

• When X and Y are independent, knowledge of the value taken by X tells us nothing about the probability that Y takes on various values, and vice versa.  That is,

fYX(yx) = fY(y) (show !) f(yx) = f(y)

fXY(xy) = fX(x) f(xy) = f(x)

A. Joint Distrib.B. Conditional

39Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Example B.2 Free Throw Shooting

Example: Free Throw Shooting

• Suppose X is the first free throw and Y is the second free throw.

fYX(11) = .85– If the player makes the first free throw, the probability of making the 

second free throw is 0.85.

A. Joint Distrib.B. Conditional

40Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

Page 11: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Example B.2 Free Throw Shooting

fYX(11) = .85

• Interpret the following:1) fYX(10) = .702) fYX(01) = .153) fYX(00) = .304) P(X=1) = .805) P(X=1,Y=1)

• Can we compute P(X=1,Y=1)?

P(X=1,Y=1) = P(Y=1X=1)P(X=1) Why??= (0.85)*(0.8) = .65

A. Joint Distrib.B. Conditional

41Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

II. Joint Distribution, Conditional Distributions, and Independence

III. Features of Probability Distributions

• We are interested in few aspects (concepts) of the distributions of random variables.

1)  Measure of central tendency2)  Measure of variability or spread3)  Measure of association between two random variables.

A. Central tendencyB. Variability

42Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

III. Features of Probability Distribution

A Measure of Central Tendency

• Expected value– one of the most important probabilistic concepts – names: expected value, the expectation of X– notations: E(X), X, 

• If X represents some variable in a population,– The expected value is the population mean.

A. Central tendencyB. Variability

43I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

A Measure of Central Tendency

• Suppose X is a random variable.  

– The expected value of X is the weighted average of all possible values of X.  

– The weights are determined by the probability density function.  

A. Central tendencyB. Variability

44I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 12: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

A Measure of Central Tendency

• Precise (mathematical) definition 

Suppose X is a discrete random variable taking on a finite number of values {x1, x2,..., xk} and  f (x) denote the probability function.   The expected value of X is

A. Central tendencyB. Variability

45I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Example B.3 Computing an Expected Value

Example:

– X takes on the values ‐1, 0, 2 with probabilities 1/8, ½, and 3/8E(X)  = ‐1(1/8) + 0(1/2) + 2(3/8) 

= 5/8 E(X2) 

Notes:1) The expected value can be a number that is not even a possible value of X2) It can be deficient for summarizing the central tendency of certain discrete random 

variables.

A. Central tendencyB. Variability

46I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

A Measure of Central Tendency

• Suppose X is a continuous random variable, the expected value defined as an integral:

• Notes1)  E(X) is always a number that is a possible outcome of X.2)  It is computed using integration.

A. Central tendencyB. Variability

47I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

A Measure of Central Tendency

• For discrete random variable, the expected value of g(X) is simply a weighted average:

• For continuous random variable, the expected value of g(X) is

A. Central tendencyB. Variability

48I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 13: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

A Measure of Central TendencyExample: • Let g(X) =X2.  

• The random variable X takes on the values  ‐1,  0,  2  with probabilities  1/8,  ½,   3/8

E(X2)  = ‐12(1/8) + 02 (1/2) + 22 (3/8) = 13/8

• Note that E(X2)  [E(X)]2Example: 13/8  [5/8]2

• This suggests that for a nonlinear function, g(X),E[g(x)]  g[E(x)].

A. Central tendencyB. Variability

49I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

A Measure of Central Tendency

• Suppose X and Y are two discrete random variables.  • The expected value of g(X,Y), given X and Y taking on values {x1, …, xk} and 

{y1, …, ym}, respectively, is

where fX,Y(xh, yj) is the joint probability density function of (X,Y).

,1 1

[ ( , )] ( , ) ( , )k m

X Y h j h jh j

E g X Y f x y g x y

A. Central tendencyB. Variability

50I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Properties of Expected Value 

• There are a few simple rules that we need to know to appreciate certain manipulations for important results.

Property E.1For any constant c, E(c) = c

A. Central tendencyB. Variability

51I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Property E.2• For any constants a and b, 

E(aX + b) = aE(X) + b

Example: Let E(X) = Y = X‐E(Y) = E(X) – = 0Where a = 1 and b = ‐

Properties of Expected Value

A. Central tendencyB. Variability

52I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 14: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Properties of Expected Value

Example:  Y is in Fahrenheit and X is in Celsius.

Y = 32 + (9/5)X

• What is the expected temperature in Fahrenheit if the expected temperature in Bangkok is 25 degree Celsius?

E(X) = 25E(Y) = 77

A. Central tendencyB. Variability

53I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Properties of Expected Value 

Property E.3• If {a1, …, an} are constants and 

{X1, …, Xn} are random variables, thenE(a1X1 + … + anXn) = a1E(X1) + ... + anE(Xn)

• Using summation notation,

A. Central tendencyB. Variability

54I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Properties of Expected Value 

• If ai=1, then

Read: The expected value of the sum is the sum of expected value.• This property is often used!

A. Central tendencyB. Variability

55I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Example B.5 Finding Expected RevenueExample:Let X1, X2, X3 are the numbers of small, medium, and large pizzas with 

E(X1)=25, E(X2)=57, E(X3)=40

The prices of small, medium, and large pizzas are $5.5, $7.6, an d $9.15

1)The expected revenue from pizza sales isE(5.5X1 +7.6X2 + 9.15X3 )  = 5.5E(X1) + 7.6E(X2) + 9.15E(X3)

=5.5(25) + 7.6(57) + 9.15(40) =137.5+433.2+366 = 936.70

2) The actual revenue on any particular day will generally differ from this value

A. Central tendencyB. Variability

56I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 15: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Example B.5 Finding Expected Revenue

• Given X Binomial(n,).  Then, E(X) = n

Show:1) Note that X = Y1+ …+Yn, where Yi Bernoulli ().

E(X) = E(Y1+ …+Yn) = E(Y1) + …+ E(Yn) = n– The expected number of successes in n Bernoulli trials is the number of trials times the 

probability of success on any particular trial.

2) Suppose that  =.85.   What is the expected value of people showing up when there are 120 bookings?

E(X) = 102

A. Central tendencyB. Variability

57I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Expected Value Summation

E.1 E(c) = c s.1   

E.2   E(aX+b) = aE(X) + b s.2  

E.3 E ∑ ∑If ai=1, E ∑ ∑ s.3

Summary: Expectation and Summation

58I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

The Median 

• A median is another measure of central tendency.  It is sometimes denoted as med(X).

• If X is discrete and takes on a finite number of values, the median is obtained by ordering the possible values of X and select the value in the middle.

A. Central tendencyB. Variability

59I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

The Median

Example: X takes on the values{‐4, 0, 2, 8, 10, 13, 17}• The median is 8

Example: {‐5, 3, 9, 17}• What is the median?  (6)

A. Central tendencyB. Variability

60I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 16: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

The Median• What is one special case that mean and median are equal?

A. Central tendencyB. Variability

61I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Ans. This could occur if the probability distribution of X is symmetrically distributed about the value µ.

Mathematically, the condition isf( + x) = f( - x)

Symmetric distribution

Measures of Variability

• Expected value – a measure of central tendency 

• Variance – a measure of dispersion– Variance shows how the individual x values are spread or distributed

about its mean value.

A. Central tendencyB. Variability

62I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

VarianceSuppose there are two pdfs with the same mean.  If the distribution of X is 

more tightly centered about the mean than is the distribution of Y, – we say that the variance of X is smaller than that of Y.

A. Central tendencyB. Variability

63I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Variance

• Given a random variable X and the population mean =E(X).

1) The expectation of X measures the central tendency2)  The variance, a measure of variability, measures how far X from , on average.

• Variance tells us the expected distance from X to its mean:

Var(X) = E(X‐)2

1)  We works with squared difference. 2) The squaring serves to eliminate sign from the distance measure.

A. Central tendencyB. Variability

64I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 17: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Variance

• Notations for Variance2

x, or simply 2, when the context is clear.

• Show that 2 = E(X2) – 2

2 = E(X2 ‐2X – 2) = E(X2) ‐2E(X) – 2

= E(X2) – 2

A. Central tendencyB. Variability

65I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Variance and Bernoulli

Example: [Binomial]– Given Y Bernoulli () then, 

E(Y) = 

– Since Y2=Y (say Y=1 if the person shows up for reservation) and E(Y2) = ; thus,

Var(Y) =  – 2 = (1‐ )

• Note that Var(Y) = E(Y2) – 2

A. Central tendencyB. Variability

66I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Variance and Properties

Property V.1• Var(X)=0 if and only if there is a constant c such that P(X=c)=1, 

in which case, E(X)=c

A. Central tendencyB. Variability

67I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Variance and Properties

Property V.2• For any constants, a and b, 

Var(aX+b) = a2Var(X)

Notes:1) Adding a constant to a random variable does not change the variance.2) Multiplying a random variable by a constant increases the variance by a 

factor equal to the square of that constant.

A. Central tendencyB. Variability

68I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 18: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Variance and Properties

Example:• What is the variance of Y when 

Y = 32 + (9/5)X

• Var(Y)  = (9/5)2Var(X)= (81/25)Var(X)

A. Central tendencyB. Variability

69I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Standard Deviation

• The standard deviation of a random variable, sd(X), is simply the positive square root of the variance:

sd(X) = +[VAR(X)] ½

• Notations for he standard deviation x or simply  when the random variable is understood.

A. Central tendencyB. Variability

70I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Standard Deviation

Property SD.1• For any constant c, 

sd(c)=0

A. Central tendencyB. Variability

71I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Standard DeviationProperty SD.2• For any constants, a and b, 

sd(aX+b) = asd(X)

• If a>0, thensd(aX+b) = asd(X)

• Property SD.2 makes standard deviation more natural to work with than variance.

A. Central tendencyB. Variability

72I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 19: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Standard Deviation

Example:• Let X be a random variable in thousand of dollars

Let Y=1000X; i.e., Y is a random variable in dollarsSuppose E(X) = 20 and sd(X) = 6, What are E(Y), sd(Y), and Var(Y)?

• Ans.E(Y) = 20,000 and sd(Y) = 6,000Var(Y) = (1000)2Var(X) = 1,000,000Var(X); 

• Note that the variance of Y is one million times larger than the variance of X.

A. Central tendencyB. Variability

73I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Standardizing a Random Variable

• Let X be a random variable.  A new random variable can be obtained by – subtracting off its mean  and – dividing by its standard deviation :

A. Central tendencyB. Variability

74I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Standardizing a Random Variable

• This procedure is known as standardizing the random variable X.  – Z is called standardized random variable.  – In introductory statistic courses, it is called Z‐transform of X.

A. Central tendencyB. Variability

75I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Standardizing a Random Variable

• A standardized random variable Z has a mean of zero and a variance equal to one.

Z = aX+b

where a = 1/ and b = ‐ /

• Z has zero MeanE(Z)  = E(X/ – /) 

= (1/)E(X) –(/) Note that E(X) = = 0

A. Central tendencyB. Variability

76I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 20: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Standardizing a Random Variable

Z = aX+bwhere a = 1/ and b = ‐/

• Z has unit varianceVar(Z)  = Var(X/ – /)

= (1/2)Var(X) Note that Var(X) = 2

=  1

A. Central tendencyB. Variability

77I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Standardizing a Random Variable

Example: Let E(X)=2 and Var(X)=9• What is the standardized random variable?  What are its mean and 

variance?

• Ans.1) Standardized random variable:

Z = (X‐)/ = (x‐2)/32) Z has expected value zero.3) Z has variance one.

.

A. Central tendencyB. Variability

78I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Expected Value: E(X)Variance: Var(X) = E(X‐)2

Standard Deviation: s.d(X) = 

E.1 E(c) = c v.1 Var(c) = 0s.d.1    s.d.(c) = 0

E.2   E(aX+b) = aE(X) + b v.2 Var(aX+b) = a2Var(X)s.d.2    s.d.(aX+b) =as.d.(X)

E.3 E ∑ ∑If ai=1, E ∑ ∑

Summary: Expectation and Summation

79I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Problem B.7

B.7 If a basketball player is a 74% free‐throw shooter, then, on average, how many free throws will he or she make in a game with eight free‐throw attempts? [ans.]

A. Central tendencyB. Variability

80I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 21: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Problem B.7

B.7• In eight attempts the expected number of free throws is 8(.74) = 5.92, or about six free throws.

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Problem B.8

• B.8 Suppose that a college student is taking three courses: a two‐credit course, a three credit course, and a four‐credit course. The expected grade in the two‐credit course is 3.5, while the expected grade in the three‐ and four‐credit courses is 3.0. What is the expected overall grade point average for the semester? [ans.](Remember that each course grade is weighted by its share of the total number of units.)

A. Central tendencyB. Variability

82I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Problem B.8B.8The weights for the two‐, three‐, and four‐credit courses are 

2/9, 3/9, and 4/9, respectively. 

• Let Yj be the grade in the jth course, j = 1, 2, and 3, let X be the overall grade point average.  Then 

X = (2/9)Y1 + (3/9)Y2 + (4/9)Y3• The expected value is 

E(X) = (2/9)E(Y1) + (3/9)E(Y2) + (4/9)E(Y3)= (2/9)(3.5) + (3/9)(3.0) + (4/9)(3.0)= (7 + 9 + 12)/9 3.11.

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Problem B.9

• B.9 Let X denote the annual salary of university professors in the United States, measured in thousands of dollars. Suppose that the average salary is 52.3, with a standard deviation of 14.6. Find the mean and standard deviation when salary is measured in dollars. [ans.]

A. Central tendencyB. Variability

84I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

Page 22: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Problem B.9

B.9• If Y is salary in dollars then Y = 1000X, and so the expected value of Y is 1,000 times the expected value of X, and the standard deviation of Y is 1,000 times the standard deviation of X.  

• Therefore, the expected value and standard deviation of salary, measured in dollars, are $52,300 and $14,600, respectively.

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat III. Features of Probability Distribution

IV. Features of Joint and Conditional Distributions• The joint probability density function (pdf) of two random 

variables completely described relationship between them.

• There are two summary measures that describe how, on average, X and Y vary with one another: covariance and correlation.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

86I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Covariance 

• The covariance between two random variables, X and Y, measures linear dependence between two variables.  It is defined as the expected value of the product (X‐X) and (Y‐Y):

Cov(X,Y) = E(X‐X)(Y‐ Y)

• which is sometimes denoted as XY.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

87I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

CovarianceLet X=E(X) and Y=E(Y) and consider the variable (X‐ X)(Y‐ Y).

– X > X implies “X is above its mean”

– Y > Y implies “Y is above its mean”

– If X > X and Y > Y, then (X‐ X)(Y‐ Y) > 0– If X < X and Y < Y, then (X‐ X)(Y‐ Y) > 0– If X > X and Y < Y, then (X‐ X)(Y‐ Y) < 0

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

88I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 23: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Covariance• It can be shown that 

Cov(X,Y) = E(XY) ‐ XY

• Show

Cov(X,Y)  = E[(X ‐ X)(Y ‐ Y)]= E[(X ‐ X)Y]= E[X(Y‐ Y)]= E(XY) ‐ XY

• If E(X)=E(Y)=0, then Cov(X,Y) = E(XY).

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

89I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Covariance and Properties

Property COV.1 [Binomial]• If X and Y are independent, then Cov(X,Y) = 0.

• Show Cov(X,Y)  = E(XY) ‐ XY

= E(X)E(Y) ‐ XY = 0

Note that E(XY)=E(X)E(Y)] = XY

• The converse is not true.  

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

90I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Covariance and PropertiesThe converse is not true!  If the covariance of X and Y is zero, this does not 

imply that X and Y are independent.

Example: (See CE.5)• There are random variables X such that if Y=X2, then Cov(X,Y) = 0 

– [Any random variable with E(X)=0 and E(X3)=0 has this property]– Show Cov(X,Y) = 0.

Cov(X,Y) = E(XY) ‐ XY  

= E(X3) – 0*Y  = 0 

• If Y=X2, then X and X2 are clearly not independent: once we know X, we know Y.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

91I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Covariance and Properties

Property COV.2• If a1, a2, b1, and b2 are constants, then

Cov(a1X+b1,a2Y+b2) = a1a2Cov(X,Y)

• Covariance can be altered by multiplying by a constant

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

92I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 24: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Correlation Coefficient 

• Suppose we want to find the relationship between amount of earnings X and annual earnings Y.  – We can find the covariance between X and Y, – but it depends on the units of measurement. 

• The deficiency of the covariance measure is overcome by the correlation coefficient of X and Y:

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

93I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Correlation Coefficient

• Notes

1) Notation: XY  XY =  XYXX 

2)  It sometimes called the population correlation.3)  The sign depends on XY.   4)  The magnitude of Corr(X,Y) is easier to interpret and invariant to the units 

of measurement (see to Property Corr.1).5)  If X and Y are independent, then Corr(X,Y) = 0.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

94I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Correlation Coefficient

Property Corr.1

‐1  Corr(X,Y)  1

• Notes

1)  If Corr(X,Y) = 0, equivalently Cov(X,Y), then there is no linear relationship between X and Y, and X and Y are uncorrelated random variables.

2)  If Corr(X,Y) = 1, there is a perfect positive linear relationship.

3)  If Corr(X,Y) = ‐1, there is a perfect negative linear relationship.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

95I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Correlation Coefficient

Property Corr.2• For any constants, a1, b1, a2, and b2,(1)  if a1a2 > 0, then 

Corr(a1X+b1,a2Y+b2) = Corr(X,Y), (2)  if a1a2 < 0, then 

Corr(a1X+b1,a2Y+b2) = ‐ Corr(X,Y).

• Note that correlation coefficient does not depend on any units of measurement such as dollars, cents, years quarters, months, and so on.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

96I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 25: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

CovarianceCov(X,Y) = E(X‐uX)(Y‐uY)

CorrelationCorr(X,Y) =  ,. · .

Cov.1 If X, Y independent,Cov(X,Y) = 0 Corr.1         ‐1  Corr(X,Y)  1

Cov.2 Cov(a1X+b1,a2Y+b2) = a1a2Cov(X,Y)

Corr.2 If a1a2>0, Corr(a1X+b1, a2Y+b2) = Corr(X,Y)

If a1a2<0, Corr(a1X+b1, a2Y+b2) = – Corr(X,Y)

Summary: Covariance and Correlation

97I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Variance of Sums of Random Variables 

Property VAR.3• For constants a and b,

Var(aX+bY) = a2Var(X) + b2Var(Y) + 2abCov(X,Y)

Var(aX‐bY) = a2Var(X) + b2Var(Y) ‐ 2abCov(X,Y)

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

98I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Variance of Sums of Random Variables 

If X and Y are uncorrelated, Cov(X,Y)=0, then

1) The variance of sum is the sum of the variance.Var(X + Y) = Var(X) + Var(Y)

2) The variance of difference is the sum of the variance, not the difference in variances.

Var(X ‐ Y) = Var(X) + Var(Y)

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

99I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Variance of Sums of Random VariablesExample:X  denote Friday profits earned by a restaurant Y  denote Saturday profits earned by a restaurant 

Let E(X) = E(Y) = 300 and sd(X) = sd(Y) = 15

What is the expected profits for the two nights?

– E(Z) = E(X) + E(Y) = 300+300 = 600

If X and Y are independent, what is the standard deviation of total profits?

– Var(Z) = Var(X) + Var(Y) = 2*225 = 450– Standard deviation = 21.21

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

100I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 26: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Variance of Sums of Random Variables 

Property VAR.4• If {X1, …, Xn} are pairwise uncorrelated random variables and {ai : i= 1, …, n} are 

constants, then

Var(a1X1 + …. + anXn) = a12Var(X1) + … + an2Var(Xn)

• The random variables {X1, …, Xn} are pairwise uncorrelated if each variable in the set is uncorrelated with every other variable in the set.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

101I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Variance of Sums of Random Variables

In summation notation, 

A special case, if ai=1 for all i, 

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

102I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Variance of Sums of Random Variables Example:

• Let X Binomial(n,).

X = Y1 + … + Yn

where Yi are independent Bernoulli() random variables.

• Var(X)  = Var(Y1) + … + Var(Yn)= n(1‐)

• Notes1) Var(Yi) = (1‐ )]  (see IIIB.1)2) Independent random variables are uncorrelated (see COV.1)

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

103I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Variance of Sums of Random Variables Example: Airline reservations 

n=120 and =.85Yi=1, if person i shows up at the airport

• What is the variance of the number of passengers arriving for their reservation?Var(X) = n(1‐) = (120)(.85)(.15) = 15.3standard deviation = 3.9

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

104I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 27: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Variance and Expectation

Property VAR.4• If {X1, …, Xn} are pairwise uncorrelated random variables and {ai : i= 1, …, n} are 

constants, then

Var(a1X1 + …. + anXn) = a12Var(X1) + … + an2Var(Xn)

• The random variables {X1, …, Xn} are pairwise uncorrelated if each variable in the set is uncorrelated with every other variable in the set.

105

Expected Value: E(X) Variance: Var(X) = E(X‐x)2

Var(X) = E(X)2 ‐ x2

E.1 E(c) = c v.1 Var(c) = 0

E.2   E(aX+b) = aE(X) + b v.2 Var(aX+b) = a2Var(X)

E.3 E ∑ ∑If ai=1, E ∑ ∑

v.3    Var(aX+bY) = a2Var(X) + b2Var(Y) + 2abCov(X,Y)

Var(aX–bY) = a2Var(X) + b2Var(Y) – 2abCov(X,Y)

v.4       Let {X1, …, Xn} be pairwise uncorrelated. Var ∑ ∑ 2If ai=1, Var ∑ ∑

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Conditional Expectation

• In economics and business, we would like to explain one variable, called Y, in terms of another variable, say X.  

• We have learn the concept of conditional probability function of Y given X. 

• Note that the distribution of Y depends on X=x.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

106I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Conditional Expectation

• We can summarize a relationship between Y and X by the conditional expectation of Y given X, sometimes called the conditional mean.  

• We denote the conditional mean by E(YX=x) or E(Yx) for short.

• E(Yx) is a function x, which tells us how the expected value of Y varies with x.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

107I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Conditional Expectation

• When Y is a discrete random variable taking on values {y1, … , ym}, then

• When Y is continuous, E(Yx) is defined by integrating yfYX(yx) over all possible values of y.

• The conditional expectation is simply the weighted average of possible values of Y, but now the weights take into account a particular value of X. 

|1

( | ) ( | )m

j Y X jj

E Y X x y f y x

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

108I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

1( | ) ( | )

m

j jj

E Y x y f y x

Page 28: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Conditional Expectation

• Conditional expectations can be linear and nonlinear functions.  

Example:• E(wageeduc) = 4 +.60educ

• What is the average wage rate given employees have 16 years of education?E(wageeduc=16) = 4 +.60(16) = 4 + 9.6 =13.6

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

109I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Conditional Expectation

• Conditional expectations can be linear and nonlinear functions.  Example: X is a random variable greater than zero

– E(Yx) = 10/x– see graph!

Notes:1)  This could represent a demand function (Y=quantity; X=price)2)  An analysis of linear association, such as correlation analysis, would be incomplete.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

110I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Properties of Conditional Expectation

Property CE.1• E[c(X)X] = c(X) for any function c(X).

• This implies that functions of X behave as constant when we compute the expectation conditional on X.

• Example 1: E(X2X) = X2 When we know X, we know X2

• Example 2: x = educE(xx) = xE(educeduc) = educ

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

111I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Properties of Conditional Expectation

Property CE.2.For functions a(X) and b(X), 

E[a(X)Y+b(X)X) = a(X)E(YX) + b(X)

Example 1: Find the conditional expectation of a function, a+bxa+bxE(a + bxx) = a + bx

Example 2: Find the conditional expectation of a function, a+bx = 4 +.60educ4 +.60educ E(4 + .60educeduc) = 4 + .06educ

Example 3: Find the conditional expectation of a function, wage – 4 – .60educwage – 4 – .60educE(wage – 4 – .60educ educ) = E(wageeduc) – 4 – .60educ

Example 4: Find the conditional expectation of a function, XY + 2X2XY + 2X2E(XY + 2X2 X) = XE(YX) + 2X2

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

112I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 29: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Properties of Conditional ExpectationProperty CE.3:• If X and Y are independent, E(YX) = E(Y)

Notes:1)  If X and Y are independent, then the expected value of Y given X does not depend

on X.

2) Example: If wage and education are independent, then the average wages of high school and college graduates are the same.

3) A special case is that if U and X are independent and E(U)=0, then E(U) =0, andE(UX) = 0

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

113I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Properties of Conditional Expectation

• The law of iterated expectations says that the expected value of (X) is simply equal to the expected value of Y.

Property CE.4

E[E(YX)] = E(Y) [B.2]  [See Problem B.10]

1) Find E(YX) as a function of X. Property CE.22) Take the expected value of E(YX) with respect to the distribution of X. 3) End up with E(Y)

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

114I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Properties of Conditional Expectation

Example:

1.  Given E(educ)=11.5  andwage = 4 + .60educE(wageeduc) = 4 + .60educ  Property CE.2

2. The law of iterated expectation implies that E[E(wageeduc)] = E(wage) = E(4+.60educ)  Property CE.4

= 4+.60E(educ) = 4 + (.6)(11.5) = 10.9 or $10.9 an hour

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

115I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Properties of Conditional Expectation

Property CE.5• If E(Y X) = E(Y), then Cov(X,Y)=0 and Corr(X,Y)=0, or X and Y are 

uncorrelated.

Notes:1.  If knowledge of X does not change the expected value of Y, E(Y), then X

and Y are uncorrelated.2.  If X and Y are correlated, then E(YX) must depend on X.

• The converse is not true: If X and Y are uncorrelated, E(YX) could still depend on X.  

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

116I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 30: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Expected Value and Conditional Expectation (CE)

Property VAR.4• If {X1, …, Xn} are pairwise uncorrelated random variables and {ai : i= 1, …, n} are 

constants, then

Var(a1X1 + …. + anXn) = a12Var(X1) + … + an2Var(Xn)

• The random variables {X1, …, Xn} are pairwise uncorrelated if each variable in the set is uncorrelated with every other variable in the set.

117

Expected Value: E(X) Conditional Expectation

E.1 E(c) = c CE.1 E[c(X) X] = c(X) 

E.2   E(aX+b) = aE(X) + b CE.2 E[a(X)Y+b(X)X]= a(X)E[YX]+b(X)

E.3 E ∑ ∑If ai=1, E ∑ ∑ CE.3 If X and Y are independent, 

E(YX)= E(Y)

CE.4 E[E(YX)] = E(Y)

CE.5    If E(YX)= E(Y), Cov(X,Y)=0

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Conditional Variance

• Given random variables X and Y,Var(YX=x) = E{[Y‐E(Yx)]2x}

• The variance of Y, conditional on X=x is the variance associated with the conditional distribution of Y, given X=x.

Var(YX=x) = E{[Y‐E(Yx)]2x}= E(Y2x) – [E(Yx)]2

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

118I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Conditional Variance

Example:Var(SAVINGINCOME) = 400 + .25INCOME

Notes:1)  As income increases, the variance of saving levels also increases.2) The relationship between variance of SAVING and INCOME is separate from 

that between the expected value of SAVING and INCOME.

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

119I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Conditional Variance

Property CV.1• If X and Y are independent, then Var(YX)=Var(Y)

• This is obvious.  If the distribution of Y given X does not depend on X.  Var(YX) is just one feature of this distribution.

120

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 31: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Problem B.10

B.10 Suppose that at a large university, college grade point average, GPA, and SAT score, SAT, are related by the conditional expectation 

E(GPASAT) = .70 + .002SAT.

(i) Find the expected GPA when SAT  800. Find E(GPASAT = 1,400). Comment on the difference. [ans.]

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

121I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Problem B.10 continue…

(ii) If the average SAT in the university is 1,100, what is the average GPA? [ans.](Hint: Use Property CE.4. E[E(YX)] = E(Y)]

(iii) If a student’s SAT score is 1,100, does this mean he or she will have the GPA found in part (ii)? Explain. [ans.]

A. CovarianceB. Correlation CoefficientC. Conditional ExpectationD. Conditional Variance

122I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Problem B.10 (i)

(i) • E(GPA|SAT = 800) = .70 + .002(800) = 2.3.

Similarly, • E(GPA|SAT = 1,400) = .70 + .002(1400) = 3.5.  

• The difference in expected GPAs is substantial, and the difference in SAT scores is also rather large.

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Problem B.10 (ii)

(ii) • Following the hint, we use the law of iterated expectations.  

• Since E(GPA|SAT) = .70 + .002 SAT, 

• the (unconditional) expected value of GPA is  E(GPA)  = 70 + .002 E(SAT)

= .70 + .002(1100) = 2.9.I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

Page 32: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Problem B.10 (iii)

(iii)

• No, 2.9 is an average GPA.  It does not mean a particular person will obtain GPA of 2.9.

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat IV. Features of Joint and Conditional Distributions

V. The Normal and Related Distributions 

• We will rely on normal and related distributions to make inference in statistics and econometrics.

• The normal distribution and its related distribution is most widely used distribution in statistics and econometrics.  

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

126I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

The Normal Distribution

• Suppose X is a normal random variable.  The pdf of X can be written as

• where =E(X) and 2=Var(X).  • We say that X has a normal distribution with expected value  and 

variance 2, written as X  Normal(,2)

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

127I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Notes on the Normal Distribution

1) A normal random variable is a continuous random variable.

2) Its pdf has a familiar bell shape.

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

128I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

3) A normal distribution is symmetric; thus  is also the median of X.

4) The normal distribution is sometimes called the Gaussian distribution

Page 33: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

The Normal Distribution

• Certain random variables appear to follow a normal distribution  Examples: heights and weights.

• Some distribution is skewed towards the upper tail, i.e., income.  However, a variable can be transformed to achieve normality.  A popular transformation is the natural log.  Let Y be log of income X.

Y=log(X) We say that X has a lognormal distribution. 

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

129I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

The Standard Normal Distribution

• Suppose that a random variable Z is normally distributed with zero expected value (=0) and unit variance (2=1).  Then, Z has a standard normal distribution.   Z  Normal(0,1)

• The pdf of a standard normal variable, denoted by (z),

and read “phi”

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

130I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

The Standard Normal Distribution

• The standard normal cumulative distribution function, denoted by (z), is obtained by the area under  to the left of z. (see graph)

(z) = P(Z<z)

– Most software packages include simple commands for computing values of the standard normal cdf.

Example:– P(Z<‐3.1) = .001– P(Z<3.1) = .999

Note that P(Z>3.1) = .001

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

131I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

- 3.10 │ │ 3.10

The Standard Normal Distribution

P(Z<-3.1) = .001

P(Z<3.1) = .999

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

132I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Page 34: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

133I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

The Standard Normal Distribution

• Given (z) = P(Z<z), three important formulas for standard normal cdfs:1) P(Z>z) = 1‐(z)2) P(Z<‐z) = P(Z>z) 3) P(a<Z<b) = (b) –(a)

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

134I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

4) Another useful expression is that, for any c>0,

Notes:– 1) The probability P(Z>c) is simply twice the probability P(Z>c).– 2) This reflects the symmetry of the standard normal distribution.

The Standard Normal Distribution

• Examples:1)    P(Z>.44)  = 1 ‐ P(Z<.44) = 1 ‐ .67 = .332)    P(Z<‐.92)  = P(Z>.92) = 1‐ P(Z<.92) = 1 ‐ .821 = .1793) P(‐1<Z<.5)  = P(Z<.5) ‐ P(Z<‐1) = .692 ‐ .159 = .53284) P(│Z│>.44)  = P(Z>.44) + P(Z<.‐44) + = 2*P(Z>.‐44) = 2*(.33) = .66

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

135I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

136I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Page 35: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Properties of the Normal Distribution 

Property Normal.1• If X  Normal(,2), then 

(X‐)/ Normal(0,1).• Z  Normal(0,1).

Example:• Suppose X  Normal(3,4).  Compute P(X1)

= P(Z‐1) = (‐1) = .159

- 3( 1) ( - 3 1 - 3) 12

xP X P X P

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

137I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

138I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Probabilities for a Normal Random Variable

Example:Compute P(2X 6) when X  Normal(4,9)

= (.67)‐ (‐.67) = .749 ‐ .251 = .498

2 - 4 - 4 6 - 4P(2<X 6) <3 3 32 2................... ( )3 3

xP

P Z

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

139I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions 140

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Page 36: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Probabilities for a Normal Random VariableExample:Compute P(X>2) when X  Normal(4,9P(X>2) = P(X>2)+P(X<‐2)

= P[X−4 > 2−4] + P [X−4 < ‐ 2−4] = P(Z> ‐ 23)+P(Z<‐2)= 1 ‐(‐ 23) + (‐2)= 1 ‐.251+.023= .772

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

141I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions 142

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Properties of the Normal Distribution 

Property Normal.2• If X Normal(,2), then

aX+b Normal(a+b, a22)

Example: Let Y = 2X + 3If X  Normal(1,9) then Y  Normal(5,36)

Y = 2X + 3E(Y) = 2E(X) + 3 = 2*1 =5

Var(Y) = 22Var(X) = 4*9 = 36sd(Y)  = 6

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

143I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Properties of the Normal Distribution 

Property Normal.3• Let X and Y are jointly normally distributed.   X and Y are independent if 

and only if Cov(X,Y)=0.

• Zero correlation and independence are not the same.  But in the case of normally distributed random variables, it turns out that zero correlation suffices for independence.

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

144I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Page 37: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Properties of the Normal Distribution 

Property Normal.4• Any linear combination of independently identically distributed (i.i.d.) 

normal variables has a normal distribution.

Example:• Let Xi be i.i.d. normal variables.  Note that it is distributed as Normal(,2) 

Y = X1 + 2X2 – 3X3Mean: E(Y)  =  + 2 ‐ 3 = 0Variance          Var(Y)  = 2 +42 + 92 = 142

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

145I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Properties of the Normal Distribution 

Example:• Suppose Y1, Y2, … , Yn are i.i.d. normal random variables and each is distributed 

as Normal(,2).  Then

Show:= (1/n)[Y1+ ….+Yn]

E( )  = (1/n)[ + … +] = Var( ) = (1/n2)[Var(Y1) + … + Var(Yn)]

= (1/n2)[2 + … + 2] = 2/n

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

146I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

The Chi‐Square Distribution

• The chi‐square distribution is obtained from independent, standard normal random variables.

• Let Zi, i =1, …, n be independent random variables, each distributed standard normal.  Define a new variable X as the sum of the squared of the Zi:

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

147I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

• X has what is known as a chi‐square distribution with n degrees of freedom.  – df (the number of terms in the sum)

• We write this as X  2n

Notes: The Chi‐Square Distribution

3)  If X  2n  then, • the expected value of X is n• the variance of X is 2n

4)  For df in excess of 100, the variable can be treated as a standard normal variable, where k is the df

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

148I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

1)  A chi‐square random variable is always nonnegative

2)  It is not symmetric about any point.  It is skewed to the right for small df.

Page 38: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

149I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

The t Distribution • The t distribution is the workhorse in classical statistics and multiple regression 

analysis.

• Let Z have a standard normal distribution and X has a chi‐square distribution with n degrees of freedom.  Assume that Z and X are independent.  Then, the random variable T is

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

150I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Notes: The t DistributionA. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

151I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

3) Expected value and Variance:Expected value = 0      (for n>1) Variance = n/(n‐2)   (for n>2)

4) t distribution is symmetric about its mean, but has more area in tails.

1)  The random variable T has t distribution with n degrees of freedom.– We denote this as T tn

2) t distribution gets its degrees of freedom from the chi‐square variable.

152I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

Page 39: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

The F Distribution 

• A F distribution is used for testing hypothesis in the context of multiple regression analysis.

• Let X1k1 and X2k2 and assume that X1 and X2 are independent.  Then, the random variable F

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

153I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

has a F distribution with (k1,k2) DFs.

• We denote this as FFk1,k2k1 – the numerator degrees of freedom because it is associated with chi‐

square variable in the numerator.k2 – is the denominator degrees of freedom

154I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

Notes: The F Distribution 1)  Relationship between t and F statistic

t2k2 = F1,K2

2)  Relationship between 2and F statisticFk1,K2 =  1 as k2

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

155I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

3) Like the chi‐square distribution, the F distribution is skewed to the right.

4) As k1 and k2 become large, the F distribution approaches the normal distribution.

156I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

Page 40: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Notes: The F Distribution 

In passing, note that since for large df (or n ), the t, chi-square, and F distributions approaches the normal distribution.

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

157I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Problem B.2

B2.  Let X be a random variable distributed as Normal(5,4). Find the probabilities of the following events:

(i) P(X  6) [ans.]

(ii) P(X > 4) [ans.]

(iii) P(X – 5> 1) [ans.]

A. NormalB. Standard NormalC. Chi SquareD. t distributionF. F distribution

158I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Problem B.2 (i)

(i) Normal (5,4)

• P(X 6) = P[(X – 5)/2 (6 – 5)/2]= P(Z .5) (See Table G.1) .692 

where Z denotes a Normal (0,1) random variable.  [We obtain P(Z .5) from Table G.1.] 

159I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Problem B.2 (ii)

(ii) Normal (5,4)

• P(X > 4) = P[(X – 5)/2 > (4 – 5)/2]= P(Z > .5)= 1 ‐ P(Z .5) (See Table G.1)= 1 – 0.3085 .692. 

160I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions

Page 41: Fundamentals of Probability II.pioneer.netserv.chula.ac.th/~achairat/Appendix B... · 2015. 7. 28. · Experiment • Experiment: flip a coin ten times and count the number of heads.

Problem B.2 (iii)(iii) Normal (5,4) • P(|X – 5| > 1)

= P(X – 5 > 1) + P(X – 5 < –1)= P(X > 6) + P(X < 4)= P[(X‐5)/2 > (6‐4)/2] + P[(X‐5)/2 < (4‐6)/2)= P(Z > .5) + P(Z < ‐.5)

• P(|X – 5| > 1) = P(Z < ‐.5) + P(Z < ‐.5)= .3085 +.3085 = .617  (Table G.1)

• P(|X – 5| > 1) = P(Z > .5) + P(Z < ‐.5)= (1 – .692) + (1 – .692) = .616

where we have used answers from parts (i) and (ii). 

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions 162

Table G.1 B.1(i) B.2(ii) B.3(iii)

I. Random Variables II. Joint & Conditional D’s III. Probability D’s IV. Features of Joint & Conditional D’s V. Normal & Related D’s

Fundamentals of Probability . Intensive Course in Mathematics and Statistics . Chairat Aemkulwat V. The Normal and Related Distributions


Recommended