+ All Categories
Home > Documents > Gas Detectors I

Gas Detectors I

Date post: 15-Jan-2016
Category:
Upload: cecil
View: 64 times
Download: 0 times
Share this document with a friend
Description:
Ulrich Uwer Physikalisches Institut. Gas Detectors I. Introduction Gas detector basics MPWC Drift chambers (LHCb straw detector) Micro pattern detectors. Gas Detectors – A Frontier Technology. Advantages. Cheap large area coverage Good spatial resolution Fast and large signals - PowerPoint PPT Presentation
44
Gas Detectors I Ulrich Uwer Physikalisches Institut • Introduction • Gas detector basics • MPWC • Drift chambers (LHCb straw detector) • Micro pattern detectors
Transcript
Page 1: Gas Detectors I

Gas Detectors I

Ulrich Uwer

Physikalisches Institut

• Introduction

• Gas detector basics

• MPWC

• Drift chambers (LHCb straw detector)

• Micro pattern detectors

Page 2: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 2

Gas Detectors – A Frontier Technology

Advantages • Cheap large area coverage

• Good spatial resolution

• Fast and large signals

• Good dE/dx resolution

• Good double track resolution

• Many possible detector configurations

• Low material budget – low radiation length

Challenges • Extremely large area detectors needed (ATLAS 5500 m2)

• High mechanical precisions (ATLAS, better than 30 m)

• Fast readout (25 ns bunch crossing cycle at LHC)

• High rate capability (LHCb Straw Tracker 400 kHz/cm2)

• High radiation dose (charge deposition ~2 C/cm)

• Light construction (LHCb Straw Tracker 9% X0)

Page 3: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 3

Example: ATLAS Muon Detector

Monitored Drift Tubes (MDT)

Sagitta s

Page 4: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 4

ATLAS MDTs

Trigger on first cluster

Page 5: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 5

Gaseous Detectors at LHC

Page 6: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 6

V

Counting gas

Gas ionization by charged particles

Gas Z Wion [eV] nion [cm-1]

Ar 18 26 94

CO2 33 33 91

CH4 10 28 53

Energy loss dE/dx of charged particles:

- primary ionization

- secondary ionization

Total number of e/ion pairs for a particle:

ionion W

dxdEn

For comparison:

Scintillator: energy for photon ~ 100 eV

Si Detector: energy for e/hole ~ 3.5 eV

Minimum ionizing particle m.i.p

Average energy Wion to create e/ion pair

Bethe-Bloch

Page 7: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 7

Drift of electrons in presence of fields

Motion of charged particles under influence of E and B fields: Langevin equation.

uKBuEedt

udm

)(

m, e = mass and charge of electron“stochastic friction force” due to collisions

Drift velocity u:

cNc

L

1

Mean free path L

Time between collisions:

instantaneous velocity

m

KOne finds:

For t>> static situation: 0dt

ud

Cyclotron frequency

Bm

e

m

e

BBEBEEE

u ˆ)ˆˆ(ˆˆˆ1

2222

Scalar mobility

0for Eu

Page 8: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 8

Drift velocity

In the microscopic picture one finds for the drifting electrons (energy ):

22

mN

eEu

22

mN

eEc

(Energy received from the E field between collisions equal to energy transferred in collisions.)

)(

)( fractional energy loss

Elastic collisions: 4102

gasM

m

100222 c

ucu Drift velocity much smaller

than instantaneous velocity

drift

Instant.

Page 9: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 9

Fast and slow gasesRamsauer minimum

Excitation threshold: Ar at 11.5 eV

CH4 at 0.03 eV (vibrations+rotations)

• Ramsauer minimum: v is large

• Ar: ionization >> Ramsauer

• CH4: exitation < Ramsauer

• Ar / CH4 mixture

small, i.e. slow gas

big, i.e. fast gas

Drift velocity u can be tuned

Page 10: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 10

Drift velocity of ArCH4

u [

m/n

s]

50 m/ns

50 m/ns

0/100

90/10

Page 11: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 11

Drift velocity of ions

• Fractional energy loss for ions large:

2

1

)(

22

gasion

gasion

Mm

Mm

• Mobility / drift velocity much smaller than for electrons.

• While for electrons =(E, Gas, p, T) one finds for ions only little dependence on E:

EvEE

EvE

~~)(

~const~)(

for small E

for large E

eioneion uv 44 1010

Gas Ion [cm2/(Vs)]

Ar Ar+ 1.5

Ne Ne+ 4.1

Xe Xe+ 0.6

Page 12: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 12

Proportional Counter

Examples:

• LHCb straw tubes: a=12.5 m, b=2.5 mm

• ATLAS MDT: a=25 m, b=15 mm

Electrical field:

r

VC

rab

VrE

1

2

1

)/ln()(

0

00

)/ln(

2 0

abC

Gas amplification – avalanche:

1

L 1

dxL

dx

n

dn

e

e

Capacity/length

EC

rC

Page 13: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 13

Gas amplification

For uniform field

)exp()( 0 rnrn )exp(0

rn

nG

General case of non-uniform fields

Raether limit:

810~

20

G

x Phenomenological limit:

discharges (sparks)

))(exp(cr

a

drrG

(r) = Townsend coefficient

G = gas amplification = 104… 105

)exp( VCkG

(gain)

(LHCb straws)

Page 14: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 14

Pressure dependence

d

G

dG~

p

dpK

G

dG

K = gas/configuration dependent constant = 5…8 Charge signal / rel. gain with mono chromatic source:

Fe55: 6.9 keV s

Page 15: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 15

Space Charge Effect

Gain drop at high particle densities: space charge around the anode.

(LHCb straws)

Page 16: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 16

2nd Townsend Coefficient & Quencher

UV photons from avalanche so far neglected:

UV photons photo effect (gas molecules / cathode)

Gas amplification G including effect of UV photons:

G

GGGGGGG

1

....)()( 2

0 1 2 photo effect

= probability for photo effect

2nd Townsend coefficient

For G 1 : gas amplification becomes infinite

continuous discharges (sparks)

Use poly-atomic gas admixtures to absorb photons: Quencher

Page 17: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 17

QuencherExcitation cross section for Noble gases (Ar) and poly-atomic gases (CH4)

Energy dissipation through collisions (radiation less transitions)

Quencher: CH4, C2H6, CO2, CF4

Page 18: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 18

Operation modes

I) Recombination before collection

II) Ionization mode full charge collection, no charge multiplication.

III) Proportional mode detector signal proportional to primary ionization, gas amplifications 104…105, needs quencher

IV) Streamer mode strong photon emission produced secondary avalanche, strong quencher to localize streamer, large signals

Geiger mode massive photon emission, no quencher discharge over full length, needs to be stopped by HV drop

Page 19: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 19

Absolute gain measurement

HERA-B Honeycomb Tracker:

Chamber current at a constant/stable irradiation for different HV (~10000 single channels contribute)

4102~

Page 20: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 20

Signal development

• Avalanche starts at a few radii distance from wire (typ. 50m)

• Electrons reach anode with ~1ns: Multiplication process takes less than 1ns

• Ions will slowly drift towards cathode and induce a negative signal on anode

Induced signal of charge Q moved by dr in a system with total capacity C=l·C’

drdr

dV

VCl

Qdv

0

a

da

l

Qv

ln

2 0Electron signal

da

b

l

Qv

ln

2 0

Assumes all charge produced at distance d

Ion signal

Total signalCl

Q

a

b

l

Qvvv

ln

2 0

)%1(4.1 vv

for LHCb straws / ATLAS MDT

Page 21: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 21

Signal timing

)/1ln(/)/1ln()( 0max00 ttttQtQ

ns5~)/ln(2

2

0 abV

pat

Ion signal

Signal rise timep = pressure

V = voltage

= ion mobilityMax. ion drift time s130~)/ln(

)( 22

max

abV

abpt

LHCb straws

0/QQ

][nst

Page 22: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 22

Signal readout

V

2R

1R

2C1C

][nst ][nst

VI

01222 , tCRCR

“Current source”

01222 , tCRCR

“Voltage source”

Page 23: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 23

Signal Shaping

Long ion tail will shadow subsequent ionizing particles:

If threshold for particle detection is used, signal stays long time above threshold.

“Current mode”

RC/CR Shaping

Signal after amplifier

Signal after shaping

Page 24: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 24

Ageing Effects

In a high rate environment (e.g. LHC) wire chambers could show several “ageing effects”, nearly all of them triggered by pollutants in the gas/chamber:

• Deposits on the anode wire: gain loss

Study gain as function of totol charge deposition per length

(LHCb straw detector)

Page 25: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 25

Ageing Effects II

• Etching of anode wire in case of counting gas with CF4 admixtures

• Modification of the cathode surface: Malter effect self sustaining currents

(HERA-B, Honeycomb tracker)

(LHCb straws)

Page 26: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 26

Garfield is a computer program for the detailed simulation of two- and three-dimensional drift chambers

Magboltz solves the Boltzmann transport equations for electronsin gas mixtures under the influence of electric and magnetic fields.

Magboltz - Transport of electrons in gas mixtures

Heed - Interactions of particles with gases

HEED is a program that computes in detail the energy loss of fast charged particles in gases, taking delta electrons and optionally multiple scattering of the incoming particle into account. The program can also simulate the absorption of photons through photo-ionization in gaseous detectors.

Garfield - simulation of gaseous detectors

http://consult.cern.ch/writeup/garfield/

http://consult.cern.ch/writeup/magboltz/

http://consult.cern.ch/writeup/heed/

Tools for detector development

Page 27: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 27

Multi Wire Proportional Chamber

Charpak, 1967/68 Nobel prize 1992

12~ s

spatial resolution

With typ. wire distance s2mm s 0.6 mm

Significantly better spatial resolution in not achievable with MWPCs

MPWC = Multiwire proportional chambers

E Field

Page 28: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 28

Drift Chamber

• Drift time drift distance and intersection point of particle

• Spatial resolution of ~100 m achievable

Page 29: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 29

Page 30: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 30

First Drift Chamber

Physikalisches Institut, Heidelberg, 1971

Page 31: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 31

LHCb Outer Tracker

Page 32: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 32

Outer Tracker - Demands

Page 33: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 33

Planar Tracking Stations

T1 T2 T3

OuterTracker

264 Module

6 m

5 m

1.3% area 20% tracks

Page 34: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 34

Straw Tubes

pitch 5.25 mm

5mm cellsTrack

e- e

-e-

Straw tube drift chamber modules

Straw tube winding:

Lamina Dielectrics Ltd.2.5 m

Cathode

Page 35: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 35

Module Construction

2

Page 36: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 36

Drift time spectrum

Page 37: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 37

Wire Chambers -Summary

• Technology widely used in HEP experiments

• Proven to be robust, precise and reliable devices

• Detector geometry and counting gas can be tuned and optimized to fulfill requirements of the given application

• Play an important role in all LHC detectors

• Will continue to used in future particle detector: ILC detector PANDA, CBM

Page 38: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 38

Micro pattern detectors

• Micromegas

• GEM detectors

Page 39: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 39

Micromegas

Page 40: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 40

Gas Electron Multiplier (GEM)140 m

Single GEM

double GEM

triple GEM

Page 41: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 41

Compass Triple-GEM

Page 42: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 42

Novel Neutron Detector

Page 43: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 43

CASCADE Neutron Detector

Page 44: Gas Detectors I

Ulrich Uwer ● Universität Heidelberg 44

Detector development tools


Recommended