+ All Categories
Home > Documents > GE-Improving Quality Audits

GE-Improving Quality Audits

Date post: 04-Jul-2015
Category:
Upload: srdjan
View: 34 times
Download: 0 times
Share this document with a friend
Popular Tags:
26
Improving Quality Audits for GE Energy Airfoils Senior Design Final Presentation Spring 2009 April 29, 2009 Michael Chan Tareq Dowla Myles Lefkovitz Tanzil Manawar Lance Sun Chiu Tong Tsang Advisor: Shabbir Ahmed GE Contact 1: Doug Heend, Black Belt GE Contact 2: Bryan Graffagnini, Quality Manager 1 Disclaimer: This work has not been officially sanctioned by The Georgia Institute of Technology or General Electric.
Transcript
Page 1: GE-Improving Quality Audits

Improving Quality Audits for GE Energy Airfoils

Senior Design Final PresentationSpring 2009April 29, 2009

Michael ChanTareq Dowla

Myles LefkovitzTanzil Manawar

Lance SunChiu Tong Tsang

Advisor: Shabbir AhmedGE Contact 1: Doug Heend, Black Belt

GE Contact 2: Bryan Graffagnini, Quality Manager1Disclaimer: This work has not been officially sanctioned by The Georgia Institute of Technology or General Electric.

Page 2: GE-Improving Quality Audits

Background

4600 airfoils/week

~16 types per turbine

2

1/1000th inch tolerance

Shape and texture consistency

GE Energy Airfoils produces airfoils for use in turbines. The plant is located in Duluth, GA.

Page 3: GE-Improving Quality Audits

Manufacturing Layout

ForgesCoordinate Measuring

Machine (CMM)

3

Forge Release

Rootmill & Lug

MillingAirfoil Milling Polish Testing Shot

PeenDrag Finish Tip Cut Inspection

CMMCMM

Page 4: GE-Improving Quality Audits

Problems

• Dashboard system• Detect trends and variation

earlyLack of manager

visibility

• Correlation study• Eliminate redundant checkpoints

Excessive inspection time

• Linear regression• Prevent loss of resources

Inaccurate In-process

tolerance levels

4

Potential Savings: $830,000

Page 5: GE-Improving Quality Audits

Problem 1: Lack of quality visibility in the processThere is poor visibility when determining if there are airfoils out of specification.

5

Lack of Quality Visibility

Unable to identify

machine shift

Consecutive Defects

Unable to identify high

variation processes

In 2008, this lack of visibility resulted in $200,000 in defect costs.

Page 6: GE-Improving Quality Audits

Problem 1: Methodology

Updating tools in Microsoft Access to increase visibility and improve quality

6

• Automatically aggregate CMM data

• Detect out-of-control processes (using z-scores)

• Visualize via control charts

Page 7: GE-Improving Quality Audits

Problem 1: Control Charts - X-bar and Range

7

Out of Control

Page 8: GE-Improving Quality Audits

Problem 2: Excessive Inspection Time

~25 minutes on average to CMM an airfoil

3000 airfoils/week measured

1250 hours/week of CMM time

Shortage cost of airfoils: $150,000/year

Cost of CMM machine: $150,000

8

Page 9: GE-Improving Quality Audits

Problem 2: Methodology

• Reduce cycle time by reducing number of sections inspected

• Correlation between sections implies redundancy

• Remove redundant sections without losing too much detection power

9

Page 10: GE-Improving Quality Audits

Problem 2: Methodology

• Linear model estimates measurements of removed sections from those of retained sections

• Loss of detection power (Index) is calculated from the linear model as a function of retained sections

• Find optimal set of retained sections to minimize Index

10

All Sections

Retained Sections

Linear Estimation Index

Removed Sections

Page 11: GE-Improving Quality Audits

Problem 2: Methodology

11

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

012345678910111213

Index (% Loss of D

etection Power)

Number of Sections Retained

Index

Page 12: GE-Improving Quality Audits

Problem 2: Results

12

• 4 sections: C, H, N, R

Retain

• 1.46% loss of detection power• Detect 98.54% of all defects

Index Value

• 70% reduction

CMM inspection cycle time

Page 13: GE-Improving Quality Audits

Problem 3: Inaccurate In-Process Tolerance Levels

Potential defective airfoils passing quality checks in process

Wasted work on defective airfoils

Forge Release

Rootmill & Lug

MillingAirfoil Milling Polish Testing Shot

PeenDrag Finish Tip Cut Inspection

Final CMMAM CMM

Inaccurate In-Process Tolerance Levels

In 2008, this lack of process understanding resulted in $180,000 spent on making parts that would eventually be found defective

Page 14: GE-Improving Quality Audits

Problem 3: Correlation Study

• Each In-Process feature is estimated from all final features

• Identify pairs with correlation of 70% or higher

• Perform correlation on every pair of features

14

Final Features After Machining CC Cont Max

Final CC Cont Max 90%Final CC Cont Min 70%Final Centroid CC-CX -14%Final Centroid LE-TE -9%Final Chord 30%Final CX Cont Max 74%Final CX Cont Min 65%Final LE Cont Max 59%Final LE Cont Min 17%Final LE Drop -21%Final LE Thickness 73%Final Max Thickness 89%Final TE Cont Max 59%Final TE Cont Min 54%Final TE Thickness 85%Final Warp -3%

Page 15: GE-Improving Quality Audits

Problem 3: Methodology

15

Final (Known) Tolerance Levels

Linear Regression

In‐Process (Predicted) 

Tolerance levels

y = 0.9177x ‐ 0.0006R² = 0.8382

‐0.003

‐0.002

‐0.001

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

‐0.002 ‐0.001 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008

Afte

r Mac

hini

ng C

C C

ont M

ax

Final CC Cont Max

Final CC Cont Max (Known) vs. After Machining CC Cont Max (Predicted)

Page 16: GE-Improving Quality Audits

Problem 3: Results

Lower Tolerance Upper Tolerance CorrelationFinal CC Cont Max -0.0086 0.0105 90%Final CC Cont Min -0.0033 0.0084 70%Final CX Cont Max -0.0052 0.0075 74%Final LE Thickness -0.0005 0.0038 73%Final Max Thickness -0.0077 0.0114 89%Final TE Thickness -0.0042 0.0067 85%Expected Tolerance -0.0071 0.0097Conservative Tolerance -0.0039 0.0073

16

Tolerance level for feature After Machining CC Cont Max

Page 17: GE-Improving Quality Audits

Potential Value

• Prevention of consecutive defects: $200,000 savings in 2008

Dashboard

• Removing an average of 9 CMM inspection sections per airfoil type: $300,000 savings (cost of 2 additional CMM machines)

• Producing one additional set (all airfoils on a turbine): $150,000 savings in purchasing costs annually

CMM inspection section removal

• $180,000 savings in 2008 (provides better understanding of how the manufacturing process affects the airfoil)

More accurate tolerance levels

Total savings: $830,000

17

Page 18: GE-Improving Quality Audits

Appendix A: Problem 1

• Western Electric rules

Graph from: (http://www.micquality.com/six_sigma_glossary/western_electric.htm)

18

Page 19: GE-Improving Quality Audits

• Z-Score Calculations

19

Appendix B: Problem 1

),min(σσ

LowerUpper TolxxTolz −−=

11.5)11.5,52.5min()001881.

1572.166814.,001881.

166814.1772.min( ==−−

=z

Page 20: GE-Improving Quality Audits

Appendix C – Problem 2: Correlation Formulas

Ktot – Covariance matrix of all measurements.

Kret – Covariance matrix of retained measurements (submatrix of Ktot).

Kret/tot – Cross-covariance matrix between retained and all measurements (submatrix of Ktot).

Kspec – Diagonal matrix based on the upper and lower specification tolerances of all measurements, where each element i is defined asKspec(i) – [(Upper bound for measurement i) – (Lower bound for

measurement i)]2

20

Page 21: GE-Improving Quality Audits

Appendix D – Problem 2: Correlation Graphs

21

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ LE THK .150 CF

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ THICKNESS AT CJ

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ H MAX THK

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ THICKNESS AT CK

Page 22: GE-Improving Quality Audits

Appendix D – Problem 2: Correlation Graphs

22

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ TE THK .080 CE

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ CHORD

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐WARP

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ CENTROID LE‐TE

Page 23: GE-Improving Quality Audits

Appendix D – Problem 2: Correlation Graphs

23

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ CENTROID CC‐CX

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ CX CONT MIN

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ CX CONT MAX

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ CC CONT MIN

Page 24: GE-Improving Quality Audits

Appendix D – Problem 2: Correlation Graphs

24

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ CC CONT MAX

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ LE CONT MIN

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ LE CONT MAX

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ TE CONT MIN

Page 25: GE-Improving Quality Audits

Appendix D – Problem 2: Correlation Graphs

25

0%10%20%30%40%50%60%70%80%90%100%

012345678910111213

% Loss of Inform

ation

Number of Sections Retained

Index''2 ‐ TE CONT MAX

Page 26: GE-Improving Quality Audits

Appendix E: Problem 3

• Step 1: Linear Regression

• Step 2: Calculate Z-scores, Nominal of Predicting Feature, Standard Deviation of Predicting Feature

• Step 3: Calculate Tolerance Levels

26

εβαxy ++=2

alFeatureFinFinalalFeatureFinPredicted ))yFeature*((Feature βαε −+−=

viationStandardDeNominalToleranceLower Z alFeatureFinalFeatureFin

ower−

=L

Averagey εβα +−+= alFeatureFinalFeatureFinalFeatureFindictedFeaturePre Nominal*Nominal

))()(*)(( Error2

alFeatureFin2

alFeatureFin2

dictedFeaturePre σσασ +=

lowerdictedFeaturePredictedFeaturePredictedFeaturePre Z*NominalanceLowerToler σ+=

viationStandardDeNominalToleranceUpper Z alFeatureFinalFeatureFin −

=Upper

UpperZ*NominalanceUpperToler dictedFeaturePredictedFeaturePredictedFeaturePre σ+=


Recommended