+ All Categories
Home > Documents > Granular Micromechanics Model for Beams, Plates, and Shellsgonza226/research/Research... · 2017....

Granular Micromechanics Model for Beams, Plates, and Shellsgonza226/research/Research... · 2017....

Date post: 28-Feb-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
1
Granular Micromechanics Model for Beams, Plates, and Shells CAUCHY HEXAGON VS. STRUCTURAL ELEMENT GRANULAR MICROMECHANICS FOR CONTINUUM ADVANTAGES cp3 National Science Foundation www.nsf.gov Center for Particulate Products and Processes engineering.purdue.edu/CP3 Payam Poorsolhjouy and Marcial Gonzalez www.marcialgonzalez.net Macroscopic mechanical behavior of materials depends upon their microstructure and micromechanical properties. Methods at various scales and with different levels of computational demand may be used for incorporating material microstructure and micromechanical properties. In Granular Micromechanics approach, the material is envisioned as a collection of grains interacting with each other through pseudo-bonds that characterize material’s macroscopic behavior. INTRODUCTION In this approach, material’s behavior is derived through micro-macro kinematic identification and an appropriate inter-granular constitutive relationship, followed by Principle of Virtual Work. Kinematic Identification u p i = u n i + @ u i @ x j (x p j - x n j ) δ i = u p i - u n i = ij l j ! " # $ # % Microscopic force-law f i = @ W i = K ij δ j PVW W = σ ij ij = 1 V N c X =1 W kl e ij s i f k d Tensorial Constitutive Equations Kinematic Assumption Principle of Virtual Work (PVW) Microscopic Constitutive Laws Principle of Virtual Work (PVW) Static Assumption Tensorial Continuum mechanics Granular Micromechanics Kinematic approach Granular Micromechanics Static approach Cauchy Stress σ ij = @ W @✏ ij = 1 V N c X =1 @ W @✏ ij Granular system, Computational Demand 10 -2 10 -3 10 -5 10 -6 10 -9 10 -8 10 -7 10 -4 Length scale, meters Coarse grained – Molecular or bead-spring models. Atomic models Continuum models Meso-scale particle models Structures and their coarse graining Granular micromechanics – Granular Micromechanics Grains, boundaries, and contacts: ill-defined for complex materials Prohibitively large computations Ignores microstructure and micromechanical phenomena Stiffness tensor C ijkl = 1 V N c X =1 h K ik l j l l i Modeling materials with different levels of anisotropy using distribution functions Capturing induced anisotropy automatically by using nonlinear inter- granular force laws. Transversely isotropic Orthotropic Isotropic 0.05 0.1 30 210 60 240 90 270 120 300 150 330 180 0 Force distribution Triaxial loading Stiffness tensor C ijkl = l 2 ZZ h K ik l j l l i (, φ) sin d-60 -40 -20 0 -60 -40 -20 0 20 σ 22 (MPa) σ 11 (MPa) Initial Pre-loaded (0.2σy) Pre-loaded (0.4σy) Pre-loaded (0.6σy) Pre-loaded (0.8σy) Path-dependent failure Minimal additional computational expense: o Only looking at different directions and not following every contact Δ Δ Δ && ’’ (( Δ && Element Size ×× ××ℎ Strain components Constant Varying in height Constitutive laws ./ = ./23 23 = ̅ = ̅ KIRCHHOFF PLATE ELEMENT ! " # u 1 (x, y, z )=¯ u(x, y ) - z @ ¯ w @ x u 2 (x, y, z )=¯ v (x, y ) - z @ ¯ w @ y u 3 (x, y, z )=¯ w(x, y ) Displacement Strain tensor ij = u (i,j ) = 2 4 ¯ xx + z ¯ xx ¯ xy + z ¯ xy 0 ¯ xy + z ¯ xy ¯ yy + z ¯ yy 0 0 0 0 3 5 Constitutive relationships 8 > > > > > > < > > > > > > : N 1 N 2 M 1 M 2 V 12 Q 12 9 > > > > > > = > > > > > > ; = Eh 1 - 2 2 6 6 6 6 6 6 4 1 0 0 0 0 1 0 0 0 0 0 0 h 2 /12 h 2 /12 0 0 0 0 h 2 /12 h 2 /12 0 0 0 0 0 0 1-2 0 0 0 0 0 0 h 2 12 1-2 3 7 7 7 7 7 7 5 8 > > > > > > < > > > > > > : ¯ 11 ¯ 22 ¯ 11 ¯ 22 ¯ γ 12 12 9 > > > > > > = > > > > > > ; PARTICLE-BINDER MATERIAL SYSTEM SHELLS FUNCTIONALLY GRADED MATERIALS (FGM) 0 0.002 0.004 0.006 0.008 0.01 0 2 4 6 8 1 2 4 6 N M Normal Force, N [KN ] Bending Moment, M [KN.m] Bending strain, [1/m] Homogeneous 0 0.002 0.004 0.006 0.008 0.0 N M Normal Force, N [KN ] Bending Moment, M [KN.m] Bending strain, [1/m] FGM Microscopic force law Compression 0 0.5 1 1.5 7 5 [1=m] -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 Normal force and Moment N M Bending 0 0.5 1 1.5 σ 11 ¯ CYCLIC LOADING Bending Axial Constant grain size FGM Strain components 1 = R 1 R 1 - z 1 + z ¯ 1 ) 2 = R 2 R 2 - z 2 + z ¯ 2 ) γ 12 = R 1 R 1 - z 12 + z ¯ 12 )+ R 2 R 2 - z 21 + z ¯ 21 ) γ 23 = γ 13 =0 In a spherical shell, constitutive laws will be identical to that of a Kirchhoff plate. ! " # $ % Coupled constitutive relationship 8 > > > > > > < > > > > > > : N 1 N 2 M 1 M 2 V 12 Q 12 9 > > > > > > = > > > > > > ; = C h 1 - 2 2 6 6 6 6 6 6 6 4 ¯ k n ¯ k n Δk n h h 2 12 Δk n h h 2 12 0 0 ¯ k n ¯ k n Δk n h h 2 12 Δk n h h 2 12 0 0 Δk n h h 2 12 Δk n h h 2 12 ¯ k n h 2 /12 ¯ k n h 2 /12 0 0 Δk n h h 2 12 Δk n h h 2 12 ¯ k n h 2 /12 ¯ k n h 2 /12 0 0 0 0 0 0 ¯ k n 1-2 Δk n h h 2 12 1-2 0 0 0 0 Δk n h h 2 12 1-2 ¯ k n h 2 12 1-2 3 7 7 7 7 7 7 7 5 8 > > > > > > < > > > > > > : k 11 k 22 k 11 k 22 γ k 12 2 k 12 9 > > > > > > = > > > > > > ; [1] [2] REFERENCES 1- Misra, Anil, and Poorsolhjouy, Payam, Acta Mechanica 227, no. 5 (2016): 1393. 2- Poorsolhjouy, Payam, and Misra, Anil, Intl. J. of Solids and Structures 108 (2017): 139-152. -20 -15 -10 -5 0 7 0 [%] -1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2 Normal force and Moment N M -1.5 -1 -0.5 0 0.5 1 1.5 7 5 [1=m] -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 Normal force and Moment N M -1.5 -1 -0.5 0 0.5 1 1.5 7 5 [1=m] -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 Normal force and Moment N M Loading progress -25 -20 -15 -10 -5 0 7 0 [%] -0.9 -0.8 -0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 Normal force and Moment N M -25 -20 -15 -10 -5 0 7 0 [%] -1 -0.8 -0.6 -0.4 -0.2 0 Normal force and Moment N M
Transcript
Page 1: Granular Micromechanics Model for Beams, Plates, and Shellsgonza226/research/Research... · 2017. 8. 23. · Granular Micromechanics Model for Beams, Plates, and Shells CAUCHY HEXAGON

GranularMicromechanicsModelforBeams,Plates,andShells

CAUCHYHEXAGONVS.STRUCTURALELEMENTGRANULARMICROMECHANICSFORCONTINUUM

ADVANTAGES

cp3 NationalScienceFoundationwww.nsf.gov

CenterforParticulateProductsandProcessesengineering.purdue.edu/CP3

PayamPoorsolhjouyandMarcial Gonzalez www.marcialgonzalez.net

• Macroscopic mechanical behavior of materials depends upon theirmicrostructure and micromechanical properties.

• Methods at various scales and with different levels of computationaldemand may be used for incorporating material microstructure andmicromechanical properties.

• In Granular Micromechanics approach, the material is envisioned as acollection of grains interacting with each other through pseudo-bonds thatcharacterize material’s macroscopic behavior.

INTRODUCTION

• In this approach, material’s behavior is derived through micro-macrokinematic identification and an appropriate inter-granular constitutiverelationship, followed by Principle of Virtual Work.

KinematicIdentification

u

pi = u

ni +

@ui

@xj(xp

j � x

nj )

�i = upi � un

i = ✏ij lj

!

"

#$

#%

Microscopicforce-law

fi =@W↵

@�↵i= Kij�

↵j PVW

W = �ij✏ij =1

V

NcX

↵=1

W↵

kle ijs

ifkd

TensorialConstitutiveEquations

KinematicAssumption

PrincipleofVirtualWork

(PVW)

MicroscopicConstitutiveLaws

PrincipleofVirtualWork

(PVW)

StaticAssumption

TensorialContinuummechanics

GranularMicromechanicsKinematicapproach

GranularMicromechanicsStaticapproach

CauchyStress

�ij =@W

@✏ij=

1

V

NcX

↵=1

@W↵

@✏ij

Gra

nula

r sys

tem

, C

ompu

tatio

nal D

eman

d

10-2 10-3 10-5 10-6 10-9 10-8 10-7 10-4 Length scale, meters

Coarse grained – Molecular or bead-spring models.

Atomic models

Continuum models

Meso-scale particle models

Many intermediate scales and structures may be conceived. Structures and their coarse graining regimen are typically ill-defined.

Granular micromechanics – micromorphic continua.

Granular Micromechanics

Grains,boundaries,andcontacts:ill-definedforcomplexmaterials

Prohibitivelylargecomputations

Ignoresmicrostructureandmicromechanicalphenomena

Stiffnesstensor

Cijkl =1

V

NcX

↵=1

hK↵

ikl↵j l

↵l

i

• Modeling materials withdifferent levels of anisotropyusing distribution functions

• Capturing induced anisotropy automatically by using nonlinear inter-granular force laws.

Transverselyisotropic

OrthotropicIsotropic

0.05 0.1

30

210

60

240

90270

120

300

150

330

180

0

ρ = 0.55

Zavg = 5.93

ForcedistributionTriaxial loading

Stiffnesstensor

Cijkl = l2⇢

ZZ hKiklj ll

i⇠(✓,�) sin ✓d⌦

-60

-40

-20

0

20

-60 -40 -20 0 20

σ 22

(MPa

)

σ11 (MPa)

Initial

Pre-loaded (0.2σy)

Pre-loaded (0.4σy)

Pre-loaded (0.6σy)

Pre-loaded (0.8σy)

(b)

0 2.5 5 7.5 100

2

4

6

8 x 107

x (1/mm)

w (r

ad/s

)

Longitudinal

Wavenumber

Frequency

0 2.5 5 7.5 100

2

4

6

8 x 107

x (1/mm)

w (r

ad/s

)

Transverse

Wavenumber

Volumetric

Deviatoric

Average longitudinal Average transverse

Antisymmetricshear

Symmetricshear

(b)

(a)

Wave number Wave number

Frequency

Path-dependentfailure

• Minimal additional computational expense:o Only looking at different directions and not following every contact

Δ𝑥Δ𝑦

Δ𝑧𝜖&&

𝜖''

𝜖((

Δ𝑥𝑏

𝜖&&

ElementSize𝛥𝑥×𝛥𝑦×𝛥𝑧 𝛥𝑥×𝑏×ℎ

StraincomponentsConstant Varyinginheight

Constitutivelaws

𝜎./ = 𝐶./23𝜖23𝑁 = 𝐸𝐴𝜖𝑀 = 𝐸𝐼��

KIRCHHOFFPLATEELEMENT

!

"#

u1(x, y, z) = u(x, y)� z

@w

@x

u2(x, y, z) = v(x, y)� z

@w

@y

u3(x, y, z) = w(x, y)

Displacement Straintensor

✏ij

= u(i,j) =

2

4✏xx

+ zxx

✏xy

+ zxy

0✏xy

+ zxy

✏yy

+ zyy

00 0 0

3

5

Constitutiverelationships

8>>>>>><

>>>>>>:

N1

N2

M1

M2

V12

Q12

9>>>>>>=

>>>>>>;

=Eh

1� ⌫2

2

6666664

1 ⌫ 0 0 0 0⌫ 1 0 0 0 00 0 h2/12 h2⌫/12 0 00 0 h2⌫/12 h2/12 0 00 0 0 0 1�⌫

2 0

0 0 0 0 0 h2

121�⌫2

3

7777775

8>>>>>><

>>>>>>:

✏11✏2211

22

�12212

9>>>>>>=

>>>>>>;

PARTICLE-BINDERMATERIALSYSTEM

SHELLS

FUNCTIONALLYGRADEDMATERIALS(FGM)

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Norm

al fo

rce a

nd M

omen

t

NM

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Norm

al fo

rce a

nd M

omen

t

NM

NormalForce,N

[KN]

BendingMoment,M

[KN.m

]

Bending strain, [1/m]

Homogeneous

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Nor

mal

forc

e and

Mom

ent

NM

0 0.002 0.004 0.006 0.008 0.0175 [1=m]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Nor

mal

forc

e and

Mom

ent

NM

NormalForce,N

[KN]

BendingMoment,M

[KN.m

]

Bending strain, [1/m]

FGM

Microscopicforce law

Compression

0 0.5 1 1.575 [1=m]

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Nor

mal

forc

e an

d M

omen

t

NM

Bending

0 0.5 1 1.575 [1=m]

-14

-12

-10

-8

-6

-4

-2

0

2

<11

[MPa

]

�11

CYCLICLOADING

Bend

ing

Axial

Constantgrainsize FGM

Straincomponents✏1 =

R1

R1 � z(✏1 + z1)

✏2 =R2

R2 � z(✏2 + z2)

�12 =R1

R1 � z(✏12 + z12) +

R2

R2 � z(✏21 + z21)

�23 = �13 = 0

In a spherical shell,constitutive laws willbe identical to thatof a Kirchhoff plate.

!

"

#

$

%

Coupledconstitutiverelationship

8>>>>>><

>>>>>>:

N1

N2

M1

M2

V12

Q12

9>>>>>>=

>>>>>>;

=Ch

1� ⌫2

2

66666664

kn kn⌫�knh

h2

12�knh

h2

12 ⌫ 0 0

kn⌫ kn�knh

h2

12 ⌫�knh

h2

12 0 0�knh

h2

12�knh

h2

12 ⌫ knh2/12 knh2⌫/12 0 0�knh

h2

12 ⌫�knh

h2

12 knh2⌫/12 knh2/12 0 0

0 0 0 0 kn1�⌫2

�knh

h2

121�⌫2

0 0 0 0 �knh

h2

121�⌫2 kn

h2

121�⌫2

3

77777775

8>>>>>><

>>>>>>:

✏k11✏k22k11

k22

�k12

2k12

9>>>>>>=

>>>>>>;

[1]

[2]

REFERENCES1- Misra, Anil, and Poorsolhjouy, Payam, Acta Mechanica 227, no. 5 (2016): 1393.2- Poorsolhjouy, Payam, and Misra, Anil, Intl. J. of Solids and Structures 108 (2017): 139-152.

-20 -15 -10 -5 070 [%]

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Nor

mal

forc

e an

d M

omen

t

NM

-1.5 -1 -0.5 0 0.5 1 1.575 [1=m]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Nor

mal

forc

e an

d M

omen

t

N

M

-1.5-1

-0.50

0.51

1.575

[1=m]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05 0

0.05

Normal force and Moment

2 4 6 8 10 12 14 16 18

#10

4

-1.5 -1 -0.5 0 0.5 1 1.575 [1=m]

-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

Nor

mal

forc

e an

d M

omen

t

N

M

Loadingprogress

-25 -20 -15 -10 -5 070 [%]

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Nor

mal

forc

e an

d M

omen

t

N

M

-25 -20 -15 -10 -5 070 [%]

-1

-0.8

-0.6

-0.4

-0.2

0

Nor

mal

forc

e an

d M

omen

t

N

M

Recommended