+ All Categories
Home > Documents > Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7-...

Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7-...

Date post: 20-Jun-2018
Category:
Upload: vuhanh
View: 221 times
Download: 0 times
Share this document with a friend
47
N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang 1 , Chi-Shuen Lee 1 , Chris D. English 1 , Saurabh Sinha 2 , Brian Cline 2 , Greg Yeric 2 , H.-S. Philip Wong 1 , Eric Pop 1 ORNL Beyond CMOS 2017 Workshop 11-30-2017 1 Dept. of Electrical Engineering,Stanford University, Stanford, CA 94305 2 ARM Inc., Austin, TX 78735
Transcript
Page 1: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang

Graphene Interconnects for 7- and 5-nm Technology NodesNing C. Wang1, Chi-Shuen Lee1, Chris D. English1

,

Saurabh Sinha2, Brian Cline2, Greg Yeric2,

H.-S. Philip Wong1, Eric Pop1

ORNL Beyond CMOS 2017 Workshop

11-30-2017

1Dept. of Electrical Engineering, Stanford University, Stanford, CA 943052ARM Inc., Austin, TX 78735

Page 2: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang

Ex

aB

(Billio

ns

of

GB

)

0 4

0K

2006 Year 2020

Unstructured dataWide variety & complexity

“Swimming in sensors, drowning in data”

• Mine, search, analyze data in near real-time

• Data centers, mobile phones, robots

Abundant Data Explosion

Source: H.-S.P. Wong (Stanford)

Page 3: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 2

ENERGY

CV

I

2CV

L W

Device Level (“Bottom Up”)

System Level (“Top Down”)

Fabrication

restrictions

Device

models

System

requirements

Gate-level

performance

CMOS Inverter

“Good”

Design

A Circuit Designer’s Perspective

CMOS Design Window

Devices do not exist by themselves but as part of a system

Page 4: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 3

Intel performance counter monitors 2 CPUs, 8-cores/CPU + 128GB DRAM

Compute Memory

Abundant-data applications: Energy measurements

5%

95%

18%

82%

Genomics Natural Language Processing

Source: S. Mitra (Stanford)

Huge Memory Wall: Processors, Accelerators

Page 5: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 4

Increasing Interconnect Resistance

0

0.1

0.2

0.3

0.4

0

100

200

300

400

5 10 15 20 25 30 35

Cw

ire(fF

/μm

)

Critical Dimension (nm)

Rvia

(Ω/v

ia),

R

wir

e(Ω

/μm

)

C.-S. Lee, H.-S.P. Wong, et al., IEDM 2016

• Cu wire and via resistances increase rapidly with scaling

• Affects all aspect of system design (speed, area, power)

↓Ion

↑ Delay

↑ Repeaters

↑Energy, Area

Page 6: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 5

Wire Limited Memory Performance

Resistive wires limit operating margins, energy

efficiency, and speed

Wire Width (nm)

wire width

J. Liang, H.-S.P. Wong, et al., ACM Journ. on Emerg. Tech. in Comp. Sys.,9,1 (2013).

Rj

Rj – Wire Resistance per Junction (Ω)

Wire Width =

Wri

te M

arg

in (

Vaccess/V

dd)

selected cell

Page 7: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 6

Wire Limited Compute PerformanceD

ela

y

Length

• Local wire parasitics limit circuit performance

• FinFET specific parasitics further restrict performance

Ring Oscillator Delay Decomposition

20 16 14 10 710

Node (nm)

Interconnects

FinFETs

S. Sinha et al., ISLPED 2012

Page 8: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 7

Grain

Boundary

Scattering

Side Wall

Scattering

Low-k

Diel.Cu

Copper (Cu) Resistivity vs. Linewidth

Local interconnect resistivity dominated by “size effects”

Bulk Resistivity

Li, JES-06

Pyzyna, VLSI-15

Sun, PRB-10

Roberts, IITC-15

Steinhögl, PRB-02

Side Wall

Grain

Boundary

Cu Interconnect

Cross Section

N.C. Wang, E. Pop, et al., IEEE IITC 2017

Page 9: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 8

Resis

tivity (

µΩ

-cm

)

Graphene (Gr) vs. Cu Resistivity

[1] D. Kondo et al., IEEE IIITC 2012 [2] N.C. Wang et al. IEEE DRC 2012

Cu

Gr [2], ρmid

Gr [2], ρlow

ρGr < ρCu below ~40 nm due to:

1) Lower bulk resistivity

2) Reduced edge scattering

Doped Graphene [1]:

ρlow = 1.5×10-6 Ω-cm

ρmid = 4×10-6 Ω-cm

Linewidth (nm)

Graphene with

FeCl3 intercalation,

D. Kondo [1]

Page 10: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 9

Graphene Interconnect Technologies

FeCl3

WH =

5,10,

20 nm

+ ↑ Line width

+ ↓ Liner resistivity

+ Enhanced reliability [1]

+ Exp. Demonstrated [1]

+ Doped ρGr < ρCu,W

+ Cpara. suppression

+ Planar processing

- CMOS compatibility

Horizontal

Graphene

Graphene Based

Cu Liner

Performance Impact

Feasibility

[1] L. Li, H.-S.P. Wong, et al., 2016 IEDM

TaN

Cu

W

H =

2W

TaN

Atomically thin sheet

of carbon

(thickness = 0.34 nm)

Suppressed “size effect”

(ρGr < ρCu)

Graphene

High breakdown current

(>100x Cu)

Gr

Page 11: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 10

Rapid Benchmark Methodology

MO

LB

EO

L Gra

ph

en

e

Parasitic

Extraction

Timing

Layer Width

M1 16 nm

M2-3 18 nm

ARM Figure of

Merit (FOM)

7-nm Back End-of-Line

(BEOL) Specification [1]:

[1] L.T. Clark, G.Yeric, et al., Microelec. Journ., 53, 105 (2016).

IN

INV

NAND

NOR

G

TS

S

TS

S D

CA CB CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

Standard Cell

Timing

Page 12: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 11

FOM Results (7-nm Gr Technologies)

1L

3L

VDD = 0.7 V

1L

3L

ρlo

w

Cu Baseline

Liner

Horizontal

Energy Delay Product (EDP):

ρlow

(5 nm)

ρmid

(10 nm)

ρlow

(10 nm)

ρlow

(20 nm)

ρmid

(20 nm)

ρm

id

ρlo

w

ρm

id

ρlo

w

~30%

5 nm10 nm20 nmClock Frequency (%)

2

( )AVG Delay Delay

AVG Delay

EDP Energy

t

P t

Delay

P t

N.C. Wang, E. Pop, et al., IEEE IITC 2017

ED

P (

%)

Cu B

aselin

e

Page 13: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 12

ARM Core Synthesis, Place, and Route

Standard Cell

Library

Functional

Description

Parasitic

Extraction

Fabrication

Constraints

Conduct full-chip synthesis, place, and route for realistic performance projections

Synthesis, Place,

and Route

G

TS

S

TS

S D

CA CB CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

D

CLK

Q

Q’

M4 M4

Optimize: Power,

Area, Speed

Page 14: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 13

ARM Core Synthesis, Place, and Route

Automatically optimize layout for power given performance and area targets by adjusting routing and cell sizing

If

CV

Target Frequency

Ac

tua

l F

req

ue

nc

y

Low Performance Design

High Performance

Design

Larger cells↑I ↑Frequency

Page 15: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 14

Full Core Study – 7-nm Technology

MO

LB

EO

L

G

TS

S

TS

S D

CA CB CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

G

TS

S

TS

S D

CA CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

CBCB

G

TS

S

CA CA

V0 V0 V0

TS

S

M1 M1

V1 V1

M2 M2

D

V2 V2

M3 M3

Baseline MOL Only

MOL and BEOL

G SS D

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

CB

TS

CA CA

V0 V0 V0

TS

BEOLOnly

[1] L.T. Clark, G.Yeric, et al., Microelec. Journ., 53, 105 (2016).

• Maximize performance: Gr restricted to M1-M3, VDD = 0.7V,

sweep target clock freq.

• Assess MOL and BEOL impact on performance

7-nm Tech. Specs [1]:

LayerWidth

(nm)

Pitch

(nm)

M8 40 80

M6-7 32 64

M4-5 24 48

M2-3 18 36

M1 16 36

Page 16: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 15

0

0.2

0.4

0.6

0.8

1

0.5 0.7 0.9 1.1

Full Core (7-nm) – Clock Frequency

Pow

er

(a.u

.)

Clock Frequency (a.u.)N.C. Wang, E. Pop, et al., IEEE IITC 2017

7-nm Tech. Specs:

LayerWidth

(nm)

Pitch

(nm)

M8 40 80

M6-7 32 64

M4-5 24 48

M2-3 18 36

M1 16 36BEOL

G SS D

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

CB

TS

CA CA

V0 V0 V0

TS G

TS

S

TS

S D

CA CB CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

MOL &

BEOL

Baseline MOL

G

TS

S

TS

S D

CA CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

CB

CB

G

TS

S

CA CA

V0 V0 V0

TS

S

M1 M1

V1 V1

M2 M2

D

V2 V2

M3 M3

• 5% frequency increase or 9% power reduction

~8% energy delay product (EDP) improvement

−9%

+5%

Page 17: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 16

Full Core (7-nm) – Wire Utilization

Graphene Layers

Cu

Gr (H =

20 nm)

Non-optimal graphene to Cu transition (M3M4)

Area Utilization (%) =𝑀𝑒𝑡𝑎𝑙 𝑃𝑖𝑡𝑐ℎ × 𝑈𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝐿𝑒𝑛𝑔𝑡ℎ

𝑇𝑜𝑡𝑎𝑙 𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝐴𝑟𝑒𝑎G

TS

S

TS

S D

CA CB CAV0 V0 V0

M1 M1V1 V1M2V2 V2M3 M3V3 V3

M4 M4

Via (V)

Interconnect (M)

Via

Count

[A.U

.]

Cu Gr

30

20

10

0V1V1

V2V2

V3V3

Interconnect

& Device

Cross Section

M2

N.C. Wang, E. Pop, et al., IEEE IITC 2017

Page 18: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 17

• Asses n = 20 slowest (i.e. critical) data paths

• Reliance on M4 suppresses Gr (M1-M3) improvement

Full Core (7-nm) – Wire Delay Decomposition

V1M2

V2M3

M1M1V0CA

TSTS

M4

CAV0

V1M2

V3

V2M3

V3

Cross-SectionNOR2 NAND2

Net

Cross-Section

In Out

Data Path

NAND2

CellNet

NOR2

Cell

M2

M3

M4

M5

M6

M7

M8

Page 19: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 18

Full Core Study – 5-nm Technology Details

G

TS

S

TS

S D

CA CB CAV0 V0 V0M1 M1V1 V1M2V2M3 M3V3 V3M4 M4

V2

0

1

2

3

0.4 0.8 1.2 1.6

En

erg

y/C

ycle

(a

.u.)

Clock Frequency (a.u.)

0.6 V

VDD=0.5 V

0.7 V

0.8 V

0.9V

PreferredCorner

C.-S. Lee, H.-S.P. Wong, et al., IEDM 2016

• Exploratory study: full Gr replacement full height, adjust

VDD, FET structure (LCON, LEXT), and target clock frequency

• Deeper dive into design and tool optimizations

M2

V4M5

V5M6

V6 V6 V6M7

5-nm Tech. Specs:

LayerWidth

(nm)

Pitch

(nm)

M6-7 24 48

M4-5 18 36

M1-3 12 24

Page 20: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 19

• MLG: 60-70% lower Rwire compared to Cu

• Gr wire impact greater than at 7-nm, but less than expected

0.5

1

1.5

2

0.6 0.8 1 1.2 1.4 1.6

Energ

y/C

ycle

(a.u

.)

Clock Frequency (a.u.)

Cu

MLG

−16%

+9%

VDD: 0.5-0.8V

Assume same Rvia

Full Core (5-nm) – Clock Frequency

C.-S. Lee, H.-S.P. Wong, et al., IEDM 2016

5-nm Tech. Specs:

LayerWidth

(nm)

Pitch

(nm)

M6-7 24 48

M4-5 18 36

M1-3 12 24

Page 21: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 20

Full Core (5-nm) – Delay Contribution of Rwire+Rvia

• Rwire + Rvia contribute to 20-30% critical path (n = 20) delay in optimized designs.

0%

10%

20%

30%

40%

50%

0.4 0.6 0.8 1 1.2 1.4

% o

f R

wir

e+

Rvia

in C

ritical P

ath

Dela

y

Clock Frequency (a.u.)

90%

VDD: 0.5-0.8V

151 samples

Post timing closure

Cu

MLG

C.-S. Lee, H.-S.P. Wong, et al., IEDM 2016

Page 22: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 21

Full Core (5-nm) – Wire vs. Transistor Resistance

• RFET ≡ VDD/ION (3-fin, VDD=0.6 V, IOFF=1 nA/μm, ρCON=2×10-9 Ω-cm2 )

• Wire: Cu + 2-nm barrier, aspect ratio = 2

0

2

4

6

8

10

12

0 10 20 30

FE

T,

Wire R

esis

tance

(kΩ

)

Wire Length (μm)

INV_X1*(Low Ion)

INV_X8(High Ion)

23 μm

M2

M4

M6

*X: number of fingers in a cell

If

CV

C.-S. Lee, H.-S.P. Wong, et al., IEDM 2016

Page 23: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 22

Full Core (5-nm) – Impact of Rwire on Area

Lower Rwire Less buffers, less wide/fat metal wires

Less via count (less congestion), smaller die area!

4

5

6

0.7 0.8 0.9 1 1.1

Tota

l V

ia N

um

ber

(a.u

.)

Clock Frequency (a.u.)

– 5-10%

VDD: 0.6V

4

5

6

0.7 0.8 0.9 1 1.1Tota

l C

ell

Are

a (

a.u

.)

Clock Frequency (a.u.)

– 5-10%

CuMLG

Cu

MLG

MLG: 60-70% lower Rwire vs. Cu at 5-nm

C.-S. Lee, H.-S.P. Wong, et al., IEDM 2016

Page 24: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 23

• Graphene may offer three-fold benefit:

• Reduced size-effect at narrow linewidths (ρ↓)• Improved aspect ratio (C↓)• Liner reduction/elimination

• Graphene interconnects at system level:

• Up to ~30% EDP improvement • 9% higher speed or 16% lower energy consumption

• Routing optimization can improve local Rwire impact• Requires place-and-route to see the effect• Consider utilizing area instead of performance

improvement

Graphene Interconnect Conclusions

Page 25: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 24

Thanks!

Page 26: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 25

Wire Limited Memory Performance

Wire Width (nm)

10KΩ

100KΩ

J. Liang, H.-S.P. Wong, et al., ACM Journ. on Emerg. Tech. in Comp. Sys.,9,1 (2013).

Static, Ron = 1KΩ

Page 27: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 26

Cu vs. Ru vs. Co vs. Gr

(a) (b)

Cu

Ru

Co

Gr(mid)

Gr(low)

hRMS = 2 nm hRMS = 0.5 nm

“Low”

Roughness

Realistic

Roughness

Cu Ru Co Gr

λMFP [nm] 39 4.8 7.77 30

λF [nm] 0.46 1.09 2.85 4

ρ [µΩ-cm] 1.68 7.8 6.2 1.5 (low), 4 (mid)

Cu

Ru

Co

Gr(mid)

Gr(low)

Page 28: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 27

Why Graphene Interconnects?

Scattering specularity (2D model): 𝑝 𝜃 ∝ exp− 4𝜋𝑅𝑟𝑜𝑢𝑔ℎ/𝜆𝐹2

(λF,Gr > λF,Cu better edge roughness immunity)[1] N. Wang, E. Pop et al., 2012 IEEE DRC. [2] D. Kondo, N. Yokoyama, et al., 2014 IEEE IIITC.

Cu

Gr, ρmid

Gr, ρlow

Gr (2D Model [1])

Rrough,edge 2 nm

λMFP 30 nm

λF,Gr 4 nm

ρlow 1.5×10-6 Ω-cm [2]

ρmid 4×10-6 Ω-cm [2]

Cu (FS-MS Model)

Rcu 0.72

ρcu 1.68 × 10-6 Ω-cm

AR 2

pcu 0.8

λMFP,cu 39 nm

λF,Cu 0.46 nm

Model Parameters

Graphene

Page 29: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 28

𝜌0𝜌𝑟𝑜𝑢𝑔ℎ

= 1 −6𝜆𝑀𝐹𝑃

𝜋𝑊න

0

Τ𝜋 2

cos2 𝜃 sin2 𝜃 𝑑𝜃 න

0

Τ𝜋 2

sin𝜓

1 − exp − 4𝜋h/λFermi2 sin2 𝜃 sin2𝜓 1 − exp −

2𝑊 sin𝜓𝜆𝑀𝐹𝑃 sin 𝜃

1 − exp − 4𝜋h/λFermi2 sin2 𝜃 sin2𝜓 exp −

2𝑊 sin𝜓𝜆𝑀𝐹𝑃 sin 𝜃

𝑑𝜓

Resistivity Equations

𝜌0𝜌𝑟𝑜𝑢𝑔ℎ

= 1 −2𝜆𝑀𝐹𝑃

𝜋𝑊න0

𝜋

𝑑𝜃 sin2 𝜃 cos𝜃 ሻ1 − 𝑝(𝜃 −ሻ1 − 𝑝(𝜃ሻ 2ex p( − Τ𝑊 𝜆𝑀𝐹𝑃 cos𝜃

ሻ1 − 𝑝(𝜃ሻex p( − Τ𝑊 𝜆𝑀𝐹𝑃 cos 𝜃

p(θ)=exp[-(4πh/λFermi)2cos2θ]

Sambles-Soffer (2D)

Sambles-Soffer (3D)

FS-MS (3D)

𝜌 = 𝜌0 ൘1

3

1

3−𝛼

2+ 𝛼2 − 𝛼3ln 1 +

1

𝛼+3

8𝐶 1 − 𝑝

1 + 𝐴𝑅

𝐴𝑅

𝜆𝑀𝐹𝑃

𝑊

𝛼 =𝜆𝑀𝐹𝑃𝑅

𝑑(1 − 𝑅ሻ

𝜆𝑀𝐹𝑃 = mean free path C = fit parameter R = reflectivity coefficient

AR = aspect ratio W = width p = specularity coefficient

d = grain boundary dis. h = RMS edge roughness

Where:

Page 30: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 29

Lumped Model Analysis

Pitch

(nm)

wMin

(nm)

h

(nm) AR RC/L2

Graphene

(ρLow)

M1-3 36 18 20 1.11 8.08E-03

M4-5 48 24 20 0.83 5.68E-03

M6-7 64 32 20 0.63 4.35E-03

Cu

M1-3 36 18 38 2.11 1.53E-02

M4-5 48 24 52 2.17 5.04E-03

M6-7 64 32 68 2.13 2.44E-03

Page 31: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 30

DISPEL: DevIce-to-System Performance EvaLuation Platform

Physical Design

Standard

Cells

Extracted Netlist

Layout Sizing

Parasitic Extraction

Timing/Power

Characterization

Timing/Power Lib

Transistor

Interconnect

Tech LEF

Synthesis

Cell Placement

DFT

Gate-Level

Netlist

Clock Tree

Synthesis

Signal Routing

RC Extraction

Timing Closure

Static Timing

Analysis

RTLTiming

Constraint

Design-Technology

Co-Optimization

System Power,

Performance, Area

PDK Development

[C.-S Lee, H.-S. P. Wong, IEDM, 2016]

Page 32: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 31

Graphene Interconnect Technologies

TaN

CuFeCl3

MoO3

W

H = 2WH = 2WW

H =

5,10,

20 nm

TaN

+ ↑ Line width

+ ↓ Liner resistivity

+ Enhanced reliability [1]

+ Exp. Demonstrated [1]

+ Doped ρGr < ρCu,W

+ Cpara. suppression

+ Planar processing

- CMOS compatibility

+ Ultimate “size-effect” immunity

+ Edge contacts

- No known method

- High-k liner (Cpara.)

Horizontal

Graphene

Vertical

Graphene

Graphene Based

Cu Liner

Performance Impact

Feasibility[1] L. Li, H.-S.P. Wong, et al., 2016 IEDM

W

Page 33: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 32

FOM Results (7-nm Gr Technologies)

1L3L

VDD = 0.7 V

1L

3L

ρlo

wFocus ARM core on horizontal graphene

Cu Baseline

ρmid

ρlow

Vertical

Cu Baseline

Liner

Horizontal

Energy Delay Product (EDP)

ρlow

(5 nm)

ρmid

(10 nm)

ρlow

(10 nm)

ρlow

(20 nm)

ρmid

(20 nm)

ρm

id

ρlo

w

ρm

id

ρlo

w

ρlo

w

ρm

id

~23%

5 nm10 nm20 nmClock Frequency (%)

2

1AVG

CLK

DP Pf

E

Page 34: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 33

FOM Results – Graphene Liner

~5% performance increase at ~3% power penalty

1Layer

3Layer

Cu

Baseline

H = 2W

W

TaN

TaN

VDD = 0.7 V

1L

ayer

3L

ayer

(%)

(%)

Clock Frequency (%)

Page 35: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 34

1L

ayer

3L

ayer

HM

20

HL20

HM

10

HL10

HL5

FOM Results – Horizontal Graphene

Horizontal configuration favorable to reduce capacitance

HL20

HL10HM20

W

H = 5,10,20 nm

HL5HM10

L = ρlow (1.5×10-6 Ω-cm)

M = ρmid (4×10-6 Ω-cm)(%

)(%

)

Clock Frequency (%)

Page 36: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 35

FOM Results – Vertical Graphene

Vertical configuration performance degraded by MoOx liner

HM20

HL5

VL

VM

H =

2W

W

1L

ayer

3L

ayer

HM

20

HL20

HM

10

HL10

HL5

VL

VM

L = ρlow (1.5×10-6 Ω-cm)

M = ρmid (4×10-6 Ω-cm)(%

)(%

)

VDD = 0.7 V

Clock Frequency (%)

Page 37: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 36

0.7

0.9

1.1

1.3

1.5

1.7

1.9

2.1

0.00 0.20 0.40 0.60 0.80 1.00

En

erg

y D

ela

y P

rod

uc

t (A

.U.)

Normalized Frequency

Baseline Cuh = 20 nm

Graphene

h = 38 nm Graphene

Energy Delay Product

2

1AVG

CLK

DP Pf

E

A ↓R↑,C↓

h = 38 nm

h = 20 nm

A ↑ R↓,C↑

Page 38: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 37

Critical Path (n = 20) – Wire vs. Cell (7 nm)

Cell

Wire

Page 39: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 38

Contact Resistance (RC) Impact (7 nm)

RVia

RConductor

RC

Total Via

Resistance

Scenario RC

Baseline, Graphene CV

(Default Cu Via)1x

Graphene LV

(ρC = 2×10-10 Ω-cm2)2x

Graphene MV

(ρC = 2×10-9 Ω-cm2)20x

• Transfer Length Method (TLM) derived contact resistance

• MOL+BEOL: lower maximum frequency, but EDP improvement retained for LV case (MV case fails)

MOL+BEOL Replacement

MOL and

BEOL

G

TS

S

TS

S D

CA CB CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

Page 40: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 39

Contact Resistance (RC) Impact (7 nm)

• MOL-only case: EDP improvement observed with RC↑

• Fewer buffer insertions (reduced up to 16%) with slower cells

MOL Only Replacement

MOL

Only

G

TS

S

TS

S D

CA CA

V0 V0 V0

M1 M1

V1 V1

M2 M2

V2 V2

M3 M3

CB

RVia

RConductor

RC

Total Via

Resistance

Scenario RC

Baseline, Graphene CV

(Default Cu Via)1x

Graphene LV

(ρC = 2×10-10 Ω-cm2)2x

Graphene MV

(ρC = 2×10-9 Ω-cm2)20x

Page 41: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 40

Resis

tivity (

µΩ

-cm

)

Gr Resistivity vs. Linewidth

[1] N. Wang, E. Pop et al., 2012 IEEE DRC. [2] D. Kondo, N. Yokoyama, et al., 2014 IEEE IIITC.

Cu

Gr [1], ρmid

Gr [1], ρlow

ρGr < ρCu below ~40 nm due to:

1) Lower bulk resistivity

2) Reduced edge scattering

Doped Graphene [2]:

ρlow = 1.5×10-6 Ω-cm

ρmid = 4×10-6 Ω-cm

λF,Gr = 4 nm > λF,Cu = 0.46 nm

P(θ) = exp[-(4πhRMS/λF)2cos2θ]

Edge specularity (2D model):

Linewidth (nm)

PGr > PCu

Diffuse (P 0) Specular (P 1)

θ θ

Page 42: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 41

Critical Path – Average Wire Length

M3

M2

M4

Graphene

Graphene

Copper

Copper

Copper

Graphene Technology

M2, M3 and M4 longer (!) with graphene replacement

Avg

Le

ngth

(µm

/in

sta

nce)

Copper

Baseline TechnologyA

vg

Le

ngth

(µm

/in

sta

nce)

Avg

Le

ngth

(µm

/in

sta

nce)

Avg

Le

ngth

(µm

/in

sta

nce)

Avg

Le

ngth

(µm

/in

sta

nce)

Avg

Le

ngth

(µm

/in

sta

nce)

Page 43: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 42

Critical Path – Graphene vs. Copper, M3

Graphene Technology Baseline Technology

Total Wire

Length

Number of

Instances

Wire length, usage increases proportionally similar avg. length

M3 M3

M3M3

Top Down View Top Down ViewM3

M3

M3M3

M3

Copper

Copper

Graphene

Graphene

Page 44: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 43

Critical Path – Graphene vs. Copper, M4

Graphene Technology

Number of

Instances

Similar length, but fewer instances longer wires & delays

M4

M4

Top Down View

Baseline Technology

Top Down View

M4

M4M4

M4

Total Wire

Length

Copper

Copper

Copper

Copper

Page 45: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 44

Critical Path – Delay “Effort”

Assess wire effort with weighed average:

Average Weight

I JM

max Jtot

M

max

I J

Cl

C

lR

R

Where:

M = metal layer (2-8)

RCmax = net resistance and capacitance

ltot = total net length

J = nets in a path

I = total critical paths

Page 46: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 45

Wire Distribution on Critical Paths

• (∑xRwire,Mx) / RINV_X1 ≈ 17%

0

1

2

3

4

5

6

7

Avg.

Wire L

ength

per

Sta

ge (

μm

)

M2 M3 M4 M5 M6

M2

M3

M2

average

Page 47: Graphene Interconnects for 7- and 5-nm Technology Nodes · N. C. Wang Graphene Interconnects for 7- and 5-nm Technology Nodes Ning C. Wang1, Chi-Shuen Lee 1, Chris D. English Saurabh

N. C. Wang 46

• High Rwire System performance sensitive to Rvia

• Need more vias for buffering/routing

0.8

1

1.2

1.4

1.6

0 1 2 3 4 5

*Core

ED

P (

a.u

.)

Rvia Multiplier

low Rwire

high Rwire

+24%

+39%

Impact of Via Resistance (5-nm)

C.-S. Lee et al., IEDM 2016

RVia

RConductor

RC

Rvia

RV

Rwire


Recommended