+ All Categories
Home > Documents > Hallo Hopping Term Project

Hallo Hopping Term Project

Date post: 13-Apr-2018
Category:
Upload: hongraekim
View: 222 times
Download: 0 times
Share this document with a friend
37
15th AAS/AIAA Space Flight Mechanics Meeting, Copper Mountain, Colorado Low Energy Interplanetary Transfers From Earth To Mars Hong Rae Kim  Aerospace Engineering Korea Aviation Untiversity
Transcript
Page 1: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 1/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Low Energy Interplanetary Transfers

From Earth To Mars

Hong Rae Kim Aerospace Engineering

Korea Aviation Untiversity

Page 2: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 2/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

 To find low energy interplanetary transfer orbits from Earth

to Mars

 To find Moon gravity assisted trajectory method

 To find Earth gravity assisted trajectory method

 To find L2 halo orbit insertion method,

Perform the L2 station-keeping operations, and

 To determine halo orbit hopping method between SEM L2 halo

orbits and Mars

 To design all the trajectories using STK/Astrogator

 Aims and Scope

Page 3: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 3/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Gravity Assisted Trajectory Method

Most famous method for sending spacecraft to distant

 planets. E.g., Cassini mission to Saturn (Oct ’97- Jul ’04)   Advantages: higher speeds (short transfer times).

Disadvantages: cost, constraint imposed by the fly-by

body, limitations due to impact parameter.

Page 4: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 4/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Gravity Assisted Trajectory Method

B-Plane Method

 The incoming and outgoing asymptotes, and , and the

focus are contained in the

trajectory plane, which is

 perpendicular to the b-plane 

Page 5: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 5/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Gravity Assisted Trajectory Method

B-Plane Method

 The b-plane is

defined to contain the focus of an idealized

two-body trajectory 

Page 6: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 6/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Gravity Assisted Trajectory Method

B-Plane Method

vvr 

r r 

ve

vr 

vr n

  

 

 

 

 

1

||ˆ

2

)1(||

2

22

2

12

2

 

 

 

 

eab

v

a

v

a

 

    Energy Equation

)ˆˆ(sinˆcosˆ

)1

(cos   1

eneS 

e

 

  

 

T S  R

 N S 

 N S T 

ˆˆˆ

|ˆˆ|

ˆˆ

ˆ

)ˆˆ(

ˆˆˆ

nS b B

nS  B

 The distance from the focus to the intersection of the incoming asymptote

and the b-plane can be shown to be equal to the semiminor axisb 

 

 The direction of the b-vector

Page 7: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 7/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Gravity Assisted Trajectory Method

B-Plane Method Example “New Horizon Project” 

Page 8: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 8/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Calculation Results Swingby Mission

Lunar SwingbyB·R 2500km

B·T 12000km

Earth SwingbyInclination 26deg

R_Magnitutde 6700km

C3 Energy 8.8

km^2/s^2

Outgoing Declination -9 deg

Outgoing Right-ascension 353 Deg

Referance DATA : Astrogatorguilds ‘GTO Mission’ 

Page 9: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 9/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

 Targeting Methods Using STK/Astrogator

 The whole mission is split in steps and phases. Steps: Swingby Moon, Swingby Earth.

Phases: Impulsive maneuvers, propagation, stopping conditions.

 Targeting method at every step uses the DifferentialCorrector by defining a 3-D target.

Incoming Moon and Outcoming Moon, go back Earth Incoming Earth and Outcoming Earth, go to Mars

Page 10: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 10/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

 Targeting Methods using STK/Astrogator

StartPropagating to Moon

•Creating Calculation objects

Setting up the Targeter

Running the Targeter

Performing the Engine burn I

•Getting to Moon

•Swingby Moon

Estimating the size of the burn

Setting up the Targeter

 Adjusting the Engine

burn

•Getting to Earth

•Swingby Earth

•Setting up the Targeter

Creating a Targeting

profile

•Running the Targeter

Performing the Engineburn II

•Escaping a Earth

•Creating a Targeting

Profile

Running the Targeter

Capturing the spacecraft

•Getting to Mars

•Creating a Targeting Profile

•Running the Target

4 5 

Sequences in swingby moon and swingby earth

Page 11: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 11/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Swingby Targeting methods using STK/Astrogator

Initial about 20000km, Go far from EarthSwingby Moon

Page 12: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 12/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Swingby Targeting methods using STK/Astrogator

Swingby Earth Using gravity assisted

 Trajectory From Earth

to Mars

Page 13: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 13/37

15th AAS/AIAA Space Flight MechanicsMeeting, Copper Mountain, Colorado

Swingby Targeting methods using STK/Astrogator

Swingby moon, and Swing by Earth Caputure Mars and change altitude

Page 14: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 14/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Results

1. Earth Departure: 2007/3/1

2. ~Swingby Moon

•   Duration: 29 days (approx.)

•   ∆V: 3.933101 km/s ( approx.)

3. ~Swingby Earth•   Duration: 3 days (approx.)

•   ∆V :0.642152 km/s

4. Arrive at Mars

•   Duration: 150 days (approx.)

•   ∆V: 0.123191km/s

Page 15: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 15/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Conclusion

Saving of fuel by over 60% over Hohmann Transfer method

Saving ot time by about 30 days over Hohmann transfer

method

Considering Timing, Gravity assisted by Moon, Earthmethod is very complex

Flight Time 210 Days

 Total Delta V 14.3 km/s

Flight Time 182 Days

4.7 4.68km/s

• Hohmann Transfer

•  Gravity Assisted Transfer

Page 16: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 16/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Solution of E.O.M. is not periodic and hence need of acontrol effort (L2).

 This is called Period or Frequency control in literature.

 The resulting periodic orbit is called a halo orbit.

 When the spacecraft is actively controlled to follow a

 periodic halo orbit, the orbit, generally does not close due

to tracking error.

 The Restricted Three-body Problem

Page 17: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 17/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 The Restricted Three-body Problem

    

21

12

,1

1

mm

a

Equation of Motion

 Assume smaller mass m2

     2)(2

2/1

21

3

1212  

mmG

aT 

)(22

2

2

2

r wwr dt 

d wr 

dt 

d r 

dt 

d    si si s

 si si

321   zs ys xsr      Position vector of the small mass

Page 18: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 18/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 The Restricted Three-body Problem

3212

2

321

 s z  s y s xr dt 

 s z  s y s xr dt 

 s

 s

Inertial Acceleration of the small mass

3212

2

)2()2(   s z  s y x y s x y xdt 

r d i

 

2/1222

1  ])[(   z  y xr       

2/1222

2   ])1[(   z  y xr       

Page 19: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 19/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 The Restricted Three-body Problem

3

2

3

1

3

2

3

1

3

2

3

1

)1(

)1(2

)1())(1(2

 z 

 z  z 

 y

 y y x y

 x

 x x y x

  

  

    

• Three Components in the rotating frame

• The system equations of motion are found by equating the inertial

acceleration• Assumption of zero mass for the third object theses are following a

 pure Keplerian circular orbit.

Page 20: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 20/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 The Lagrangian Point

• Lagrangian points are the five positions in an orbital

configuration where a small object affected only by gravity

can theoretically be stationary relative to two larger objects(such as a satellite with respect to the Earth and Moon).

Page 21: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 21/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 The Lagrangian Point

3

2

3

1

3231

3

2

3

1

)1(0

)1(

)1())(1(

 z 

 z 

 y

 y y

 x

 x x

  

  

    

If we wish to find equilibrium points, we need to setthe rotating-frame velocity and acceleration

component to zero

0,0,0,0,0,0     z  y x z  y x  

Page 22: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 22/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 The Lagrangian Point

Explore from L2 to L5

Page 23: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 23/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Halo Orbit

•  A halo orbit is a Periodic, three- dimensional orbit near the

L1, L2, or L3 Lagrange points in the three-body problem oforbital mechanics.

• Halo orbits are the result of a complicated interaction

between the gravitational pull of the two planetary bodies

and the centripetal acceleration on a spacecraft.

Page 24: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 24/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Halo Orbit

Explore EM L1

L1 Halo Orbit

Page 25: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 25/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Calculation Results Halo Hopping Mission

SEM(L2)

 Ax 80000 ~225000

 Ay 50000~550000

Page 26: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 26/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Calculation Results Halo Hopping Mission

SEML2C3 Target 2500km

Distance from Earth to SEM L2 1530000km

Hopping Mission

Impulsive delta V x 0.05km/s~0.1km/s

Measn Radius 11000km

C3 Energy -0.505643 km^2/s^2Rotate Mission Vy -0.4km/s (SEML2 Axis)

Rotate Mission Vx 0.244 km/s (SEML2 Axis)

Refrence DATA : Explorations of low cost connections between Lissajous

orbits from the Sun-Earth and Earth-Moon systems. AIAA 2006-6836

Page 27: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 27/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 Targeting Methods Using STK/Astrogator

 The whole mission is split in steps and phases. Steps: Halo orbit insertion at SEL2, Halo orbit hopping sequence.

Phases: Impulsive maneuvers, propagation, stopping conditions.

 Targeting method at every step uses the DifferentialCorrector by defining a 3-D target.

Perform a burn in anti-Sun line that takes the S/C in vicinity of Sun-Earth L2 Lagrangian point.

Insertion: Adjust the burn in such a way the S/C crossesSun-Planet L2 Z-X   plane with Sun-Planet L2 Vx =0 Km/s.

Station keeping: After several Sun-Planet Z-X   plane

crossings, perform station keeping operations.

Page 28: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 28/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

 Targeting Methods using STK/Astrogator

StartPropagating to the Anti-Sun Line

•Creating Calculation objects

Setting up the Targeter

Running the Targeter

Performing the Engine burn I

•Getting to the vicinity of L2

Estimating the size of the burn

Setting up the Targeter

Specifying the constraints

•Cross the ZX plane with

Vx=0

Performing the Engineburn II

•Creating a Targeting

Profile

Running the Targeter

 Adjusting the Engine burn

•Targeting on the 2nd ZX

plane crossing

Setting up the Targeter

Creating a Targeting profile

Running the Targeter

Completing the First Target sequence to

Orbit around L2

Performing the station keeping

Maneuver

•Setting up the Targeter

Running the Targeter

Sequences in halo orbit insertion & station keeping operations

Page 29: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 29/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Halo Orbit Targeting methods using STK/Astrogat

Initial Earth-circular orbit and Halo orbit

insertion at Sun-Earth L2 Lagrangian point

trajectory ( as seen in VO view)

Page 30: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 30/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Halo Orbit Targeting methods using STK/Astrogat

Halo orbit at Sun-Earth L2 Lagrangian pointtrajectory as seen in X-Z plane (Map View)

Page 31: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 31/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Halo Orbit Targeting methods using STK/Astrogat

Halo orbit at Sun-Earth L2 Lagrangian point

in Sun-Earth rotating frame of reference as

seen in  X-Y  plane

Interplanetary trajectory from Sun-Earth L2

to Sun-Mars L2 in Sun-centered inertial

frame of reference as seen in  X-Y  plane

Page 32: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 32/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Results

1. Earth Departure: 2007/8/1

2. Halo Orbit Insertion at Sun Earth L2 Lagrangian point

•   Duration: 14.5 days (approx.)

  ∆V: 3.170804 km/s ( approx.)

3. Transfer from Sun Earth L2 to Mars

•   Duration: 955 days (approx.)

•   ∆V :1.0318345 km/s

Page 33: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 33/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Result Review

Flight Time 210 Days

 Total Delta V 14.3 km/s

Flight Time 182 Days

 Total Delta V 4.68km/s

• Hohmann Transfer

•  Gravity Assisted Transfer

•  HaloHopping Transfer

Flight Time 969 Days

 Total Delta V 4.2km/s

Page 34: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 34/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Conculsion 1

Planets do not eclipse the spacecraft as seen in Y-Z plane Small ∆V budget for station-keeping operations for halo orbit

around Sun-Planet L2 Lagrangian point

Halo orbit hopping method is slower than gravity assisted

trajectory method (approximately 5 times slower) Saving of fuel by over 10% over gravity assisted trajectory method

Page 35: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 35/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Conclusion 2

Continuous radio contact with Earth

Simultaneous mapping of the planets possible

Potential utility of placing satellites orbiting L2 and L1

Lagrangian points serving as Earth-Moon and Earth-Marscommunication relays

Method suitable for spacecrafts only, not for manned

missions

Page 36: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 36/37

15th AAS/AIAA Space Flight Mechanics

Meeting, Copper Mountain, Colorado

Questions ?

Page 37: Hallo Hopping Term Project

7/27/2019 Hallo Hopping Term Project

http://slidepdf.com/reader/full/hallo-hopping-term-project 37/37

15th AAS/AIAA Space Flight Mechanics

Meeting Copper Mountain Colorado

 Thank you !!


Recommended