+ All Categories
Home > Documents > Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j....

Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j....

Date post: 23-Sep-2020
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
13
2019 5 41 2 May, 2019 MATHEMATICA NUMERICA SINICA Vol.41, No.2 Hartree-Fock *1) 2) ( , , , 94720) Hartree-Fock . Hartree-Fock Hartree-Fock Kohn-Sham , . . , Hartree-Fock ( ) . , Hartree-Fock - , , Fock . (ACE), C-DIIS (PC-DIIS) , (ISDF), . 1000 , Fock . , Hartree-Fock . : Hartree-Fock ; ; - ; ; ; MR (2010) : 65F15, 65R20, 65Z05 1. . N , 3N , ( ) . Kohn-Sham (DFT) [1, 2] . (N ), . Kohn-Sham , . Kohn-Sham Hohenberg-Kohn [1] Levy-Lieb [3, 4] . , . , , . * 2019 2 28 . 1) : DMS-1652330, DE-SC0017867 . 2) : , . 2007 2011 ; 2011-2013 . . DOE Early Career Award(2017-2022) NSF CAREER Award(2017-2022) SIAM Computational Science and Engineering (CSE) Early Career Prize(2017) Alfred P. Sloan fellowship(2015-2017) . , SCI 70 .
Transcript
Page 1: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

2019 5 ' s s j t 41 6t 2 'May, 2019 MATHEMATICA NUMERICA SINICA Vol.41, No.24!p! Hartree-Fock "# *1) 2)

(Y^k/CWVtkA, Ow/CWAyYsh, A/CW, Wn 94720) 3l[wÆldP$M^gkElQ Hartree-Fock KtG8lY"5. QHartree-Fock KQI- Hartree-Fock TyLF*ZHl Kohn-Sham HTyT, dwe2TyTQWwlK. $K-!*lZkL7eAlwe2tT:r. ta~l, Q Hartree-Fock KÆL-U<laeA (FqUgq)we) lt. ZtkÆM, Q Hartree-Fock Kd)Lbj - *Kk, )ta~[wMgjel5, y-d Fock _e. DÆ5LOgfm_e (ACE), l C-DIIS (PC-DIIS) , nGA$ (ISDF), 8^^p *ZHHTylta~. F 1000 )>elA-Y, 8-gkEl*ZHlta~N$2F Fock _el/Htlx. W, 8ÆIQ Hartree-Fock Kltk2y-Q?G6lza80 \lr.|~u: Q Hartree-Fock K; Lb?G6; j - *e; aeZk; we2Ty; HTy

MR (2010) : 65F15, 65R20, 65Z05

1. vd1kkfS hpJ. z(E N (vdk`d, #J v,3N .DS7, W7KPTk (z 1ECT(vd) o'7hpJ. Kohn-Sham GSx (DFT) [1, 2] hpJkzU#~. ~7;kvd15 (N z ,pTfp/), *3~j USYdfX&mU1k:SYi. W Kohn-Sham GSx 0l9kvd1Sx, ($mr:SYi6dm(Vvk>i-Jrk. Kohn-ShamGSxkfS Hohenberg-Kohn S [1] K Levy-Lieb _%qkTY [3, 4]. 1L, 7~7fz(#ekK|Nvdk^6\G. V;(G, C7zfqNko.hpJ, 7~jf`d5fko'. ?;(#ek

* 2019 2 ' 28 Cjg.1) gRÆ: AAyg?kg DMS-1652330, A"5 DE-SC0017867 RÆ.2) o:: hi, Y^k/CWVtkAkOw/CWAyYsht?k5p+ . 2007L 2011 )-&^kL$h^kdk_L._k1; 2011-2013 -Ow/CWAyYshZa._Sp+.o. [wp+l-tG=taeZkt7e?kLL+`tn. 3d DOE Early Career Award(2017-2022)NSF CAREER Award(2017-2022)SIAM Computational

Science and Engineering (CSE) Early Career Prize(2017) L Alfred P. Sloan fellowship(2015-2017) n. JÆ1, - SCI ';MÆ'koy3 70 .

Page 2: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

114 t t k 2019 ^6\GC ). f 0,I, 7KCh;(G vzikzfaR, 1Chk4^. W,XwS, Kohn-Sham GSxk'ZvlJ^6\Gk#J. ,C;pT, :SKYik(,#^6\G:jb3k!4. Y.k.#~ (LDA) [5, 6] :\, 9#~ (GGA) [7–9], E|k9#~ (meta-GGA) [10, 11], )YG [12–14], hM0#~ (RPA) [15, 16], o'6\vd#~ (SCE) [17, 18], iW[G [19, 20] mMxP*9fbXwkvd1r.

Perdew m, 2001 CkG!_b?PS [21]. 8;(?P, a^6\G )k2z, GSxk#'xak%K. ,;U, , )kG1K, )k&^, 3~EP Kohn-Sham Jkri1. XE, LDAGGAmeta-GGA GvUSk )d, (kKaJxK|Nvd. ; 0lCk Kohn-Sham J, ;PGG,.G. )YGv7USi - )d, (kKaJ|N(vd0=. Æ)YGFb Fock ^n, k Kohn-Sham JK`dYiSk Hartree-Fock JP~. W)YGk Kohn-ShamJxG,P Hartree-FockJ.ECntY:;P )k, M.JG, )YG~G\& Kohn-Sham GSxk'. )YGSl\kXd Becke m, 1990 `Pk B3LYP )YG, *H,b`dYiSk%`G (f 0,I, +2 ISI Web of Science, B3LYP G(EC 6 %X). RPA m, )kG1I|N0=, x v62vdhk>, (o' vf'gGrSx.)YGK RPA mGxG,.G.2Zv xk P Hartree-Fock JkrF. `dYi5krFkg0''C|NrFRJ', Gfj. &zfj [22]dhfj [23, 24] mC~~~d 10 M 100 (fGrk`L&^vdh, kRJ Kohn-Sham 0= (x Fock0=, (D2fk Fock ^0=) k. (un Nb) z ,pfp%D, WG,Tfj. Tfjku AMbvd:S`, ERJ Kohn-Sham 0=0=m, ~ErK[T. ,P Hartree-Fock Jk5ID, rk )''Vrvvdi1/RJ Kohn-Sham0=. Æ;z3kr ) O(N4), o[ [bTfj, P Hartree-Fock Jz xK7Tk`d (N z ,pTfp). Tfjkm#z(=u fjg0|N(r, Waq%K'. TfjZv,`dYik9[. MTfjq, `d:S6dk''[fj, E, [25]J [26–29]T, [30] m. ;Pk u Ak, ('~CEPz(ep(:r%K. fjk=u ~dkfÆ'',pfp%SM,, k Nb '' p%fp%. WRJ Kohn-Sham 0=K0=1~N0=k[T,[S. ;(aR[jfjkrFKTfjRk1. fjk|qKVrriUS)Jk,,#. m#arhUS[k&Kk%!, fjx&L&9q. W2aV xfjDkP Hartree-Fock Jk.

2. Hartree-Fock yt, Born-Oppenheimer #~D, Kohn-Sham GSx % 7~DkE%qkk

Page 3: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

2 ' hi: Q Hartree-Fock KltG 115TY5EKS = inf

ψiNi=1

,〈ψi|ψj〉=δijFKS(ψi) + EII (2.1)(S ψi

Ni=1 (62k)Kohn-Sham h*ziA%q. d - dMVn EII K|Nd0O, W z(vd_96kCr. FKS vd4k`G

FKS(ψiNi=1) =

1

2

N∑

i=1

Ω

|∇rψi(r)|2 dr+

Ω

ρ(r)Vext(r) dr

+1

2

Ω×Ω

ρ(r)ρ(r′)

|r− r′|

drdr′ + Exc[P ]. (2.2)(SszQ vdk|, sQ d - vdMVn, sIQ vd - vdFvMVn (x Hartree ), x, 9BDkvdMVn. lRzQ ^6\. ,.GK)YGS, (|N0= P (r, r′) =∑N

i=1 ψi(r)ψ∗i (r

′). vd~Æ0=,XD&^k Ejfρ(r) = P (r, r) =

N∑

i=1

|ψi(r)|2.r9 Ω ~ <D R3, x~ Jk9. ,bY+, 7UubvdkfffÆ, ~m Ω 4k!k x. u,bYuI,7,~Dk xS1+GqZPi9 Ω. )YGk^6\CEDk&^

Exc[P ] = Ec[ρ] + (1− α)Ex[ρ] + αEEXx [P ]. (2.3),;U 0 ≤ α ≤ 1 z(x Fock ^, '>^ (EX) k:r. Ex K Ec Lf

LDA e GGA k^K6\#~, K|Nvd ρ. EEXx [P ] |N0=k

Fock ^EEX

x [P ] = −1

2

∫∫|P (r, r′)|2K(r, r′) drdr′, (2.4)(S K(r, r′) vd - vdnkiJ. ,"k Fock ^nSxS [14] K(r, r′) =

erfc(αs|r− r′|)/|r− r

′| k "kFvMVn, αs z(x"Dk:r. dαs = 0 V, K(r, r′) = 1/|r− r

′| H,%`kFvMVn.

Kohn-ShamJ kTY5 (2.1)k Euler-LagrangeJ,x, P Hartree-FockJH [P ]ψi =

(−1

2∆ + Vext + VHxc[ρ] + αV EX

x [P ]

)ψi = εiψi,

∫ψ∗i (r)ψj(r) dr = δij , P (r, r′) =

N∑

i=1

ψi(r)ψ∗i (r

′).

(2.5);U VHxc K Hartreeb ∫ρ(r′)/|r−r

′| dr′,~mK|Nvd ρk^6\b. V EXx [P ]Lf Fock ^ EEX

x [P ]V EXx [P ](r, r′) = −P (r, r′)K(r, r′). (2.6)

Page 4: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

116 t t k 2019 P Hartree-Fock J z(i - )KaJj, (SRJ Kohn-Sham 0= H [P ] `F*k^, KCf.By` (SCF) jf.

Fock ^d V EXx [P ] z("kfd. Æ P K K k Hadamard Iijf. ?0= P kQK N (N ,vdr), V EX

x [P ] kQvk. ,fjk5ID,

Kohn-ShamJ dCy`7 [31]. ~3y`v7RJ Kohn-Sham0=n,62h ψiNi=1 L. WP Hartree-Fock J, 79x1 v V EX

x [P ] n,N0=[,[S, K v V EXx [P ] n62h

(V EXx [P ]ψj

)(r) = −

N∑

i=1

ϕi(r)

∫K(r, r′)ϕ∗

i (r′)ψj(r

′) dr′, (2.7),;U P (r, r′) =∑Ni=1 ϕi(r)ϕ

∗i (r

′). ,f.By`i^D0, &^ P khKv7k62h ψiNi=1 1zM. W7[1kuI (ϕi) K (ψj) L9(;_U62h.~( ψ, ÆiJ K k5i^, i ∫

K(r, r′)ϕ∗i (r

′)ψ(r′) dr′ ~C7 N (P0Jjf. ~,,X, EBXDRJk'ur, Ng, [H Fourier #^(FFT), ~(P0J7k`, O(Ng logNg). ,vd1SxkrS, &^~(d vkfÆ~<nz(Cr,W Ng ∼ O(N), ~ V EX

x [P ]n62hk`, O(Ng logNgN2) ∼ O(N3). ,s 1 S, 7fC[Tfj7P Hartree-FockJkr` O(N4). |Ry`Xr N 96, |d N i3V, [fjSM[Tfj,Hq7P Hartree-Fock J. ?, ,C;krS, V EX

x [P ] n62h krV''6hrVk 95%~L.;,/auk`d,)YG DFT k7V .G DFT 7Vk 20 ~L. ;JPb)YG, )Sk.,bTP Hartree-Fock Jkr`, zU [;k*_r. ; ,,~3y` v7 N2 (~ZkP0J.WH1r`,7~[ O(N2)(US,*_7 [32, 33]. x, y, d N = 1000 V, 1L[% 106 (US,7P Hartree-Fock J. ?, Rb v`krb!#, ;*_rk=u RbnV EXx [P ]k4, Kohn-ShamJ7k(GMW[p/(US,. W;uk;*_r*1$<Wk[rb!.mzPTr`k [.YS [34, 35]. V62vdh!_KajNjf Wannier Gr, V EX

x [P ] n Wannier Grk`~, O(N), x, Ka%.Ka%ZvBk8# [36, 37]. eKn, Wannier Gr,XDku''C, WKa%x1+e.2ZvYI( xEMoP Hartree-Fock Jr`: fel^d (ACE), k C-DIIS (PC-DIIS) , ~m?F#~ (ISDF). ;Xv~,8#, x~,eKnS. Pk=s, 7K,;U*Pz(rFXLykWa. E 1000(=dk ( 1),[ PWDFTG (DGDFT G [38] Skz(dG) K 2000 ( CPU *_r, YhOFP ,

GGA Gi^ vkrV 360 . Y GGA Gi^kBP , [Vk!_ HSE )YG [14] r kV 12425 . ;(, EB[ ACE z,i^ vkV 1659. EBV[ ACE/ISDF/PC-DIIS, vkVM 280. W;(, 7()YGkr`Mb GGA Grkw.

Page 5: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

2 ' hi: Q Hartree-Fock KltG 117

! 1 F 1000 )>elF3. yx (ACE),P Hartree-Fock Jk7CJS, ~3 SCF y` v+[E Davidson [39]my`7KaYRkJ (2.5) (,;UKaYHk5 P jfkKa>F5). ~3y` vn Fock ^d, x, v7 N2 (P0J. ?, ~3y`vdhk,[ Tk, ~~Xn Fock ^djfk>#~,Wq[. ,s 2 S7f, Fock ^d1 z(oQd. fel^d

(ACE) [40] kO 1/z( Fock^dkQ N # V EXx . Æ V EX

x kQ$o V EXxkQ, 7Kv7;_(dn,62hLjfkF#M.,bO ACE , 7F=sEDkKa>F5

(A+B)vi = λivi, i = 1, . . . , N. (3.1)(S A,B ∈ CNb×Nb 0=. ,;U Nb RJ Kohn-Sham 0=k.. ,02fk,fjS, Nb %mXDRJk'ur Ng. 7k % rlok N (>(λi, vi), *|RB λg := λN+1 − λN > 0. ,;U B ~<H Fock ^d, A RJ Kohn-Sham 0=R; B k4. 7|R B "0= (un B ≺ 0), *30= A k%* ‖A‖2 $ ‖B‖2, 0=S`( Bv k`v$ Av k`. ; Æ A RJfz(9k)d. B RJf Fock ^d, z(kid.,[y`7>F5 (3.1) kCJS, V = [v1, . . . , vN ], 7Fr0=W = [w1, . . . , wN ], (S wi := Bvi. felk|O 1/EDk0=

B[V ] =W (W ∗V )−1W ∗. (3.2)

B[V ] Q N k0=, *ziB[V ]V =W (W ∗V )−1W ∗V =W = BV. (3.3)W*k V , B[V ] n, spanV Lm B, WG, B kfel. (k,

B[V ] zi (3.3) k+zkQ N k0=.|Rs k 3y`k#~>S` V (k), (kfeld B[V (k)]. ACE 7EDk1|u5(A+ B[V (k)])v

(k+1)i = λ

(k+1)i v

(k+1)i , i = 1, . . . , N. (3.4)|R1|u5i^, (>S`, V , |+2 B[V ]V = BV , ACE ~jf'>k>FK>S`. *k k, J (3.4) vCy`7. ?, Mz k

Page 6: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

118 t t k 2019 >F, ACE 0=S`( Av K Bv k<n9:L, YTb Bv (kXrLTr`.`fP Hartree-Fock J, 7F V EXx n,d0k62h ϕi

Ni=1 L

Wi(r) = (V EXx [ϕ]ϕi)(r) i = 1, . . . , N (3.5)|

V EXx (r, r′) =

N∑

i,j=1

Wi(r)(M−1)ijW

∗j (r

′), (3.6)(SMij =

∫ϕ∗i (r)Wj(r) dr. (3.7)

ACE ~N Fock ^dknXr. #(E Quantum ESPRE-

SSO [41, 42], PWMat [43] mvd1G9.YrF<k , z(f?k5 1|u5 (3.4) i^f5 (3.1) k.EBi^k[, i^ a&. 7;(5jfbAk\ [44]n P (k) =

V (k)(V (k))∗, P = V V ∗, |1|uy`5 (3.4) EDk.4i^aR‖P − P (k)‖2 . γk‖P − P (0)‖2, ,;U γ ≤

‖B‖2‖B‖2 + λg

. (3.8)FjHPk ,.4i^K|N ‖B‖2, λg, Ak%*96.f.3i^k<,7jfb,z k<.i^BpTk A,B KOF V (0), ACE <.i^a [44].

4. v C-DIIS yx (PC-DIIS),`dYikS, l9k SCF y` Pulay , 1980 `Pk^d- y`dDSE7 (C-DIIS) [45]. Ka5, DIIS rF`rSmCkGMRESEk\ [46, 47]. C-DIISk u (rLi^H (?1Bi^), (=u vE[TRJ Kohn-Sham 0=0=, ~mkdk>

R[P ] = H [P ]P − PH [P ]. (4.1),s 2 S7f, ,fjk5ID, ;X0= 1~Nk^[Tk. W%7Zpk`dYiGXHb C-DIIS , #,`d:SK6dkPN[. ,fjS,Ck 2Æ SCF y`k [42], (i^M.JGkb> SCF y`vzX. , [48] S, 7Pbk C-DIIS (PC-DIIS), [jP C-DIIS ~7fjDkP Hartree-Fock J.P~ C-DIIS , PC-DIIS kfO [p3y`Sd R[P ] k>jfl kbNr, YbN0p3 H [P ] e P k>jf[k0=. Æ P z(Q N 0=, z(f?kO [ Kohn-Sham h Ψ = [ψ1, . . . , ψN ] n,bN#`!_y`. ?Kohn-ShamhLf Kohn-Sham>F5k. W~z(>S` ψi I~Akb0 r eıθ, θ ∈ R |? >S`, ;( rx1%#0=. ,z k, EB=s0=U ∈ CN×N , | Ψ ΨU uk0=. ,`d:SS, ;(fÆ U G,;

Page 7: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

2 ' hi: Q Hartree-Fock KltG 119. Æ;~ Ak, EBbN#`|N;, |Yz3y`fDz3y`SkbN#`,1z,ea, x,1Wq?F.,b7;(5, PC-DIIS kO g0Cg0z(:=0= Φref ∈ CNb×N Ljf;1#kbN#`:

Φ = PΦref = Ψ(Ψ∗Φref). (4.2),;U Φ ∈ CNb×N K Ψ Mk[T`. Æ P ;1#k, Φref z(5k0=,~ Φ x ;1#k. :=0= Φref 1L~Ag:, ( v ,~3y`S Φ# z(fzQk0=. P Hartree-FockJkr''[.Gkn,O\F,~7,~"qg:k Kohn-Sham hn, Φref. ,;(VQ, P x~Æ ΦKV1PL:

P = Φ(Φ∗Φ)−1Φ∗. (4.3),;(L, P K Φ zz, *Euk>., PC-DIIS S, s k + 1 3y`Sk Φ ~Æ0 ℓ + 1 3k> Φk−ℓ, . . . ,Φk nKajNjfΦk+1 =

k∑

j=k−ℓ

αjΦj . (4.4),bjfbNr αj, C-DIIS |Rdx~Æ0 ℓ+ 1 3kdnukKajNjfR :=∑k

j=k−ℓ αjRΦj. ,vd1rS, ℓ k:Fz , 5 ∼ 20. ,bTr`,

PC-DIIS !z3|dxf:=0= Φref LRΦ = H [P ]PΦref − PH [P ]Φref = (H [P ]Ψ) (Ψ∗Φref)−Ψ((H [P ]Ψ)∗Φref) . (4.5)?R7EDklTI5jf αj

minαj

∥∥∥∥∥∥

k∑

j=k−ℓ

αjRΦj

∥∥∥∥∥∥

2

F

, s.t.

k∑

j=k−ℓ

αj = 1 (4.6),(rCJS,71 v P,R,H n,N0=[T,K v H n, Ψ L. Wk<nKQmf Nb ×N K N ×N Tk0=, zifjrkv7.%7 C-DIIS ,`dYik:jbPkH/, (i^aKi^k< 0BPJ. W7x9*P PC-DIIS ki^a<. ?, d:=0= Φref g:,f.y`i^Rkh Ψ kVQ, EB 0= Λ &^(k>F, |kd~&^,RΦ = H [P ]Ψ−ΨΛ. (4.7)x, y, kd~<n "9Lk>F5k;`. 7Ch,Ka>F5ky`S, ;`kTY z(Vvk-4. ;,z(=Lgb PC-DIIS ,XwrFrSkWa.

5. szwyx (ISDF)L2Sk ACE K PC-DIIS k k C%Cy`rk, 9q&rWt. +2J (2.7), P Hartree-Fock JkZvkr` h~(h ϕ∗i (r)ψj

Page 8: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

120 t t k 2019 (r)Ni,j=1 7P0J. q, ; N2 (hEk> Dk. |R~(h~&^,Æ Ng ('ujHk&'L, ~m Ng ∼ N . |d N MV, hkr ,a'ukr (N2 > Ng). ~z(h &^,uk&'L, Wh ?EDk>. Lk x fl\5Ik4r. EB ϕi, ψj 8XkGr, |hk0=k*FkuaHk [49]. ,`dYiS, z(Ckl #~ [50, 51], ~<H h!_*F, ?RoVvk*FK*S`. #~kr ) O(N4), (`&7P Hartree-Fock Jkr ).?F#~ (ISDF) [52, 53] k|O [EDk'h!_#

ϕ∗i (r)ψj(r) ≈

Nµ∑

µ=1

ϕ∗i (rµ)ψj(rµ)ζµ(r). (5.1),;U?Fu rµ

µ=1 XD&' riNg

i=1 kz(dl, ζµ(r)Nµ

µ=1 ,XD&'Lk?FS`. 8Xkh, ?FS`kr Nµ ∼ O(N) *3~$T Ng. (k, ISDF krF&H*1|NBkT [54], ; #.YmK8#WkkVvk1u. ?FuK?FS`U1kg:, EhkgZk QR , lTI, K K- 91Pm. ;Xkr`K O(N3), W~f;kS. ÆJP, 6;XkNCO~m#;AkP,769:= [52, 54, 55].[ ISDF , 7K v?FS` ζµ(r)Nµ

µ=1 7P0J,?RkmKajNjfhkP0J(V EXx [P ]ψj

)(r) ≈ −

N∑

i=1

Nµ∑

µ=1

ϕi(r)

(∫K(r, r′)ζµ(r

′) dr′)ϕ∗i (rµ)ψj(rµ)

:= −

Nµ∑

µ=1

P (r, rµ)Vζµ (r)ψj(rµ),

(5.2)(S V ζµ (r) =∫K(r, r′)ζµ(r

′) dr′.

ISDF 'x~f?q ACE K PC-DIIS N[. , ACE N[V,7^f,J (3.7) S, 0= M # z("k0=. Æ ISDF l, EBE[ (3.7) r, jfk0= M 1B k. ;aPkrF4a. ÆM [hS K(r, r′) _!mijf, 7~_!khVm ISDF LB;(5

Mij ≈−

N∑

l=1

Nµ∑

µ,ν=1

(∫ζ∗µ(r)K(r, r′)ζν(r

′) drdr′)ϕl(rµ)ϕ

∗l (rν)ψ

∗i (rµ)ψj(rν)

=−

Nµ∑

µ,ν=1

(∫ζ∗µ(r)K(r, r′)ζν(r

′) drdr′)P (rµ, rν)ψ

∗i (rµ)ψj(rν)

:=

Nµ∑

µ,ν=1

ψ∗i (rµ)Mµνψj(rν),

(5.3)

Æ M "k=, J (5.3) k M x "k=, Wzi ACE vk.

Page 9: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

2 ' hi: Q Hartree-Fock KltG 121

6. n,- ,IlVvkvd1Sx, GSxv zMHmki>, ,1k 4S. ?, 1990 `O`dYik(Zf)YGkVva, Ær`kJP,)YGK,l#T8:\,6dkS,9q.2 xk )YGkP Hartree-Fock JkrF, *Zv.J7,C;pS,;(Sk-n.fjk5^,P Hartree-FockJkZvJLf vq Fock^dn,k62hL. ;(J~YI( LSFock ^dn,62hk>MV2Æ SCF y`i^Fock ^dknEDkr. <;I( , 7Pk7 fel^d (ACE) 1/oQ#N Fock ^dknXrk C-DIIS (PC-DIIS) 2Æ SCF y`#Hb> SCF y`zi^[?F#~ (ISDF) NDr. ~9[k,fj,X, rB&IUMN, 7~ (Ep/(vdk) )YGrk`M.Grkw. Rb~Lk-n, l#C GPU zk [56], ~m1[f.By`k Y [57] mx*B Wko)YGr`k. 7?(;X!4~z)YG, )k`dSk.r Æ [1] Hohenberg P, Kohn W. Inhomogeneous electron gas [J]. Phys. Rev., 1964, 136: B864–B871.

[2] Kohn W, Sham L. Self-consistent equations including exchange and correlation effects [J]. Phys.

Rev., 1965, 140: A1133–A1138.

[3] Levy M. Universal variational functionals of electron densities, first-order density matrices, and

natural spin-orbitals and solution of the v-representability problem [J]. Proc. Natl. Acad. Sci.,

1979, 76: 6062–6065.

[4] Lieb E H. Density functional for Coulomb systems [J]. Int J. Quantum Chem., 1983, 24: 243.

[5] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method [J]. Phys.

Rev. Lett., 1980, 45: 566–569.

[6] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-

electron systems [J]. Phys. Rev. B, 1981, 23: 5048–5079.

[7] Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a

functional of the electron density [J]. Phys. Rev. B, 1988, 37: 785–789.

[8] Becke A D. Density-functional exchange-energy approximation with correct asymptotic behav-

ior [J]. Phys. Rev. A, 1988, 38: 3098–3100.

[9] Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J]. Phys.

Rev. Lett., 1996, 77: 3865–3868.

[10] Staroverov V N, Scuseria G E, Tao J, Perdew J P. Comparative assessment of a new nonem-

pirical density functional: Molecules and hydrogen-bonded complexes [J]. J. Chem. Phys., 2003,

119: 12129–12137.

[11] Sun J, Ruzsinszky A, Perdew J P. Strongly Constrained and Appropriately Normed Semilocal

Density Functional [J]. Phys. Rev. Lett., 2015, 115: 036402.

[12] Becke A D. Density functional thermochemistry. III. The role of exact exchange [J]. J. Chem.

Phys., 1993, 98: 5648.

Page 10: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

122 t t k 2019 [13] Perdew J P, Ernzerhof M, Burke K. Rationale for mixing exact exchange with density functional

approximations [J]. J. Chem. Phys., 1996, 105: 9982–9985.

[14] Heyd J, Scuseria G E, Ernzerhof M. Hybrid functionals based on a screened Coulomb potential [J].

J. Chem. Phys., 2003, 118(18): 8207–8215.

[15] Ren X, Rinke P, Joas C, Scheffler M. Random-phase approximation and its applications in

computational chemistry and materials science [J]. J. Mater. Sci., 2012, 47: 7447–7471.

[16] Zhang I Y, Rinke P, Scheffler M. Wave-function inspired density functional applied to the H2 /

H+2 challenge [J]. New J. Phys., 2016, 18: 073026.

[17] Seidl M, Gori-Giorgi P, Savin A. Strictly correlated electrons in density-functional theory: A

general formulation with applications to spherical densities [J]. Phys. Rev. A, 2007, 75: 042511.

[18] Malet F, Gori-Giorgi P. Strong Correlation in Kohn-Sham Density Functional Theory [J]. Phys.

Rev. Lett., 2012, 109: 246402.

[19] Dion M, Rydberg H, Schroder E, Langreth D C, Lundqvist B I. Van der Waals density functional

for general geometries [J]. Physical Rev. Lett., 2004, 92: 246401.

[20] Tkatchenko A, Scheffler M. Accurate molecular van der Waals interactions from ground-state

electron density and free-atom reference data [J]. Phys. Rev. Lett., 2009, 102: 073005.

[21] Perdew J P, Schmidt K. Jacob’s ladder of density functional approximations for the exchange-

correlation energy [C]. In AIP Conference Proceedings, pages 1–20, 2001.

[22] Dunning T H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron

through neon and hydrogen [J]. J. Chem. Phys., 1989, 90: 1007–1023.

[23] Soler J M, Artacho E, Gale J D, Garcıa A, Junquera J, Ordejon P, Sanchez-Portal D. The

SIESTA method for ab initio order-N materials simulation [J]. J. Phys.: Condens. Matter, 2002,

14: 2745–2779.

[24] Blum V, Gehrke R, Hanke F, Havu P, Havu V, Ren X, Reuter K, Scheffler M. Ab initio molecular

simulations with numeric atom-centered orbitals [J]. Comput. Phys. Commun., 2009, 180: 2175–

2196.

[25] Kresse G, Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using

a plane-wave basis set [J]. Phys. Rev. B, 1996, 54: 11169–11186.

[26] Tsuchida E, Tsukada M. Electronic-structure calculations based on the finite-element method [J].

Phys. Rev. B, 1995, 52: 5573–5578.

[27] Suryanarayana P, Gavani V, Blesgen T, Bhattacharya K, Ortiz M. Non-periodic finite-element

formulation of Kohn-Sham density functional theory [J]. J. Mech. Phys. Solids, 2010, 58: 258–280.

[28] Bao G, Hu G, Liu D. An h-adaptive finite element solver for the calculations of the electronic

structures [J]. J. Comput. Phys., 2012, 231: 4967–4979.

[29] Chen H, Dai X, Gong X, He L, Zhou A. Adaptive Finite Element Approximations for Kohn–Sham

Models [J]. Multiscale Model. Simul., 2014, 12: 1828–1869.

[30] Genovese L, Neelov A, Goedecker S, Deutsch T, Ghasemi S A, Willand A, Caliste D, Zilberberg O,

Rayson M, Bergman A, Schneider R. Daubechies wavelets as a basis set for density functional

pseudopotential calculations [J]. J. Chem. Phys., 2008, 129: 014109.

[31] Payne M C, Teter M P, Allen D C, Arias T A, Joannopoulos J D. Iterative minimization techniques

for ab initio total energy calculation: molecular dynamics and conjugate gradients [J]. Rev. Mod.

Phys., 1992, 64: 1045–1097.

[32] Duchemin I, Gygi F. A scalable and accurate algorithm for the computation of Hartree–Fock

Page 11: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

2 ' hi: Q Hartree-Fock KltG 123

exchange [J]. Comput. Phys. Commun., 2010, 181: 855–860.

[33] Valiev M, Bylaska E J, Govind N, Kowalski K, Straatsma T P, Dam H J J V, Wang D, Nieplocha J,

Apra E, Windus T L, Jong W D. NWChem: a comprehensive and scalable open-source solution

for large scale molecular simulations [J]. Comput. Phys. Commun., 2010, 181: 1477–1489.

[34] Kohn W. Density Functional and Density Matrix Method Scaling Linearly with the Number of

Atoms [J]. Phys. Rev. Lett., 1996, 76: 3168–3171.

[35] Goedecker S. Linear scaling electronic structure methods [J]. Rev. Mod. Phys., 1999, 71: 1085–

1123.

[36] Wu X, Selloni A, Car R. Order-N implementation of exact exchange in extended insulating

systems [J]. Phys. Rev. B, 2009, 79(8): 085102.

[37] Dawson W, Gygi F. Performance and Accuracy of Recursive Subspace Bisection for Hybrid DFT

Calculations in Inhomogeneous Systems [J]. J. Chem. Theory Comput., 2015, 11: 4655–4663.

[38] Hu W, Lin L, Yang C. DGDFT: A massively parallel method for large scale density functional

theory calculations [J]. J. Chem. Phys., 2015, 143: 124110.

[39] Davidson E. The iterative calculation of a few of the lowest eigenvalues and corresponding eigen-

vectors of large real-symmetric matrices [J]. J. Comput. Phys., 1975, 17: 87–94.

[40] Lin L. Adaptively Compressed Exchange Operator [J]. J. Chem. Theory Comput., 2016, 12: 2242.

[41] Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti G L,

Cococcioni M, Dabo I, Corso A D, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U,

Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S,

Pasquarello A, Paulatto L, Sbraccia C, Scandolo S, Sclauzero G, Seitsonen A P, Smogunov A,

Umari P, Wentzcovitch R M. QUANTUM ESPRESSO: a modular and open-source software

project for quantum simulations of materials [J]. J. Phys.: Condens. Matter, 2009, 21: 395502–

395520.

[42] Carnimeo I, Baroni S, Giannozzi P. Fast hybrid density-functional computations using plane-wave

basis sets [J]. Electronic Structure, 2018.

[43] Jia W, Fu J, Cao Z, Wang L, Chi X, Gao W, Wang L W. Fast plane wave density functional

theory molecular dynamics calculations on multi-GPU machines [J]. J. Comput. Phys., 2013,

251: 102–115.

[44] Lin L, Lindsey M. Convergence of adaptive compression methods for Hartree-Fock-like equation-

s [J]. Commun. Pure Appl. Math., 2019, 72: 0451.

[45] Pulay P. Improved SCF Convergence Acceleration [J]. J. Comput. Chem., 1982, 3: 54–69.

[46] Saad Y, Schultz M H. GMRES: A generalized minimal residual algorithm for solving nonsym-

metric linear systems [J]. SIAM J. Sci. Stat. Comput., 1986, 7: 856–869.

[47] Fang H R, Saad Y. Two classes of multisecant methods for nonlinear acceleration [J]. Numer.

Linear Algebra Appl., 2009, 16: 197–221.

[48] Hu W, Lin L, Yang C. Projected Commutator DIIS Method for Accelerating Hybrid Functional

Electronic Structure Calculations [J]. J. Chem. Theory Comput., 2017, 13: 5458.

[49] Lu J, Sogge C D, Steinerberger S. Approximating pointwise products of Laplacian eigenfunction-

s [M], 2018. preprint, arXiv:1811.10447.

[50] Aquilante F, Pedersen T B, Lindh R. Low-cost evaluation of the exchange Fock matrix from

Cholesky and density fitting representations of the electron repulsion integrals [J]. J. Chem. Phys.,

2007, 126: 194106.

Page 12: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

124 t t k 2019 [51] Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A, Sanfilippo A, Reuter K, Scheffler M.

Resolution-of-identity approach to Hartree–Fock, hybrid density functionals, RPA, MP2 and GW

with numeric atom-centered orbital basis functions [J]. New J. Phys., 2012, 14: 053020.

[52] Lu J, Ying L. Compression of the electron repulsion integral tensor in tensor hypercontraction

format with cubic scaling cost [J]. J. Comput. Phys., 2015, 302: 329.

[53] Lu J, Ying L. Fast algorithm for periodic density fitting for Bloch waves [J]. Ann. Math. Sci.

Appl., 2016, 1: 321–339.

[54] Hu W, Lin L, Yang C. Interpolative separable density fitting decomposition for accelerating

hybrid density functional calculations with applications to defects in silicon [J]. J. Chem. Theory

Comput., 2017, 13: 5420.

[55] Dong K, Hu W, Lin L. Interpolative separable density fitting through centroidal Voronoi tessella-

tion with applications to hybrid functional electronic structure calculations [J]. J. Chem. Theory

Comput., 2018, 14: 1311.

[56] Ratcliff L E, Degomme A, Flores-Livas J A, Goedecker S, Genovese L. Affordable and accu-

rate large-scale hybrid-functional calculations on GPU-accelerated supercomputers [J]. J. Phys.:

Condens. Matter, 2018, 30: 095901.

[57] Hu J, Jiang B, Lin L, Wen Z, Yuan Y. Structured Quasi-Newton Methods for Optimization with

Orthogonality Constraints [J]. arXiv:1809.00452, 2018.

NUMERICAL METHODS FOR HARTREE-FOCK-LIKE

EQUATIONS

Lin Lin

(Department of Mathematics, University of California, Berkeley, and Computational Research

Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA)

Abstract

The main goal of this paper is to introduce some recent developments of numerical

methods for solving Hartree-Fock-like equations in the context of large basis sets. Hartree-

Fock-like equations are an important type of equations in electronic structure theory. They

appear in the Hartree-Fock theory, as well as the Kohn-Sham density functional theory

with hybrid exchange-correlation functionals, and are widely used in electronic structure

calculations of complex chemical and materials systems. Because of its high computational

cost, Hartree-Fock-like equations are typically only used in systems consisting of tens to

hundreds of electrons. From a mathematical perspective, Hartree-Fock-like equations are a

system of nonlinear integro-differential equations. The computational cost is mainly due to

the integral operator part, namely the Fock exchange operator. Through the development of

the adaptive compression method (ACE), the projected commutator-direct inversion in the

iterative subspace (PC-DIIS) method, and the interpolative separable density fitting (ISDF)

method, we demonstrate that the cost of Kohn-Sham density functional theory calculations

with hybrid functionals can be significantly reduced. Using a silicon system with 1000 atoms

for example, we have reduced the cost of hybrid functional calculations with a planewave

Page 13: Hartree-Fock *1)linlin/publications/HF_Chinese.pdf · F . ` d Y i 5 g 0 ' ' C | N r F R J], G f j. & z [22] d @ h [23,24] m ~ ~ ~ d 10 M 100 ( f G r k `} L & ^ v d @ h, k R J Kohn-Sham

2 ' hi: Q Hartree-Fock KltG 125

basis set to a level that is close to the cost of semi-local functional calculations, which do

not involve the Fock exchange operator. Meanwhile, we find that the structure of Hartree-

Fock-like equations provides new insights for the iterative solution of one type of eigenvalue

problems.

Keywords: Hartree-Fock-like equation; nonlinear eigenvalue problem; integro-differen-

tial operator; quantum chemistry; electronic structure theory; Density

functional theory

2010 Mathematics Subject Classification: 65F15, 65R20, 65Z05


Recommended