+ All Categories
Home > Documents > HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

Date post: 05-Apr-2018
Category:
Upload: stephenpybong
View: 233 times
Download: 1 times
Share this document with a friend

of 22

Transcript
  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    1/22

    SWINBURNE UNIVERSITY OF TECHNOLOGY (SARAWAK CAMPUS)

    FACULTY OF ENGINEERING AND INDUSTRIAL SCIENCE

    HES3310 Control EngineeringSemester 1, 2012

    SIMULATION USING MATLAB AND SIMULINK

    By

    Stephen, P. Y. Bong (4209168)

    Chang Kin Yung (4224744)

    Lecturer: Dr. Wallance Wong

    Due Date: 13th April 2012 (Friday)

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    2/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 2 of22

    OBJECTIVES

    To write differential equations and transfer functions describing the dynamics of electriccircuits.

    To introduce MATLAB and SIMULINK as tools for control solution. To find the output response using MATLAB and SIMULINK.PART A PRELIMINARY WORKS

    1. For the circuits shown in figures below, verify that the transfer function for Circuit A andCircuit B are:

    Circuit A

    Circuit B

    Circuit A:( )

    ( ) 1

    12

    ++

    =

    RCsLCssE

    sE

    i

    o

    Circuit B:( )

    ( ) ( ) 1

    1

    212211

    2

    2211 ++++

    =

    sCRCRCRsCRCRsE

    sE

    i

    o

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    3/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 3 of22

    The fundamental laws utilized to govern the current flow in an electric circuit are the

    Kirchhoffs Current Law (KCL) and Kirchhoffs Voltage Law (KVL). According to Ogata, K.

    (2002); KCL can be defined as the sum of currents entering a node is equal to the sum of

    currents leaving the same node; whereas KVL can be interpreted as at any given instant, the

    algebraic sum of the voltages around any loop in an electrical circuit is zero .

    Circuit A

    Applying KVL to the system, two equations can be obtained from the 2 loops:

    Loop (1):iedti

    CiR

    dt

    diL =++

    1(1)

    Loop (2):oedti

    C=

    1(2)

    Taking the Laplace transforms to (1) and (2) gives:

    { } { } ( ) ( ) ( ) ( )sEsIsC

    sIRssILedtiC

    iRdt

    diL ii =++=

    ++

    11

    1

    LLLL

    (1): ( ) ( ) ( ) ( )sEsIsC

    sIRssIL i=++11

    (3)

    { } ( ) ( )sEsIsC

    edtiC

    oo ==

    11

    1

    LL

    (2): ( ) ( )sEsIsC

    o=11

    (4)

    Substituting (4) into (3) by eliminatingI(s) yields:

    ( )

    ( ) 1

    12

    ++

    =

    RCsLCssE

    sE

    i

    o

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    4/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 4 of22

    Circuit B

    Applying KVL to the circuit, 3 loops equations can be obtained:

    Loop (1): ( ) ieRidtiiC

    =+ 11211

    1

    (5)

    Loop (2): ( ) 01

    1

    2

    2

    2221

    1

    =++ dtiCRidtii

    C(6)

    Loop (3):oedti

    C=

    12

    2

    (7)

    Taking Laplace transform through (5) to (7) gives:

    ( ) { } { } ( ) ( )[ ] ( ) ( )sEsIRsIsIsC

    eRidtiiC

    ii =+=+

    1121

    1

    1121

    1

    11 LLL

    (5): ( ) ( )[ ] ( ) ( )sEsIRsIsIsC

    i=+ 1121

    1

    1(8)

    ( ) { } ( ) ( )[ ] ( ) ( ) 011

    01

    1

    2

    2

    2221

    1

    2

    2

    2221

    1

    =++=

    ++

    sIsCsIRsIsIsCdtiCRidtiiC LLL

    (6): ( ) ( )[ ] ( ) ( ) 011 22

    2221

    1

    =++ sIsC

    sIRsIsIsC

    (9)

    { } ( ) ( )sEsIsC

    edtiC

    oo ==

    22

    2

    2

    1

    1LL

    (7): ( ) ( )sEsIsC

    o=2

    2

    1(10)

    Solving equations (8), (9) & (10) gives: ( )( ) ( ) 1

    1

    212211

    2

    2211 ++++

    =

    sCRCRCRsCRCRsE

    sE

    i

    o

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    5/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 5 of22

    2. Using inverse Laplace transform, find the equation describing the time response of circuit A toa unit impulse input whenL = 1 H, C= 0.04 F forR = 4, 6 and 12 . Plot the response for time

    t= 0 to t= 3s.

    ForR = 4 and (L = 1 H & C= 0.04 F), the transfer function for Circuit A becomes:

    ( )( ) ( )( ) ( )( ) 116.004.0

    1104.0404.01

    122

    ++

    =

    ++

    =

    sssssEsE

    i

    o

    For Unit Impulse Input,Ei(s) = 1, thus,

    ( )( ) ( ) ( )

    ( ) ( ) ( )222

    222

    04.01

    22

    212

    21

    21

    25

    212

    25

    2522425404.0

    1

    116.004.0

    1

    ++

    =

    ++

    =

    +++

    =

    ++

    =

    ++

    =

    ss

    sssssssEo

    We know that( )

    teas

    at

    sin

    22

    1 =

    ++

    L , thus, the inverse Laplace transform ofEo(s) is

    as follows:

    ( )( ) ( )

    ( )tes

    tet

    o 21sin21

    25

    212

    21

    21

    25 222

    1 =

    ++

    =L

    ForR = 6 and (L = 1 H & C= 0.04 F), the transfer function for Circuit A becomes:

    ( )

    ( ) ( )( ) ( )( ) 124.004.0

    1

    104.0604.01

    122

    ++

    =

    ++

    =

    sssssE

    sE

    i

    o

    For Unit Impulse Input,Ei(s) = 1, hence,

    ( )( ) ( ) ( )

    ( ) ( ) 222

    222

    04.01

    22

    434

    425

    16325

    2533425604.0

    1

    124.004.0

    1

    ++

    =

    ++

    =

    +++

    =

    ++

    =

    ++

    =

    ss

    sssssssE

    o

    Since( )

    teas

    at

    sin

    22

    1 =

    ++

    L , thus, the inverse Laplace transform of Eo(s) is as

    follows:

    ( )( )

    ( )tes

    te to 4sin4

    25

    43

    4

    4

    25 322

    1 =

    ++

    =L -

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    6/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 6 of22

    ForR = 12 and (L = 1 H & C= 0.04 F), the transfer function for Circuit A becomes:

    ( )

    ( ) ( )( ) ( )( ) 148.004.0

    1

    104.01204.01

    122

    ++

    =

    ++

    =

    sssssE

    sE

    i

    o

    For Unit Impulse Input,Ei(s) = 1, therefore,

    ( )( )

    ( ) ( ) ( ) ( )( ) ( )( )11611625

    116

    25

    116

    25

    256612251204.0

    1

    148.004.0

    1

    222

    222

    04.01

    22

    +++

    =

    +

    =

    +

    =

    +++

    =

    ++

    =

    ++

    =

    ssss

    sssssssEo

    Let( )( ) ( )( ) ( ) ( )116116116116

    25

    ++

    +

    +

    =

    +++ s

    B

    s

    A

    ss

    Cross-multiplication of the two fractions gives:

    ( )( ) ( )( )11611625 ++++= sBsA

    By comparing the coefficient ofs2,

    A +B = 0 Eq. (A)

    By comparing the constant,

    11

    25= BA Eq. (B)

    Solving Eq. (A) and Eq. (B), gives112

    25=A and

    112

    25=B

    Therefore, the partial fraction decomposition ofEo(s) is:

    ( )

    ( )( ) ( )( ) ( ) ( )

    ++

    +

    =

    +++

    =

    116

    1

    116

    1

    112

    25

    116116

    25

    ssss

    sEo

    Taking inverse Laplace transforms gives:

    ( )( ) ( )

    ( ) ( )[ ]tto eess

    te 11611611

    112

    25

    116

    1

    112

    25

    116

    1

    112

    25+

    =

    ++

    +

    = LL

    ( ) ( ) ( )[ ]tto eete 116116112

    25+

    =

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    7/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 7 of22

    The output, eo(t) for time t= 0 to t= 3s, with various resistance (R = 4 , 6 and 12 ) and

    Unit Impulse voltage input are computed by using Microsoft Excel and tabulated in Table 1

    below:

    Time

    (s)

    Output, eo(t)

    R = 4 R = 6 R = 12

    0 0 0 0

    0.1 0.43118 1.73093 1.01131

    0.2 0.6332 2.36216 1.17165

    0.3 0.64083 2.27363 1.05281

    0.4 0.51663 1.80639 0.86684

    0.5 0.32911 1.21735 0.68717

    0.6 0.137 0.66992 0.53504

    0.7 -0.0194 0.24613 0.41289

    0.8 -0.1204 -0.0318 0.31721

    0.9 -0.1637 -0.1784 0.243141 -0.1598 -0.2261 0.18615

    1.1 -0.1249 -0.2106 0.14243

    1.2 -0.0763 -0.1633 0.10894

    1.3 -0.0283 -0.1073 0.08332

    1.4 0.00956 -0.0568 0.06371

    1.5 0.03301 -0.0186 0.04872

    1.6 0.04207 0.00576 0.03726

    1.7 0.03965 0.01807 0.02849

    1.8 0.03003 0.02151 0.02178

    1.9 0.01752 0.01943 0.01666

    2 0.0056 0.01471 0.01274

    2.1 -0.0035 0.00942 0.00974

    2.2 -0.0089 0.00477 0.00745

    2.3 -0.0107 0.00135 0.00569

    2.4 -0.0098 -0.0008 0.00435

    2.5 -0.0072 -0.0018 0.00333

    2.6 -0.004 -0.002 0.00255

    2.7 -0.001 -0.0018 0.00195

    2.8 0.00115 -0.0013 0.00149

    2.9 0.00238 -0.0008 0.00114

    3 0.00273 -0.0004 0.00087

    Table 1: Output for time t= 0 to t= 3s, with various resistance (R = 4 , 6 and 12 ) and

    Unit Impulse Voltage Input

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    8/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 8 of22

    Based on the output tabulated in Table 1, the respond of Circuit A to Unit Impulse voltage input are

    plotted by using Microsoft Excel as shown in Fig. 1 below:

    Fig. 1: Responds of Circuit A to Unit Impulse Voltage Input

    -0.3

    0.2

    0.7

    1.2

    1.7

    2.2

    0 0.5 1 1.5 2 2.5 3

    Amplitu

    de,eo

    (t)(V)

    Time (s)

    Respond of Circuit A to Unit Impulse Voltage Input

    R = 4 Ohms

    R = 6 Ohms

    R = 12 Ohms

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    9/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 9 of22

    3. Repeat 2. to find the response of Circuit A to Unit Step Voltage Input. For Unit Step voltageinput,Ei(s) = 1/s. Thus, the transfer function becomes for Circuit A becomes:

    ( )( )

    ( )11

    1

    1

    1 22 ++=

    ++

    =

    RCsLCsssE

    RCsLCs

    s

    sEo

    o

    ForR = 4 and (L = 1 H & C= 0.04 F),

    ( )( )116.004.0

    12

    ++

    =

    ssssEo

    Let ( )( )

    ( ) ( )( )116.004.0

    116.004.0

    116.004.0116.004.0

    12

    2

    22++

    ++++=

    ++

    ++=

    ++

    =

    sss

    CBssssA

    ss

    CBs

    s

    A

    ssssEo

    By comparing the numerator and the denominator, we get,

    ( ) ( )( ) ( ) AsCAsBA

    CBssssA

    ++++=

    ++++=

    16.004.01

    116.004.01

    2

    2

    By comparing the coefficient of s2, s and constant, a system of equations as follows can be

    obtained:

    =

    =

    =

    =

    =+

    =+

    16.0

    04.0

    1

    1

    0

    0

    001

    1016.0

    0104.0

    1

    0

    0

    001

    1016.0

    0104.0

    1

    016.0

    004.01

    C

    B

    A

    C

    B

    A

    A

    CA

    BA

    Therefore, the partial-fraction decomposition ofEo(s) is:

    ( )( )

    ( ) ( )22222222

    222

    21)2(

    2

    21)2(

    )2(1

    21)2(

    2)2(1

    25224

    )4(1

    254

    )4(1

    116.004.0

    16.004.01

    116.004.0

    1

    ++

    +

    ++

    ++=

    ++

    ++=

    +++

    ++=

    ++

    ++=

    ++

    +=

    ++

    =

    ss

    s

    ss

    s

    sss

    s

    s

    ss

    s

    sss

    s

    sssssEo

    Taking Laplace transforms gives:

    ( )( ) ( )

    ( ) ( )tete

    ss

    s

    ste

    tt

    o

    21sin21

    221cos1

    21)2(

    21

    21

    2

    21)2(

    21

    22

    22

    1

    22

    11

    =

    ++

    ++

    +

    = LLL

    Therefore, ( ) ( ) ( )tetete tto 21sin21

    221cos1 22 =

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    10/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 10 of22

    ForR = 6 and (L = 1 H & C= 0.04 F),

    ( )( )

    ( ) ( )( )124.004.0

    124.004.0

    124.004.0124.004.0

    12

    2

    22++

    ++++=

    ++

    ++=

    ++

    =

    sss

    CBssssA

    ss

    CBs

    s

    A

    ssssE

    o

    By comparing the numerator and the denominator, we get:

    ( ) ( )( ) ( ) ACAsBA

    CBssssA

    ++++=

    ++++=

    24.004.01

    124.004.01

    2

    2

    By comparing the coefficients of s2, s and constant, a system of equations as follows can be

    obtained:

    =

    =

    =

    =

    =+

    =+

    24.0

    04.0

    1

    1

    0

    0

    001

    1024.0

    0104.0

    1

    0

    0

    001

    1024.0

    0104.0

    1

    024.0

    004.01

    C

    B

    A

    C

    B

    A

    A

    CA

    BA

    Therefore, the partial-fraction decomposition ofEo(s) is:

    ( )( )

    22222222

    222

    4)3(

    3

    4)3(

    )3(1

    16)3(

    3)3(1

    25336

    )6(1

    256

    )6(1

    124.004.0

    24.004.01

    124.004.0

    1

    ++

    +

    ++

    ++=

    ++

    ++=

    +++

    ++=

    ++

    ++=

    ++

    +=

    ++

    =

    ss

    s

    ss

    s

    sss

    s

    s

    ss

    s

    sss

    s

    sssssEo

    Taking Laplace transforms gives:

    ( )

    ( ) ( )tete

    ss

    s

    ste

    tt

    o

    4sin4

    34cos1

    4)3(

    4

    4

    3

    4)3(

    31

    33

    22

    1

    22

    11

    =

    ++

    ++

    +

    = LLL

    Therefore, ( ) ( ) ( )tetete tto 4sin4

    34cos1 33 =

    ForR = 12 and (L = 1 H & C= 0.04 F),

    ( )( )

    ( ) ( )( )148.004.0

    148.004.0

    148.004.0148.004.0

    12

    2

    22++

    ++++=

    ++

    ++=

    ++

    =

    sss

    CBssssA

    ss

    CBs

    s

    A

    ssssE

    o

    By comparing the numerator and the denominator, we get:

    ( ) ( )( ) ( ) ACAsBA

    CBssssA

    ++++=

    ++++=

    48.004.01

    148.004.01

    2

    2

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    11/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 11 of22

    By comparing the coefficients of s2, s and constant, a system of equations as follows can be

    obtained:

    =

    =

    =

    =

    =+

    =+

    48.0

    04.0

    1

    1

    0

    0

    001

    1048.0

    0104.0

    1

    0

    0

    001

    1048.0

    0104.0

    1

    048.0

    004.01

    C

    B

    A

    C

    B

    A

    A

    CA

    BA

    Therefore, the partial-fraction decomposition ofEo(s) is:

    ( )( )

    ( ) ( )22222222

    222

    11)3(

    6

    11)3(

    )6(1

    11)6(

    6)6(1

    256612

    )12(1

    2512

    )12(1

    148.004.0

    48.004.01

    148.004.0

    1

    +

    +

    +

    ++=

    +

    ++=

    +++

    ++=

    ++

    ++=

    ++

    +=

    ++

    =

    ss

    s

    ss

    s

    sss

    s

    s

    ss

    s

    sss

    s

    sssssEo

    Taking Laplace transforms gives:

    ( )( ) ( )

    ( ) ( )tete

    ss

    s

    ste

    tt

    o

    11sinh11

    311cosh1

    11)3(

    11

    11

    6

    11)6(

    61

    66

    22

    1

    22

    11

    =

    ++

    ++

    +

    = LLL

    Therefore, ( ) ( ) ( )tetete tto 11sinh11

    611cosh1 66 =

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    12/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 12 of22

    The output, eo(t) for time t= 0 to t= 3s, with various resistance (R = 4 , 6 and 12 ) and

    Unit Step voltage input are computed by using Microsoft Excel and tabulated in Table 2 below:

    Time

    (s)

    Output, eo(t)

    R = 4 R = 6 R = 12

    0 0 0 0

    0.1 0.10767 0.1013 0.08537

    0.2 0.35992 0.32237 0.24155

    0.3 0.65817 0.56847 0.39678

    0.4 0.92708 0.783 0.52958

    0.5 1.12206 0.94069 0.63668

    0.6 1.22812 1.03815 0.72077

    0.7 1.25318 1.08462 0.78593

    0.8 1.21888 1.09453 0.83609

    0.9 1.15172 1.08257 0.87458

    1 1.07609 1.0608 0.90406

    1.1 1.01003 1.03766 0.92663

    1.2 0.96373 1.01802 0.94389

    1.3 0.94001 1.00393 0.95709

    1.4 0.93622 0.99547 0.96719

    1.5 0.94655 0.99166 0.97491

    1.6 0.96426 0.99111 0.98082

    1.7 0.98334 0.99244 0.98533

    1.8 0.9995 0.99456 0.98878

    1.9 1.01043 0.99673 0.991422 1.01565 0.99852 0.99344

    2.1 1.01599 0.99978 0.99499

    2.2 1.01299 1.00051 0.99617

    2.3 1.00836 1.00081 0.99707

    2.4 1.00357 1.00083 0.99776

    2.5 0.99964 1.00069 0.99829

    2.6 0.99707 1.00048 0.99869

    2.7 0.99595 1.00028 0.999

    2.8 0.99601 1.00012 0.99923

    2.9 0.99686 1.00001 0.99941

    3 0.99806 0.99995 0.99955

    Table 2: Output for time t= 0 to t= 3s, with various resistance (R = 4 , 6 and 12 ) and

    Unit Step Voltage Input

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    13/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 13 of22

    Fig. 2: Responds of Circuit A to Unit Step Voltage Input

    0

    0.1

    0.2

    0.30.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    0 0.5 1 1.5 2 2.5 3

    Amplitude,eo

    (t)(V)

    Time (s)

    Respond of Circuit A to Unit Step Input

    R = 4 Ohms

    R = 6 Ohms

    R = 12 Ohms

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    14/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 14 of22

    PART B EXPERIMENTAL RESULTS

    Using the transfer function of Circuit A shown in Figure in PART A, the m-file lab301.m is

    modified to get the unit impulse and step responses. Fig. 1 shows the plot of Unit Impulse of Circuit

    A (forR = 4, 6 and 12 Ohms) and Fig. 2 shows the plot of Unit Step Responses of Circuit A (for R

    = 4, 6 and 12 Ohms).

    Respond of Circuit A to Unit Impulse Input (forR = 4, 6 and 12 Ohms)

    Fig. 3: Plot of Reponses of Circuit A to Unit Impulse input via MATLAB

    Fig. 4: Plot of Responses of Circuit A to Unit Step voltage input via MATLAB

    Plot of Unit Impulse Input of Circuit A (for R = 4, 6 and 12 Ohm)

    Time (s ec)

    Amplitude

    0 0.5 1 1.5 2 2.5 3-1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    R = 4 Ohm

    R = 6 Ohm

    R = 12 Ohm

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    Plot of Unit Step Responses of Circuit A (for R = 4, 6 and 12 Ohm)

    Time (sec )

    Amplitude

    R = 4 Ohm

    R = 6 Ohm

    R = 12 Ohm

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    15/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 15 of22

    For Unit Step voltage input,

    (R = 4 )

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    16/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 16 of22

    (R = 6 )

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    17/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 17 of22

    (R = 12)

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    18/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 18 of22

    PART C COMPARISONS OF RESULTS

    Comparisons of Output Functions

    Unit Impulse Voltage Input

    Resistance(Ohms,)

    Theoretical Experimetal

    4 ( ) ( )tete to 21sin21

    25 2=

    6 ( ) ( )tete to 4sin425 3=

    12 ( )( ) ( )[ ]tt

    o eete116116

    112

    25+

    =

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    19/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 19 of22

    Unit Step Voltage Input

    Resistance

    (Ohms, )Theoretical Experimetal

    4 ( ) ( ) ( )tetete tto 21sin21

    221cos1 22 =

    6 ( ) ( ) ( )tetetett

    o 4sin4

    3

    4cos1

    33 =

    12 ( ) ( ) ( )tetete tto 11sinh11

    611cosh1

    66 =

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    20/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 20 of22

    Comparisons of Graphs

    Theoretical

    Experimental

    Fig. 5: Comparison of plots of responds of Circuit A to Unit Impulse voltage input

    Based on our knowledge of oscillation, the period of oscillation is inversely proportional to the

    damping ratio. Based on the plots of responds of Circuit A as shown in Fig. 5 above, the system

    takes a longer time to stop the oscillation with resistance of 4 Ohms, however, for the case of

    utilizing resistance of 12 Ohms, the system is critically damped.

    -0.3

    0.2

    0.7

    1.2

    1.7

    2.2

    0 0.5 1 1.5 2 2.5 3

    Amplitude,eo

    (t)(V)

    Time (s)

    Respond of Circuit A to Unit Impulse Voltage Input

    R = 4 Ohms

    R = 6 Ohms

    R = 12 Ohms

    Plot of Unit Impulse Input of Circuit A (for R = 4, 6 and 12 Ohm)

    Time (s ec)

    Amplitude

    0 0.5 1 1.5 2 2.5 3-1

    -0.5

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    R = 4 Ohm

    R = 6 Ohm

    R = 12 Ohm

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    21/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    HES3310 Control Engineering, Semester 1, 2012 Page 21 of22

    Theoretical

    Experimental

    Fig. 6: Comparison of plots of responds of Circuit A to Unit Step voltage input

    Based on the plots shown in Fig. 6 above, the system with resistance of 4 Ohms has the longest

    period of oscillation. On contrary, for the case of utilizing a resistance of 12 Ohms, there has no

    oscillation occurred or it can be referred as critically damped situation.

    0

    0.1

    0.2

    0.30.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    0 0.5 1 1.5 2 2.5 3

    Amplitude,eo

    (t)(V)

    Time (s)

    Respond of Circuit A to Unit Step Input

    R = 4 Ohms

    R = 6 Ohms

    R = 12 Ohms

    0 0.5 1 1.5 2 2.5 30

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.4

    Plot of Unit Step Responses of Circuit A (for R = 4, 6 and 12 Ohm)

    Time (sec)

    Amplitude

    R = 4 Ohm

    R = 6 Ohm

    R = 12 Ohm

  • 8/2/2019 HES3310 Control Engineering Lab 1 - Simulation Using MATLAB and SIMULINK

    22/22

    Simulation Using MATLAB and SIMULINK 4209168; 4224744

    CONCLUSION

    According to the results which obtained theoretically and experimentally as shown in previous

    section, it can be proved the results of simulation using MATLAB are very closed to analytical

    solutions. Therefore, as a verdict, it can be concluded that MATLAB is a powerful mathematical

    software which can be employed in the analysis of dynamics of electric circuits. Apart from that,

    based on the computations and plots obtained from simulation of MATLAB, it can be verified thatMATLAB is a sensitive tool of writing differential equations and transfer functions. Besides, the

    output response of a system can be obtained from SIMULINK as well.


Recommended