+ All Categories
Home > Documents > High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California...

High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California...

Date post: 22-Apr-2020
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
21
10MSST-2002, April 15-18 1 Irvine, California MetroLaser High High - - density Holographic density Holographic Data Storage with Random Data Storage with Random Encoded Reference Beam Encoded Reference Beam Vladimir B. Markov MetroLaser, Inc. 18010 Skypark Circle, Irvine, CA 92614 [email protected]
Transcript
Page 1: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 1Irvine, CaliforniaMetroLaser

HighHigh--density Holographic density Holographic Data Storage with Random Data Storage with Random Encoded Reference BeamEncoded Reference Beam

Vladimir B. MarkovMetroLaser, Inc.

18010 Skypark Circle, Irvine, CA [email protected]

Page 2: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 2Irvine, CaliforniaMetroLaser

Outline

• Motivation• Outline of Theory• System Design• Results from a Shift Selectivity• Conclusions

Page 3: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 3Irvine, CaliforniaMetroLaser

Motivation

Holographic memory offers:

• bit storage density of the order of 1012/cm3

• parallel access and parallel data processing

• high retrieval rate

• solid-state configuration

Page 4: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 4Irvine, CaliforniaMetroLaser

PrinciplesPrinciples

• Selective properties of volume hologram• Volume holograms with amplitude-phase

modulated reference beam and theirselective properties

• Solid-state configuration with randomreference beam

• Selective properties of volume hologram• Volume holograms with amplitude-phase

modulated reference beam and theirselective properties

• Solid-state configuration with randomreference beam

Page 5: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 5Irvine, CaliforniaMetroLaser

Angular Bragg SelectivityAngular Bragg Selectivity

Non-Dispersion Plane Selectivity

y

x

VolumeGrating

oRθ

ϕ

1e-005

0.0001

0.001

0.01

0.1

1

Dif

frac

tion

effi

cien

cy

-8 -4 0 4 8Angular Dev. (a.u.)

Dispersion PlaneSelectivity

Page 6: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 6Irvine, CaliforniaMetroLaser

ØReference Beam RandomAmplitude-Phase Encoding:

ünew type of Spatial & Angular(isotropic) selectivity;üsolid-state architecture - no moving partsü secure data access

ØReference Beam RandomAmplitude-Phase Encoding:

ünew type of Spatial & Angular(isotropic) selectivity;üsolid-state architecture - no moving partsü secure data access

ØAngular and Spectral Braggselectivity results in:ünon-isotropic diffraction at off-Bragg tuning üincremental noiseüinsecure data accessürequire moving parts.

ØAngular and Spectral Braggselectivity results in:ünon-isotropic diffraction at off-Bragg tuning üincremental noiseüinsecure data accessürequire moving parts.

Angular-spectral selectivity ofvolume hologram and random encodingof reference beam are used as basic mechanisms for data multiplexing

Page 7: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 7Irvine, CaliforniaMetroLaser

Random APM volume hologram - RecordingRandom APM volume Random APM volume hologram hologram -- RecordingRecording

y

x

zT

∆⊥xRo(r)

<σ⊥> = 1.22 λD/dL

K SSo(r)

S(r)

Initial position of speckle

Page 8: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 8Irvine, CaliforniaMetroLaser

y

x

zT

Initial position of speckle

Ro(r)

<σ⊥> = 1.22 λD/dL

K S

S(r)

Random APM volume hologram - Reconstruction

Random APM volume Random APM volume hologram hologram -- ReconstructionReconstruction

Page 9: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 9Irvine, CaliforniaMetroLaser

Shiftdirection

y

∆⊥y

x

zT

∆⊥

Displaced speckleposition

Initial speckleposition

∆⊥xRo(r)

<σ⊥> = 1.22 λD/dL

S

S(r)

K

Random APM volume hologram - Reconstruction

Random APM volume Random APM volume hologram hologram -- ReconstructionReconstruction

Page 10: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 10Irvine, CaliforniaMetroLaser

Basic results of the Basic results of the analysisanalysis

Where Ro(q,z)R*(q,z) is spatial correlation function of a random amplitude-phase modulated (speckle) field:Where RWhere Roo(q,z)R(q,z)R*(q,z) *(q,z) is spatial correlation function of is spatial correlation function of a random amplitudea random amplitude--phase modulated (speckle) field:phase modulated (speckle) field:

∫ ∫∞+

∞−⊥

⊥⊥⊥

∆−×

∆=∆ ,qdq

znik

exp)q(Pz2nik

exp)'z,(C 2

eff

o2L

eff

2o rrr

rr

The diffracted field amplitude:The diffracted field amplitude:The diffracted field amplitude:

∫∫ ∫=S

T

oso dqdzzqRzqRikzqS ')',()',(]sinexp[)',( * rrr

Page 11: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 11Irvine, CaliforniaMetroLaser

Mirror

Computer/Data Base

Controller

yx

z

TranslationStage

Iris

PolarizingFilter

NDFilter

Lens

PhotoDetector

CMOS

Modulator CondenserLensPre-modulator

BeamSplitter

Shutter1

Shutter2

SLM ImagingLens1

ImagingLens2

SpatialFilter

Lens

Experimental Setup for Random APE Holographic Memory

Page 12: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 12Irvine, CaliforniaMetroLaser

Laboratory setup for Laboratory setup for APM hologram APM hologram

Page 13: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 13Irvine, CaliforniaMetroLaser

SPECKLE SHIFT SPECKLE SHIFT SELECTIVITYSELECTIVITY

0.0 4.0 8.0 12.0 16.0 20.0X-SHIFT (µm)

0.00

0.20

0.40

0.60

0.80

1.00In

ten

sity

IN

D

<ε⊥> ~ 12.0 µm<ε⊥> ~ 8.0 µm<ε⊥> ~ 6.0 µm

XX--SHIFT SELECTIVITYSHIFT SELECTIVITY(experiment)(experiment)

<ε⊥> - average speckle size

Page 14: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 14Irvine, CaliforniaMetroLaser

X-Y Speckle-Shift SelectivitySpeckle-Shift Selectivity is perfectly symmetric in both X and Y directions and the retrieved signal intensity decreases with ∆⊥ in almost 3 orders of the magnitude with no side-lobes. This promises low cross-talk and a high level of security.

TheoryTheory

0.00 1.00 2.00 3.00 4.00SHIFT ∆⊥x,y(µm)

0.001

0.010

0.100

1.000

DIF

FRA

CTE

D B

EA

M I

NTE

NSI

TY I ∆

⊥(a

.u.)

∆⊥X

∆⊥Y

ExperimentExperiment

Page 15: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 15Irvine, CaliforniaMetroLaser

Image Characteristics@ Spatial Shift

Spatial Shift doesn’t introduce any side effects on the reconstructed image quality beside the intensity decrease. The phase distribution remains invariable with ∆⊥

∆⊥ = − 0.5 µm

∆⊥ = 0.0 µm

∆⊥ = 0.5 µm

∆⊥ = 1.5 µm

Page 16: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 16Irvine, CaliforniaMetroLaser

0.00 5.00 10.00 15.00 20.00 25.00

Shift ∆⊥(µm)

0.00

0.20

0.40

0.60

0.80

1.00

Nor

mal

ized

Inte

nsity

I DRecordingmedium

Recordingmedium

OpticsOptics

Random APMRandom APM

Pre-encoderPre-encoder

DetectorDetector

Realization of Solid-StateData Storage ConfigurationRealization of SolidRealization of Solid--StateState

Data Storage ConfigurationData Storage Configuration

Principal setupPrincipal setup

Page 17: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 17Irvine, CaliforniaMetroLaser

Solid-State technique validation

Solid-State technique validation

0 0.2 0.4 0.6 0.8 1

Relative shif t ∆⊥/<σ⊥>

0

0.2

0.4

0.6

0.8

1

Inte

nsity

I NDDecorrelation with:

• Pre-encoder spatial variation(shift or rotation)

• Reference beam spatial steering• Beam angular steering with deflector

• Encoder (or pre-encoder)rotation

Decorrelation with:

• Pre-encoder spatial variation(shift or rotation)

• Reference beam spatial steering• Beam angular steering with deflector

• Encoder (or pre-encoder)rotation

Page 18: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 18Irvine, CaliforniaMetroLaser

Page encoding and data recallPage encoding and data recall

Recording

Reconstruction

Page 19: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 19Irvine, CaliforniaMetroLaser

Data Recall SequenceData Recall Sequence

Page 20: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 20Irvine, CaliforniaMetroLaser

Holographic Memory Module architecture with solid-state

configuration

APE-SLM

RecordingMedium

Data-SLM

Receiver

Laser

MemoryErasure

Anticipated HMMparameters:

¬Capacity - 1011 b¬Trans. rate - 1 Gb/sec¬Size - < 0.4 ft3

¬Weight - <1.5 kg¬Power cons.- < 50 W

Anticipated HMMparameters:

¬Capacity - 1011 b¬Trans. rate - 1 Gb/sec¬Size - < 0.4 ft3

¬Weight - <1.5 kg¬Power cons.- < 50 W

Page 21: High-density Holographic Data Storage with …10MSST-2002, April 15-18 1 Irvine, California MetroLaser High-density Holographic Data Storage with Random Encoded Reference Beam Vladimir

10MSST-2002, April 15-18 21Irvine, CaliforniaMetroLaser

Conclusion

• High- density holographic data storage is demonstrated with random encoded reference beam

• Parallel recording and retrieval• Optical memory in solid-state configuring

Acknowledgment This work was supported in part through the SBIR projects with NASA and DOE

• High- density holographic data storage is demonstrated with random encoded reference beam

• Parallel recording and retrieval• Optical memory in solid-state configuring

Acknowledgment This work was supported in part through the SBIR projects with NASA and DOE


Recommended