+ All Categories
Home > Documents > Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with...

Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with...

Date post: 19-Aug-2020
Category:
Upload: others
View: 5 times
Download: 0 times
Share this document with a friend
15
Progress in Mathematics 298 Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz, Mark Goresky 1. Auflage 2012. Buch. xiv, 258 S. Hardcover ISBN 978 3 0348 0350 2 Format (B x L): 15,5 x 23,5 cm Gewicht: 683 g Weitere Fachgebiete > Mathematik > Algebra > Homologische Algebra schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Transcript
Page 1: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Progress in Mathematics 298

Hilbert Modular Forms with Coefficients in Intersection Homology andQuadratic Base Change

Bearbeitet vonJayce Getz, Mark Goresky

1. Auflage 2012. Buch. xiv, 258 S. HardcoverISBN 978 3 0348 0350 2

Format (B x L): 15,5 x 23,5 cmGewicht: 683 g

Weitere Fachgebiete > Mathematik > Algebra > Homologische Algebra

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programmdurch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

Page 2: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,
Page 3: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Progress in Mathematics

Series EditorsHyman Bass Joseph Oesterlé

Volume 298

Alan WeinsteinYuri Tschinkel

Page 4: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Jayce Getz • Mark Goresky

Hilbert Modular Forms with Coefficients in Intersection

Change and uadratic Base Q

Homology

Page 5: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Jayce GetzDepartment of MathematicsMcGill University

Mark GoreskySchool of MathematicsInstitute for Advanced Study

Montreal, Canada

Princeton, N.J.USA

Québec

Library of Congress Control Number:

© Springer Basel 2012

ISBN 978-3-0348- ISBN 978-3-0348- -DOI 10.1007/978-3-0348-0 -Springer Basel Heidelberg New York Dordrecht London

0350-2 0351351 9

Printed on acid-free paper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the respective Copyright Law. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. While the advice and information in this book are believed to be true and accurate at the date of publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect to the material contained herein.

Springer is part of Springer Science+Business Media (www.springer.com)

9 (eBook)

2012936073

Page 6: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Ferran Sunyer i Balaguer (1912–1967) was a self-taught Catalan mathematician who, in spite of aserious physical disability, was very active in researchin classical mathematical analysis, an area in whichhe acquired international recognition. His heirs cre-ated the Fundacio Ferran Sunyer i Balaguer insidethe Institut d’Estudis Catalans to honor the memoryof Ferran Sunyer i Balaguer and to promote mathe-matical research.

Each year, the Fundacio Ferran Sunyer i Balaguerand the Institut d’Estudis Catalans award an in-ternational research prize for a mathematical mono-graph of expository nature. The prize-winning mono-graphs are published in this series. Details about theprize and the Fundacio Ferran Sunyer i Balaguer canbe found at

http://ffsb.iec.cat/EN/

This book has been awarded theFerran Sunyer i Balaguer 2011 prize.

The members of the scientific commiteeof the 2011 prize were:

Alejandro AdemUniversity of British Columbia

Hyman BassUniversity of Michigan

Nuria FagellaUniversitat de Barcelona

Joseph OesterleUniversite de Paris VI

Joan VerderaUniversitat Autonoma de Barcelona

Page 7: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Ferran Sunyer i Balaguer Prize winners since 2001:

2001 Martin Golubitsky and Ian StewartThe Symmetry Perspective, PM 200

2002 Andre UnterbergerAutomorphic Pseudodifferential Analysisand Higher Level Weyl Calculi, PM 209

Alexander Lubotzky and Dan SegalSubgroup Growth, PM 212

2003 Fuensanta Andreu-Vaillo, Vincent Casellesand Jose M. MazonParabolic Quasilinear Equations MinimizingLinear Growth Functionals, PM 223

2004 Guy DavidSingular Sets of Minimizers for theMumford-Shah Functional, PM 233

2005 Antonio Ambrosetti and Andrea MalchiodiPerturbation Methods and SemilinearElliptic Problems on 𝑅𝑛, PM 240

Jose SeadeOn the Topology of Isolated Singularities inAnalytic Spaces, PM 241

2006 Xiaonan Ma and George MarinescuHolomorphic Morse Inequalities andBergman Kernels, PM 254

2007 Rosa Miro-RoigDeterminantal Ideals, PM 264

2008 Luis BarreiraDimension and Recurrence in HyperbolicDynamics, PM 272

2009 Timothy D. BrowningQuantitative Arithmetic of Projective Vari-eties, PM 277

2010 Carlo MantegazzaLecture Notes on Mean Curvature Flow,PM 290

Page 8: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

To our families

Page 9: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,
Page 10: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Contents

1 Introduction

1.1 An observation of Serre . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Notational conventions . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 First main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.5 Definition of 𝐼𝐻𝜒𝐸𝑛 (𝑋0(𝔠)) and 𝛾𝜒𝐸 (𝔪) . . . . . . . . . . . . . . . 8

1.6 Second main theorem . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.7 Explicit cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.8 Finding cycles dual to families of automorphic forms . . . . . . . 13

1.9 Comments on related literature . . . . . . . . . . . . . . . . . . . 14

1.10 Comparison with Zagier’s formula . . . . . . . . . . . . . . . . . . 16

1.11 Outline of the book . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.12 Problematic primes . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2 Review of Chains and Cochains

2.1 Cell complexes and orientations . . . . . . . . . . . . . . . . . . . 21

2.2 Subanalytic sets and stratifications . . . . . . . . . . . . . . . . . 22

2.3 Sheaves and the derived category . . . . . . . . . . . . . . . . . . 23

2.4 The sheaf of chains . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Homology manifolds . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.6 Cellular Borel-Moore chains . . . . . . . . . . . . . . . . . . . . . 26

2.7 Algebraic cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Review of Intersection Homology and Cohomology

3.1 The sheaf of intersection chains . . . . . . . . . . . . . . . . . . . 29

3.2 The sheaf of intersection cochains . . . . . . . . . . . . . . . . . . 30

3.3 Homological stratifications . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Products in intersection homology and cohomology . . . . . . . . 35

3.5 Finite mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.6 Correspondences . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

ix

Page 11: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

x Contents

4 Review of Arithmetic Quotients

4.1 The setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Baily-Borel compactification . . . . . . . . . . . . . . . . . . . . . 42

4.3 𝐿2 differential forms . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Invariant differential forms . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Hecke correspondences for discrete groups . . . . . . . . . . . . . 47

4.6 Mappings induced by a Hecke correspondence . . . . . . . . . . . 48

4.7 The reductive Borel-Serre compactification . . . . . . . . . . . . . 49

4.8 Saper’s theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.9 Modular cycles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.10 Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Generalities on Hilbert Modular Forms and Varieties

5.1 Hilbert modular Shimura varieties . . . . . . . . . . . . . . . . . 58

5.2 Hecke congruence groups . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.4 Hilbert modular forms . . . . . . . . . . . . . . . . . . . . . . . . 62

5.5 Cohomological normalization . . . . . . . . . . . . . . . . . . . . 65

5.6 Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.7 The Petersson inner product . . . . . . . . . . . . . . . . . . . . . 68

5.8 Newforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.9 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.10 Killing Fourier coefficients . . . . . . . . . . . . . . . . . . . . . . 74

5.11 Twisting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.12 𝐿-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.12.1 The standard 𝐿-function . . . . . . . . . . . . . . . . . . . 82

5.12.2 Rankin-Selberg 𝐿-functions . . . . . . . . . . . . . . . . . 83

5.12.3 Adjoint 𝐿-functions . . . . . . . . . . . . . . . . . . . . . . 84

5.12.4 Asai 𝐿-functions . . . . . . . . . . . . . . . . . . . . . . . 85

5.13 Relationship with Hida’s notation . . . . . . . . . . . . . . . . . . 89

6 Automorphic Vector Bundles and Local Systems

6.1 Generalities on local systems . . . . . . . . . . . . . . . . . . . . 92

6.2 Classical description of automorphic vector bundles . . . . . . . . 94

6.2.1 Representations of Γ . . . . . . . . . . . . . . . . . . . . . 94

6.2.2 Representations of 𝐾∞ . . . . . . . . . . . . . . . . . . . . 95

6.2.3 Flat vector bundles . . . . . . . . . . . . . . . . . . . . . . 95

6.2.4 Orbifold local systems . . . . . . . . . . . . . . . . . . . . 96

6.3 Classical description of automorphy factors . . . . . . . . . . . . 97

6.4 Adelic automorphic vector bundles . . . . . . . . . . . . . . . . . 98

6.4.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

Page 12: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Contents xi

6.4.2 Flat bundles . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.4.3 Orbifold bundles . . . . . . . . . . . . . . . . . . . . . . . 100

6.5 Representations of GL2 . . . . . . . . . . . . . . . . . . . . . . . 100

6.6 Representations of 𝐺 = Res𝐿/ℚGL2 . . . . . . . . . . . . . . . . . 101

6.7 The section 𝑃𝑧 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.8 The local system ℒ(𝜅, 𝜒0) . . . . . . . . . . . . . . . . . . . . . . 103

6.9 Adelic geometric description of automorphic forms . . . . . . . . 105

6.10 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.11 Action of the component group . . . . . . . . . . . . . . . . . . . 109

7 The Automorphic Description of Intersection Cohomology

7.1 The local system ℒ(𝜅, 𝜒0) . . . . . . . . . . . . . . . . . . . . . . 112

7.2 The automorphic description of intersection cohomology . . . . . 114

7.3 Complex conjugation . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4 Atkin-Lehner operator . . . . . . . . . . . . . . . . . . . . . . . . 117

7.5 Pairings of vector bundles . . . . . . . . . . . . . . . . . . . . . . 122

7.6 Generalities on Hecke correspondences . . . . . . . . . . . . . . . 126

7.7 Hecke correspondences in the Hilbert modular case . . . . . . . . 129

7.8 Atkin-Lehner-Hecke compatibility . . . . . . . . . . . . . . . . . . 131

7.9 Integral coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . 132

8 Hilbert Modular Forms with Coefficients in a Hecke Module

8.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8.2 Base change for the Hecke algebra . . . . . . . . . . . . . . . . . 136

8.3 Hilbert modular forms with coefficients in a Hecke module . . . . 141

8.4 Hilbert modular forms with coefficients in intersection homology 143

8.5 Proof of Theorem 8.3 . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.6 The Fourier coefficients of [𝛾(𝔪),Φ𝛾,𝜒𝐸 ]𝐼𝐻∗ . . . . . . . . . . . . 146

9 Explicit Construction of Cycles

9.1 Notation for the quadratic extension 𝐿/𝐸 . . . . . . . . . . . . . 151

9.2 Canonical section over the diagonal . . . . . . . . . . . . . . . . . 152

9.3 Homological properties of 𝑍0(𝔠𝐸) . . . . . . . . . . . . . . . . . . 157

9.4 The twisting correspondence . . . . . . . . . . . . . . . . . . . . . 160

9.5 Twisting the cycle 𝑍0(𝔠𝐸) . . . . . . . . . . . . . . . . . . . . . . 165

10 The Full Version of Theorem 1.3

10.1 Statement of results . . . . . . . . . . . . . . . . . . . . . . . . . 167

10.2 Rankin-Selberg integrals . . . . . . . . . . . . . . . . . . . . . . . 170

Page 13: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

xii Contents

11 Eisenstein Series with Coefficients in Intersection Homology

11.1 Eisenstein series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

11.2 Invariant classes revisited . . . . . . . . . . . . . . . . . . . . . . 180

11.3 Definition of the 𝑉𝜒𝐸 (𝔪) . . . . . . . . . . . . . . . . . . . . . . . 181

11.4 Statement and proof of Theorem 2 . . . . . . . . . . . . . . . 181

Appendices

A Proof of Proposition 2.4

A.1 Cellular cosheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

A.2 Proof of Lemma 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . 184

A.3 Proof of Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . 185

B Recollections on Orbifolds

B.1 Effective actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

B.3 Refinement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

B.4 Stratification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

B.5 Sheaves and cohomology . . . . . . . . . . . . . . . . . . . . . . . 194

B.6 Differential forms . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

B.7 Groupoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

C Basic Adelic Facts

C.1 Adeles and ideles . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

C.2 Characters of 𝐿∖𝔸𝐿 . . . . . . . . . . . . . . . . . . . . . . . . . . 200

C.3 Characters of GL1(𝐿)∖GL1(𝔸𝐿) . . . . . . . . . . . . . . . . . . . 201

C.4 Haar measure on the adeles . . . . . . . . . . . . . . . . . . . . . 203

D Fourier Expansions of Hilbert Modular Forms

D.1 Statement of the theorem . . . . . . . . . . . . . . . . . . . . . . 205

D.2 Fourier analysis on GL2(𝐿)∖GL2(𝔸𝐿) . . . . . . . . . . . . . . . . 206

D.3 Whittaker models . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

D.4 Decomposition of 𝑊ℎ . . . . . . . . . . . . . . . . . . . . . . . . . 208

D.5 Computing 𝑊𝜙∞ and 𝑊ℎ0 . . . . . . . . . . . . . . . . . . . . . . 209

D.6 Final steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

E Review of Prime Degree Base Change for GL2

E.1 Automorphic forms and automorphic representations . . . . . . . 214

E.2 Hecke operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

E.3 Agreement of 𝐿-functions . . . . . . . . . . . . . . . . . . . . . . 221

E.4 Langlands functoriality . . . . . . . . . . . . . . . . . . . . . . . . 222

E.5 Prime degree base change for GL1 . . . . . . . . . . . . . . . . . 228

E.6 Conductors of admissible representations of GL2 . . . . . . . . . 229

11.

Page 14: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Contents xiii

E.7 The archimedean places . . . . . . . . . . . . . . . . . . . . . . . 232

E.8 Global base change . . . . . . . . . . . . . . . . . . . . . . . . . . 234

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Index of Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

Index of Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

Page 15: Hilbert Modular Forms with Coefficients in Intersection ......Hilbert Modular Forms with Coefficients in Intersection Homology and Quadratic Base Change Bearbeitet von Jayce Getz,

Recommended