+ All Categories
Home > Documents > HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization...

HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization...

Date post: 07-Sep-2018
Category:
Upload: lamthuan
View: 219 times
Download: 0 times
Share this document with a friend
32
1 VHTR Eurocourse, Prague, May 21-24, 2013 J.L. Kloosterman, Delft University of Technology HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman Delft University of Technology [email protected] www.JanLeenKloosterman.nl VHTR Eurocourse, Prague, May 21-24, 2013 J.L. Kloosterman, Delft University of Technology Reactor Institute Delft / TU-Delft Research on Energy and Health with Radiation
Transcript
Page 1: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

1

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

HTR Reactor Physics

Slowing down and thermalization of neutrons

Jan Leen KloostermanDelft University of Technology

[email protected]

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Reactor Institute Delft / TU-DelftResearch on Energy and Health with Radiation

Page 2: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

2

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Neutrons

Spin-Echo Small Angle Neutron Scattering (SESANS)

Page 3: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

3

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Positrons

POSH-Strongest positron beam in the world

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Energy• solar cells• batteries• hydrogen storage• nuclear energy

} Materials research

Research Themes (1)

Page 4: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

4

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Health• radiation and radioactive nuclides for therapy and diagnostics• radiation detection systems for imaging• new production routes for radionuclides• new radionuclides for new applications

Research Themes (2)

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

OYSTER • Power upgrade from 2 to 3 MW• Higher Density Fuel• Installation of Cold Neutron Source• Installation of New Instruments and Facilities

Page 5: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

5

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

HTR Reactor Physics

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Pebble-bed fuel

Page 6: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

6

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Prismatic fuel

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Differences between LWR and HTRLWR HTR

Fuel UO2 pin UO2 sphere

Moderator Water Graphite

Coolant Water Helium

Temperature (oC) 300 900

Enrichment (%) 5 10

Burnup (MWd/kgU) 60 120

Specific power (kW/kgU) 40 80

Power density (kW/l) 100 6

Page 7: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

7

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Contents of this lecture

• Slowing down of neutrons in graphite moderated reactors

• Resonance shielding and cell weighting procedures in double heterogeneous geometries

• Implications of high temperatures on the thermal spectrum

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

10-2

100

102

104

106

10-1

100

101

102

103

104

Fis

sion

cro

ss s

ectio

n (b

arn)

Energy (eV)10

-210

010

210

410

610

-8

10-7

10-6

Fis

sion

spe

ctru

m

U-235

Pu-239

U-238

Moderation of neutrons

Page 8: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

8

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Moderation of neutrons

Ferziger&Zweifel, Theory of neutron slowing down in nuclear reactors, 1966

f

a

10-2

100

102

104

106

0.5

1

1.5

2

2.5

3

3.5

4

U-235

Rep

rodu

ctio

n fa

ctor

10-2

100

102

104

106

10-8

10-7

10-6

Fis

sion

spe

ctru

m

Energy (eV)

10-2

100

102

104

106

0.5

1

1.5

2

2.5

3

3.5

4

U-235

Rep

rodu

ctio

n fa

ctor

10-2

100

102

104

106

10-8

10-7

10-6

Fis

sion

spe

ctru

m

Energy (eV)

U-235

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Energy transfer in collisions• Elastic scattering most important• Conservation of energy and

momentum • Large energy transfer in

collisions at light nuclei• Hydrogen same mass as a

neutron* largest E-transfer

2mass nucleus 1

mass neutron 1

M AA

m A

*a neutron is 0.1% heavier. Think over the consequences.

Page 9: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

9

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Energy transfer in collisions

1 for '

1'

0 elsewhere

' 's s

E E EEp E E

E E E p E E

'p E E

E E

Area=1

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Energy transfer in collisions

Average energy:

1 ' ' ' ' 1

2

Average energy loss:

1 ' 1

2

E

E

E E p E E dE E

E E E E

Page 10: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

10

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Energy transfer in collisions

21

Example: Hydrogen 01

1 1Average energy: ' 1

2 2

A

A

E E E

?

1 6

61

Number of collisions to slow down a neutron from

=1 Mev to =1 eV in a hydrogeneous medium:

log 10110 20 collisions

2 log 2

H L

n

L

H

E E

En

E

Two collisions with energy loss of 50%

One collisions with energy loss of 80% and one with 20%

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Energy vs Lethargy

Transform to a new variable that changes linearly

in each collisi

Energy

Letharon

lo

gy

g HEu

E

Average lethargy gain per collision:

1 log

1

21 log large A

213

H

H

E

H

HE

Eu dE

E E

A

Page 11: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

11

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Number of collisionsNow, the number of collisions to increase the

lethargy to corresponding with energy becomes:

log

Numerically the same to the number of collisions

needed to slow down a neut

n

H

average

u E

EE

n

almost

Lamarsh, Introduction to Nuclear Reactor Theory, 1965

ron from to HE E

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Number of collisions

Number of collisions to slow down a neutron from

=1 Mev to =1 eV in various media:

log /

H L

H

E E

E En

Element A

H 1 0 1.000 14

D 2 0.111 0.725 19

Be 9 0.640 0.207 67

C 12 0.716 0.158 88

U 238 0.983 0.00838 1649

n

Page 12: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

12

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Elastic scatter cross section

10-2

100

102

104

106

0

0.5

1

1.5

2

2.5

3

3.5

4

Ela

stic

sca

tter

cro

ss s

ectio

n (c

m-1

)

Energy (eV)

water

graphite

Mean free path 2.5 cm

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

2

2

large

A good moderator has large

small

Moderating power measure of energy transfer

Moderator ratio

Moderator Power Ratio

H O 1.35 71

D O 0.176 5670

Be 0.158 143

C 0.060 192

s

a

s

s

a

Moderator power and ratio

Page 13: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

13

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Space-dependent slowing down Moderating power

Energy transfer to the moderator per unit path length

lethargy gain by the neutron:

s

sdu dx

Monte Carlo game:

Start particles at isotropic plane source

Follow the particles from interval to interval

In each interval, certain probability to scatter

When scattering, particles can reverse d

irection

When scattering, particles gain lethargy

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Space-dependent slowing down

-100 -80 -60 -40 -20 0 20 40 60 80 1000

0.005

0.01

0.015

0.02

0.025

0.03

Interval

Leth

argy

dis

trib

utio

n

u=4u=6u=8

Page 14: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

14

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Space-dependent slowing down Fermi-age model

Age-diffusion equation

Continuous slowing down model

Takes the form of time-dependent diffusion eq. without absorpti

2

2

on

,,

where , , (slowing down density) and

is the Fermi age:

1

6 is mean squared distance a source neutron travels until it reaches

s

qq

q u u u

u

r

rr

r r

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Space-dependent slowing down

Duderstadt&Hamilton, Nuclear Reactor Analysis, 1976

Non-absorbing slab

Plane source

Page 15: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

15

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Space-dependent slowing down

2 2

2

Recall from diffusion theory assumed to be known

is diffusion length

1

6

is mean squared distance a thermal neutron travels until absorption

L

L r

L

birth

death

2L

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Space-dependent slowing down2 2 2

2 2

1 1Fermi age Diffusion length

6 6

Migration area

Migration length is 1/ 6 of the rms distance a neutron travels

between birth as a fission neutron and absorption in thermal range

r L r

M L

M

Duderstadt&Hamilton, Nuclear Reactor Analysis, 1976

Page 16: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

16

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Resonance absorption

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Flux depression in a resonance.

Neutron flux depression in resonance

Neutron flux spectrum

in the fuel lump often

calculated by collision

probability method

Resonance integral:

FI E E dE

Page 17: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

17

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Neutron balance in two regions

/

/

/

/

' '1 ' regioFuel

Moderat

n1 '

' ''

1 '

' 'region '

1 'o

' '1 '

1

r

'

F

M

F

M

FF t F

E Fs F

F FMFE

E Ms M

M MFME

MM t M

E Fs F

F FMFE

E Ms M

M MFME

V E E

E EV P E dE

E

E EV P E dE

E

V E E

E EV P E dE

E

E EV P E dE

E

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

First-flight escape probabilities

is probability that a neutron originating in the fuel

will make its next collision in the moderator

is probability that a neutron originating in the moderator

will mak

FM

MF

P E

P E

e its next collision in the fuel

Both and are usually approximated by the first-flight

escape probabilities assuming a flat source distribution.

In particular:

FM MF

FM esc

P P

P E P

Page 18: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

18

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Two-region slowing-down equations Three approximations in the slowing down equations:

Flat source approx for and reciprocity theorem

Narrow resonance approximation in the moderator

No absorption in the moderator (1/

FM MFP P

E

/

Stacey, Nuclear Reactor P

Only one equation;

flux)

' '1 '

1 '

Several approximations possible for ' like NR, NRI

only

M, etc

needed

F

FM

E F Fs F FM tF

t F FMFE

F

E E P E EE E P E dE

P

E E

E

hysics, 2000

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

First-flight escape probability

0 2 4 6 8 10 12 14 16 18 200

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R TF

Pes

c

Plate

Cylinder

Sphere

3 1 1S C P

4 2 4F F Ft t tR R R

Small lump: 1escP

1Large lump:

4F

esc F Ft F t

SP

l V

/ 4Wigner rational approx:

1 / 4

FF F t

esc FF F t

S VP

S V

Case et al, Introduction to the theory of neutron diffusion

Page 19: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

19

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Elastic scatter cross section

10-2

100

102

104

106

0

0.5

1

1.5

2

2.5

3

3.5

4

Ela

stic

sca

tter

cro

ss s

ectio

n (c

m-1

)

Energy (eV)

water

graphite

Mean free path 2.5 cm

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Rod shadowing and Dancoff factors

0 0 0 1 0 0 1 1 2

If a neutron can easily interact with neighbouring fuel lumps,

the first flight escape probability is not a good estimate for

Better:

1 1 1 1 1 1 ...

FM

FM esc

M M F M M F M F M

P

P P

P P P P P P P P P

0esc MP P 0 0 11 1esc M F MP P P P

Page 20: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

20

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Rod shadowing and Dancoff factors

0 0

0

0 0 0

0

Assuming: and this series converges to:

1

1 1 1 1 1

The Dancoff factor 1 is the probability that a

neutron emitted isotropically from a fuel lump, wi

i iM M F F

MFM esc esc

M F F

M

P P P P

P CP P P

P P C P

C P

(Bell and Glasstone, Nuclear Reactor Theory, 1970)

ll enter

a neighbouring fuel lump without interaction in between.

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Dancoff factors for a double heterogeneous fuel design

is the probability that the neutron will

enter a fuel kernel in another pebble without

collision in between

InterC

is the probability that a neutron leaving

a fuel kernel will enter another kernel in the

same pebble without collision with graphite

IntraC

Page 21: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

21

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Total Dancoff factor

*1*

1

*

11

1

is probability per unit path that a neutron

will collide with a moderator nuclide or will

enter a fuel kernel.

Note that if the fuel pebble conta

esc IIfk fk fk FZesc

IO II OI

P R TC C P R C C

T T T

Bende , Nucl Sci Eng, 113:147-162 (1999)

ins

no moderator zone then:

1, =1 and FZ fk fkIO OI

et al

T T C C C

Intra Inter

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

!=======================================! Program dancoff - calculate Dancoff factor for pebble bed HTR! J.L. Kloosterman, Delft University of Technology! Reactor Institute Delft, Mekelweg 15, Delft! Email: [email protected]! Website: www.JanLeenKloosterman.nl! Phone: +31 15 278 1191!=======================================

program dancoffparameter (pi=3.14159265)real intra,inter,infdan

!-----read the radius of the fuel grain (cm) (usually 0.025 cm)read(5,*) rg1

!-----read the number of fuel grains per pebbleread(5,*) grn

!-----read the radius of fuel zone of pebble (usually 2.5 cm)read(5,*) rp1

!-----read the radius of graphite moderator shell (usually 3 cm)read(5,*) rp2

!-----sigma of graphite is 0.4097 1/cmsigma = 0.4097rg2 = rp1 / (grn**(1./3.))

!-----calculate dancoff factordan1 = intra(rg1,rg2,rp1,rp2,sigma)dan2 = inter(rg1,rg2,rp1,rp2,sigma)cinf = grain(rg1,rg2,sigma)write(6,1100) dan1,dan2,cinf,dan1+dan2

!=========================================1100 format(' Intra Dancoff factor ',f8.4,/, &

' Inter Dancoff factor ',f8.4,/, &' Infinite med Dancoff ',f8.4,/, &' Total Dancoff factor ', f8.4)

!=========================================end

real function grain(r1,r2,sigma)!-----calculates the inf medium fuel grain Dancoff factor!-----Eq. A.12 in thesis Evert Bende

call trans(r1,r2,sigma,tio,toi,too)grain = tio*toi/(1.0-too)returnend

real function intra(rg1,rg2,rp1,rp2,sigma)!-----calculates the intra-pebble Dancoff factor!-----Eq. A.24 in thesis Evert Bende

call trans(rg1,rg2,sigma,tio,toi,too)star = -alog(too)/chord(rg2)intra = grain(rg1,rg2,sigma)*(1.0-pf(rp1*star))returnend

real function inter(rg1,rg2,rp1,rp2,sigma)!-----calculates the inter-pebble Dancoff factor!-----Eq. A.26 and A.28 in thesis Evert Bende

call trans(rg1,rg2,sigma,tio,toi,too)star = -alog(too)/chord(rg2)prob = pf(rp1*star)

!-----Eq. A.26 in thesis Evert Bendetii = 1.0-(4./3.)*rp1*star*probfac = (1.0-tii)/(1.0-tii*tio*toi)inter = grain(rg1,rg2,sigma)*grain(rp1,rp2,sigma)*prob*facreturnend

subroutine trans(r1,r2,sigma,tio,toi,too)!-----calculates transmission probabilities in a sphere!-----Eqs. A.3, A.5, A.6, and A.7 in thesis Bende

nint = 100r12 = r1**2r22 = r2**2dy = r1/real(nint)tio = 0.0do i=1,nint

y = (i-0.5)*dyy2 = y**2u = sqrt(r22-y2)-sqrt(r12-y2)tio = tio + y*exp(-sigma*u)*dy

enddotio = 2.0*tiotoi = tio/r22tio = tio/r12a = sigma*sqrt(r22-r12)too = (1.-(1.+2.*a)*exp(-2.*a)) / (2.*r22*(sigma**2))returnend

real function chord(r)!-----calculates mean chord length of a sphere!-----under Eq. A11 thesis Bende

chord = 4.0*r/3.0returnend

real function pf(rlam)!-----calculates the first flight escape probability for a sphere!-----Eq. A.9 in thesis Evert Bende

twor = 2.*rlampf = .75*(1.-(1.-(1.+twor)*exp(-twor))/(twor*rlam))/rlamreturnend

Download from www.janleenkloosterman.nl

(click on reports)

Page 22: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

22

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Dancoff factor results pebble-bed

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Number of grains

Cto

tal

250 m

100 m

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Dancoff factor results prismatic

3

2Sphere CylR R

Kruijf&Kloosterman, Annals Nucl Ener, 30:549-553, 2003

4Average chord length for a convex body always

Plate Cylinder Sphere

halfwidth radius radius

42 2

3

c s

c s

V

S

a R R

a R R

Page 23: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

23

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Dancoff factor results prismatic

Talamo, Annals Nucl Ener, 34:68-82, 2007

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Doppler temperature effect

Page 24: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

24

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Due to the vibration of the nucleus, the effective resonance broadens.

The area remains virtually constant.

Doppler temperature effect

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

2

E

E

E E

barn

100

50

5

Scatter

Re

Broaden

ed resonance 50

5 barn

sonance 100 ba

bar

r

n

n

Capture probability in resonance is

100

1 1 105

Capture probability in broadened resonance is

2 2 50

1

2

1

1 5 15

cap

tot

cap

tot

E E

E

E

E E

E E

E E

E

E

Doppler temperature effect

Page 25: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

25

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Doppler coefficient: 0refT T

d

dT

( )T

TrefT

ref ( 0)

Doppler temperature effect

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Thermal scattering kernel

Lamarsh, Introduction to Nuclear Reactor Theory, 1965

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1

The

rmal

sca

tter

ing

kern

el P

(E

E')

E'/E

100*kT

10*kT

kT

Hydrogen

Page 26: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

26

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Thermal scattering kernel

Massimo, Physics of High Temperature Reactors, 1976

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 20

0.2

0.4

0.6

0.8

1T

herm

al s

catt

erin

g ke

rnel

P(E

E

')

E'/E

40*kT

10*kT

kT

Carbon

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Thermal neutron spectrum

0

Thermal region characterized by upscattering of neutrons

Under the assumptions of no absorption and no sources:

' ' '

Result is a Maxwellian neutron number density:

mE

s sE E E E E dE

3/ 2

1/ 2

03/ 2

2exp

and corresponding neutron flux density:

2 2 exp

o

M

n EM E E

kTkT

n EE E

m kTkT

Page 27: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

27

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Thermal neutron spectrum

10-3

10-2

10-1

100

0

0.5

1

1.5

2

2.5

3

The

rmal

Max

wel

l spe

ctru

m

M(E

)

Energy (eV)

293 K

kT=0.025 eV

5·kT

03/ 2

0

1/ 2

03/ 2

2exp

Average neutron energy:

3

2

2 2exp

Most probable energy:

0

2Corresponding velocity: 2200 m/s for T=293 K

M

MT

n EM E E

kTkT

E E M E dE kT

n EE E

m kTkT

EE kT

E

kTv

m

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Thermal neutron spectrum

10-3

10-2

10-1

100

0

0.5

1

1.5

2

2.5

3

The

rmal

Max

wel

l spe

ctru

m

M(E

)

Energy (eV)

293 K

600 K

900 K

1200 K

Page 28: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

28

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Duderstadt&Hamilton, Nuclear Reactor Analysis, 1976

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Moderator temperature effect

10-2

10-1

100

0

0.5

1

1.5

The

rmal

Max

wel

l spe

ctru

m

M(E

)

Energy (eV)10

-210

-110

00

2

Rep

rodu

ctio

n fa

ctor

1500 K900 K

Pu-239

U-235Pu-241

f

a

Page 29: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

29

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Moderator temperature effect

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Moderator temperature effect

pcm/K

1100 1100 1100 1.32553

Fuel 1400 1100 1100 1.31285 -2.43

Shell 1100 1400 1100 1.32019 -1.02

Pebble 1400 1400 1100 1.30006 -4.93

Reflector 1100 1100 1400 1.33318 1.44

Fuel Shell ReflecT T T k

Page 30: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

30

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Double cell-weighting procedure

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Single cell-weighting procedure

Page 31: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

31

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Cell weighting procedure

0 500 1000 1500 2000 25000.8

1

1.2

1.4

1.6

1.8

2

C over U relation

k k

un i fo rm fuel 20%

20%

10%

k

doub le heterogeneous 10%

k

as a function of C/U for 10% and 20% enriched fuel

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Core design

Top reflector

Pebble bed

Inner reflector

Bottom reflector

Outlet pipe

Barrel support

Pressure vessel

Outer reflector

Core barrel

Defuel shute

Unloading syst.

Page 32: HTR Reactor Physics - Jan Leen Kloosterman · HTR Reactor Physics Slowing down and thermalization of neutrons Jan Leen Kloosterman ... Average lethargy gain per collision: 1 log 1

32

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Neutron flux density

10-2

100

102

104

106

0

0.2

0.4

Neu

tron

spe

ctru

m r

efle

ctor

Energy (eV)

10-2

100

102

104

106

0

5

10

15

Neu

tron

spe

ctru

m f

uel z

one

VHTR Eurocourse, Prague, May 21-24, 2013J.L. Kloosterman, Delft University of Technology

Concluding remarks• Neutrons slowing down in HTRs need much more collisions than in LWRs; distance traveled is longer.

• Due to large epithermal neutron flux and homogeneously distributed fuel, resonance absorption is important => use less uranium with high enrichment and high specific power.

• Resonance shielding calculations need special double-heterogeneous Dancoff factors.

• Physically, HTR cores are very large, but neutronically they are not.

• Moderator temperature reactivity effect mainly due to shift of Maxwell spectrum and non-1/v absorbers.


Recommended