+ All Categories
Home > Documents > Hydrogen production by gasification and dark fermentation...

Hydrogen production by gasification and dark fermentation...

Date post: 30-Mar-2018
Category:
Upload: nguyenkhanh
View: 215 times
Download: 0 times
Share this document with a friend
16
Hydrogen production by gasification and dark fermentation from woody wastes: Energy and Environmental Analysis. Carlos A. García, Carlos A. Cardona Biotechnology and Agroindustrial Institute Universidad Nacional de Colombia Sede Manizales
Transcript

Hydrogen production by gasification and dark fermentation from woody wastes: Energy and

Environmental Analysis.

Carlos A. García, Carlos A. CardonaBiotechnology and Agroindustrial Institute

Universidad Nacional de Colombia Sede Manizales

Outline

1. Introduction

2. Methodology

3. Results and Discussion

4. Conclusions

1

Global EnergyOutlook

3

1. Introduction

Global Energy

Demand

Decreasedsupply fosil

fuels

IncreasedGHG

Renewable and sustainable Energy

Taken from British Petroleum

www.bp.com

Taken from U.S EnergyDepartment

www.energy.gov

Biomass in Colombia

4

SoftwoodPlantation

2,395,000 Ha

Residues1,941,135 ton/year

High Availability

High Energy Potential

Figure Pinus Patula Chips

*Mining and Energy Planning Unit (UPME)

Issues: Recollection and transport logistics

1. Introduction

Transformation pathways

5

LignocellulosicBiomasss

Figure. Technologies for Lignocellulosic Biomass transformation to hydrogen

1. Introduction

Hydrogen

6

PromisingSource of

Energy

High EnergyDensitiy

Low CO2

Emissions

Only 4% of Hydrogen isproduced from

Renewable Sources

Platforms for Hydrogen production

1. Introduction

2. Methodology

7

Experimental

• Pinus PatulaCharacterization

• Gasifier GEK • Portable Gas

Analyzer

Simulation

• Aspen Plus Modelling.

• Aspen EconomicAnalyzer.

• Waste ReductionAlgorithm (WAR)

Results

• EconomicEvaluation

• Energy Analysis• Environmental

Assessment.

Scenarios

8

3. Results

Lignocellulosic Biomass (LB) Gasification

Dark Fermentation

Synthesis Gas

Hydrogen

Electricity

Ethanol

Hydrogen

Hydrogen

Ethanol

Scenario 1

Scenario 2

Scenario 3

Scenario 5

Scenario 4

Thermochemical Pathway

Alcoholic Fermentation

Biochemical Pathway

Scenarios Technology Description Scenario 1

Gasification Hydrogen

Scenario 2 Hydrogen + Electricity Scenario 3 Hydrogen + Electricity + Ethanol Scenario 4 Dark Fermentation Hydrogen Scenario 5 Hydrogen + Ethanol

Gasification Procedure

9

Pyrolysis

Combustion

Reduction

Air

Ash

Biomass

Filtered Gas

Cyclon

Gas Filter

Feedstock Particle Size 1-2 cm Moisture Content 10-20 %wt Downdraft Gasifier Temperature 800 °C Air/Biomass Ratio 0.25 Kg Air/kg Biomass Gas Composition (%Vol) Experimental Simulation Hydrogen 16.87 19.69 Carbon Monoxide 15.7 19.13 Carbon Dioxide 10.75 12.63 Methane 2.56 0.005 Nitrogen 54.12 48.54 LHV (MJ/Nm3) 5.551 4.558

Experimental parameters used in gasification simulation.

Downdraft Gasifier Scheme

3. Results

Productivity

10

Scenarios Productiona Yieldsa Value Units Value Units

Scenario 1 6.71 Ton H2/day 0.059 Ton H2/ton wood Scenario 2 3.35 Ton H2/day 0.03 Ton H2/ton wood Scenario 3 2.24 Ton H2/day 0.02 Ton H2/ton wood

35,980 Liters Ethanol/day 318.2 Liters Ethanol/ton wood Scenario 4 0.78 Ton H2/day 0.007 Ton H2/ton wood Scenario 5b 5582.7 Liters Ethanol/day 49.4 Liters Ethanol/ton wood

3. Results

Pinus Patula

Chipper

Dryer

Air

Cyclon

Ash

Absorber

Desorber

Calcium Oxide

Air

Calcium Carbonate

Membrane

Syngas

H2-Rich GasClean Gas

Compressor

Hydrogen

Gasifier

Gas Engine

Exhaust Gas

Electricity

Biomass GasificationDark Fermentation

a Calculated for 113.1 Ton Pinus Patula/dayb Hydrogen productivity is the same for case 3

Energy Analysis

11

64.33758.909 59.155

49.309

77.812

0

20.000

40.000

60.000

80.000

100.000

MJ/

Ton

Pinu

s Pat

ula

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

37,25%49,14%

68,58%

4,88%10,24%

0%

20%

40%

60%

80%

Effic

ienc

y

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

EnergyEfficiency

EnergyConsumption

3. Results

Economic Evaluation

12

0% 10% 20% 30% 40% 50% 60% 70% 80%

Raw Materials

Operating Labor

Utilities

Operating Charges, Plant …

General and Administrative Cost

Depreciation of Capital

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

77,6% 61,9% 70,7%

-223,6%

-22,3%

-250%

-200%

-150%

-100%

-50%

0%

50%

100%

Prof

it M

argi

n

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

Profitability

DistributionCost

3. Results

EnvironmentalAssessment

13

0

20

40

60

80

100

120

140

HTPI HTPE TTP ATP GWP ODP PCOP AP TOTAL

PEI/K

g H

2

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

0

20

40

60

80

100

120

140

HTPI HTPE TTP ATP GWP ODP PCOP AP TOTAL

PEI/K

g Et

hano

l+H

2

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

0

20

40

60

80

100

120

140

HTPI HTPE TTP ATP GWP ODP PCOP AP TOTAL

PEI/K

g Pr

oduc

ts

Sc. 1 Sc. 2 Sc. 3 Sc. 4 Sc. 5

A

B

C

A – H2 as main product.B – H2 and Ethanol as main

products.C – H2, Ethanol and Electricity

as main products.

3. Results

4. Conclusions

• Thermochemical processes have higher energy requirements incomparison to biochemical processes. Nevertheless, the processefficiency is higher due to the exploitation of a large variety ofbyproducts obtained from the hydrogen production.

• Improvement in the hydrogen production cost is necessary tocompete with mature technologies (i.e Steam Methane Reformer).

• Biochemical processes require more research not only in terms ofproductivity but also in the proper use of metabolites in thefermentation broth.

• Acetic and butyric acid separation could improve the hydrogenproduction cost and reduce the emissions.

14

References• P. Parthasarathy and K. S. Narayanan, “Hydrogen production from steam gasification of

biomass: Influence of process parameters on hydrogen yield - A review,” Renew. Energy, vol. 66, pp. 570–579, 2014.

• P. Lv, Z. Yuan, L. Ma, C. Wu, Y. Chen, and J. Zhu, “Hydrogen-rich gas production from biomass air and oxygen/steam gasification in a downdraft gasifier,” Renew. Energy, vol. 32, pp. 2173–2185, 2007.

• I. Ntaikou, G. Antonopoulou, and G. Lyberatos, “Biohydrogen production from biomass and wastes via dark fermentation: A review,” Waste and Biomass Valorization, vol. 1, pp. 21–39, 2010.

• J. Moncada, M. M. El-Halwagi, and C. a. Cardona, “Techno-economic analysis for a sugarcane biorefinery: Colombian case,” Bioresour. Technol., vol. 135, pp. 533–543, 2013.

• N. Q. Ren, G. L. Cao, W. Q. Guo, A. J. Wang, Y. H. Zhu, B. F. Liu, and J. F. Xu, “Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16,” Int. J. Hydrogen Energy, vol. 35, no. 7, pp. 2708–2712, 2010.

• K. Urbaniec and R. R. Bakker, “Biomass residues as raw material for dark hydrogen fermentation – A review,” Int. J. Hydrogen Energy, vol. 40, no. 9, pp. 3648–3658, 2015.

15

16

THANK YOUHydrogen production by gasification and dark fermentation from woody wastes: Energy and

Environmental Analysis.

Corresponding Author: Carlos Ariel Cardona Alzate.Km 9 Vía al Aeropuerto La Nubia, Manizales, Caldastel. +57 68879400 ext 55354e-mail: [email protected] Nacional de Colombia. Sede Manizales


Recommended