+ All Categories
Home > Documents > Hydrogeological Assessment II: Fractured Rock Aquifers

Hydrogeological Assessment II: Fractured Rock Aquifers

Date post: 26-Nov-2021
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
179
APPENDIX 4-2 Hydrogeological Assessment II: Fractured Rock Aquifers
Transcript
Page 1: Hydrogeological Assessment II: Fractured Rock Aquifers

APPENDIX 4-2

Hydrogeological Assessment II:

Fractured Rock Aquifers

Page 2: Hydrogeological Assessment II: Fractured Rock Aquifers

T: (+61 8) 9433 2222  F: (+61 8) 9433 2322 ABN: 97 107 493 292 A: 15 Harborne St, Wembley, WA 6162  P: Po Box 442, Bayswater, WA 6933 

Prepared for 

Hastings Technology Metals Limited 

c/o Wave International 

306 Murray Street 

Perth WA 6000 

Report Distribution 

No. Copies 

1  Hastings Technology Metals Limited (electronic) 

1  Groundwater Resource Management Pty Ltd (electronic) 

Report J1709R01  April 2018 

STAGE II FRACTURED ROCK 

HYDROGEOLOGICAL ASSESSMENT 

YANGIBANA RARE EARTHS PROJECT 

Page 3: Hydrogeological Assessment II: Fractured Rock Aquifers

EXECUTIVE SUMMARY 

 J1709R01    April 2018 

 

i  

 

Hastings Technology Metals Limited (Hastings) owns the Yangibana Rare Earths Project (the Project), 

located  in  the Upper Gascoyne  region of Western Australia.   Hastings has undertaken a Definitive 

Feasibility Study  (DFS) on the basis of  initially developing  two proposed pits,  i.e. Fraser’s and Bald 

Hill, with subsequent pits  to  follow  (including Yangibana North and Yangibana West).   The Project 

will include on‐site processing, a FIFO/DIDO village and an airstrip. The life of mine is approximately 

10 years.    

The Public Environmental Review (PER) document states that the project may require a raw water 

demand  of  up  to  2.5  GL/annum.  The  current  DFS  level  water  balance  for  the  process  plant  and 

associated  infrastructure  indicates  that  the  raw water  demand  is  likely  to  be  approximately  1.84 

GL/annum (58.5 L/s), for the purposes of mineral processing, dust suppression and camp / potable 

supply (via reverse osmosis treatment). The difference between this and the 2.5 GL stated in the PER 

document is considered to be a “reserve” that will be continuously refined as the plant detail design 

matures through to construction and ultimately, operations. Whilst the current estimates includes a 

20%  contingency,  there  are  invariably  uncertainties  associated  with  plant  scale‐up  and  process 

optimisation that will only be confirmed once the plant is commissioned to full capacity.   

A Stage I assessment was undertaken in 2016 (GRM, 2017).  The Stage II study comprised a fractured 

rock and palaeochannel study, aimed at providing supporting documentation to:  

the formal Environmental Impact Assessment under Part IV of the Environmental Protection 

Act 1986 (WA);  

a 5C licence to abstract groundwater under the Rights in Water and Irrigation Act 1914 (WA) 

a Mining Proposal under the Mining Act 1978 (WA); 

a works approval for pit dewatering under Part V of the Environmental Protection Act 1986 

(WA) .   

The fractured rock component of the Stage II study is the focus of this report, and comprises a pit 

dewatering and water supply assessment. 

The  dewatering  assessment  of  the  Fraser’s,  Bald  Hill,  Yangibana  North  and  Yangibana  West  pits 

included field investigations comprising exploration drilling, airlift recovery testing, the installation of 

three test production bores and test pumping of four bores.  The results indicate that permeability is 

associated with  ironstone veins, further enhanced by cross cutting structures.   The groundwater  is 

slightly alkaline, fresh to brackish and of sodium chloride type.   Chloride mass balance calculations 

indicate recharge rates of about 1.3 to 2.4 mm per year, and the isotope analysis indicates that the 

groundwater  is  not  modern  (i.e.  greater  than  60  years  old).    Given  the  small  surface  water 

catchment sizes (150 to 200 km2),  low average rainfall,  low recharge rates and the isotope results; 

recharge  to  the  fractured  rock  aquifer  is  expected  to  be  limited.    The  storage  of  the 

hydrostratigraphic units may also be limited, based on test pumping results.       

Average combined dewatering rates for the four pits have been estimated to range from 2.9 L/s in 

year  three  to 54.8  L/s  in  year  seven.      Short‐term higher groundwater  inflows may occur  if water 

bearing  geological  structures  are  encountered.    Dewatering  rates  may  also  be  lower  than 

anticipated,  particularly  during  the  latter  stages  of  the  Project,  due  to  the  limited  storage  of  the 

hydrostratigraphic  units.    Dewatering  will  likely  be  best  achieved  by  sump  pumping,  possibly 

supplemented by dewatering bores.   

Page 4: Hydrogeological Assessment II: Fractured Rock Aquifers

J1709R01    April 2018 

ii 

The  three  test  bores  are  not  considered  dewatering  bores  as  they  were  constructed  for  testing 

purposes only.  However, the test bores can be utilised during the construction phase of the Project 

(to a combined yield of 16 L/s) and will facilitate dewatering ahead of mining to some degree.  It is 

recommended that the performance of the test bores is closely monitored during the construction 

phase  to  re‐assess  the  requirement  for dewatering bores.   A groundwater monitoring programme 

will likely be required, and a preliminary monitoring schedule has been provided in this report. 

Pit lake modelling indicates that the four pits act as groundwater sinks (i.e. no groundwater through 

flow) under average and wet conditions, and also indicate a rise in salinity over 500 years to about 

34,000 mg/L  TDS.    The  modelling  indicates  that  the  risk  of  discharge  of  lake  water  to  the 

groundwater environment post closure is low under the simulated climate conditions. 

A fractured rock water supply  investigation was undertaken to target fractured rock aquifers away 

from the pit areas, at Auer North and the Western Belt.  One potential bore location was identified.  

The  focus of  the water supply  investigation was shifted to  target palaeochannel aquifers, which  is 

discussed in a separate report.   

An addendum to the existing fractured rock groundwater licence, to increase the annual allocation 

to 820,000 kL/annum (to cover the first three to five years of mining), is expected to be submitted to 

the DWER Water Division by the end of April 2018, with the required supporting documentation.  

Page 5: Hydrogeological Assessment II: Fractured Rock Aquifers

J1709R01    April 2018 

iii 

GLOSSARY OF HYDROGEOLOGICAL TERMS 

Aquifer A  saturated  geological  unit  that  is  permeable  enough  to  yield  economic 

quantities of water. 

Aquitard A geological unit that is permeable enough to transmit water but not sufficient 

to yield economic quantities. 

Aquiclude A geological unit that is impermeable, i.e. cannot transmit water. 

Confined Aquifer An aquifer bounded above and below by an aquiclude, where the water level in 

the  aquifer  extends  above  the  aquifer  top  and  is  represented  by  a  pressure 

head, i.e. the aquifer is completely saturated. 

Drawdown The change in hydraulic head observed at a well  in an aquifer, typically due to 

pumping. 

Leaky  Aquifer  or  Semi‐Confined Aquifer 

An aquifer with upper and/or lower boundaries as an aquitard, where the water 

level  in  the  aquifer  extends  above  the  aquifer  top  and  is  represented  by  a 

pressure  head.    Pumping  from  the  aquifer  induces  leakage  from  the 

neighbouring aquitard units. 

Unconfined  or  Watertable Aquifer 

An aquifer  that  is bounded below by an aquiclude, but  is not  restricted on  its 

upper boundary, which is represented by the water table. 

Hydraulic Conductivity (K) 

[Permeability] 

The volume of water that will flow in a unit time under a unit hydraulic gradient 

through a unit area.  Analogous to the permeability with respect to fresh water 

(units commonly m/d or m/s). 

Transmissivity (T) The product of  the hydraulic  conductivity  and  the  saturated aquifer  thickness 

(units commonly m3/d/m or m2/d) 

Specific Storage (Ss) The  volume  of  water  released  from  a  unit  volume  of  aquifer  under  a  unit 

decline  in  hydraulic  head,  assuming  confined  aquifer  conditions.    Water  is 

released  because  of  compaction  of  the  aquifer  under  effective  stress  and 

expansion of the water due to decreasing pressure (units commonly m‐1). 

Storativity (S) The  volume  of  water  released  from  a  unit  area  of  aquifer,  i.e  the  aquifer 

column, per unit decline in hydraulic head (dimensionless parameter). 

Specific Yield (Sy) The  volume of water  released  from an unconfined  aquifer  per  unit  decline  in 

the  water  table.    The  release  of  water  is  mostly  from  aquifer  draining.  

Contributions  from  aquifer  compaction  are  generally  small.    Analogous  with 

effective porosity (dimensionless parameter). 

Terms referenced from Kruseman GP and de Ridder NA (1994) 2nd edition, Analysis and Evaluation of Pumping Test Data.  

ILRI Publication 47 The Netherlands. 

Page 6: Hydrogeological Assessment II: Fractured Rock Aquifers

J1709R01    April 2018 

iv 

TABLE OF CONTENTS 

1.0  INTRODUCTION ........................................................................................................................... 1 

2.0  BACKGROUND ............................................................................................................................. 3 

2.1  Project Description .................................................................................................................. 3 

2.2  Climate .................................................................................................................................... 3 

2.3  Geology ................................................................................................................................... 4 

2.4  Regional Hydrogeology ........................................................................................................... 5 

2.5  Other Groundwater Users ...................................................................................................... 6 

2.6  Department of Water Register ............................................................................................... 8 

2.7  Groundwater Dependant Ecosystems .................................................................................... 8 

3.0  Dewatering Assessment ............................................................................................................ 10 

3.1  Field Investigations ............................................................................................................... 10 

3.1.1  Exploration Drilling ........................................................................................................ 10 

3.1.2  Hydraulic Testing ........................................................................................................... 11 

3.1.3  Test Bore Installation .................................................................................................... 16 

3.1.4  Test Pumping ................................................................................................................ 18 

3.2  Groundwater Quality ............................................................................................................ 23 

3.3  Chloride Mass Balance .......................................................................................................... 24 

3.4  Isotope Analysis .................................................................................................................... 24 

3.5  Recharge and Storage ........................................................................................................... 25 

3.6  Dewatering Requirements .................................................................................................... 26 

3.6.1  Mining Schedule ............................................................................................................ 26 

3.6.2  Estimated Dewatering Rates ......................................................................................... 28 

3.7  Dewatering Strategy ............................................................................................................. 29 

3.8  Monitoring Programme ........................................................................................................ 30 

4.0  Pit Lake Modelling ..................................................................................................................... 32 

4.1  Water Balance Set‐Up ........................................................................................................... 32 

4.1.1  Pit Lake Storage Volume ............................................................................................... 33 

4.1.2  Groundwater Inflows and Outflows ............................................................................. 33 

4.1.3  Rainfall and Runoff ........................................................................................................ 34 

4.1.4  Evaporative Outflows .................................................................................................... 34 

4.1.5  Pit Geometry ................................................................................................................. 35 

4.1.6  Solute Balance Set‐Up ................................................................................................... 38 

Page 7: Hydrogeological Assessment II: Fractured Rock Aquifers

 J1709R01    April 2018 

 

v  

 

4.2  Water Balance Modelling Results ......................................................................................... 38 

5.0  Water Supply Investigation ....................................................................................................... 41 

5.1  Groundwater Targets ............................................................................................................ 41 

5.2  Exploration Drilling ................................................................................................................ 41 

5.3  Monitoring Bore Installation ................................................................................................. 43 

6.0  Water Supply Discussion ........................................................................................................... 44 

7.0  Groundwater Licensing ............................................................................................................. 45 

7.1  Resource Area and Current Allocation .................................................................................. 45 

7.2  Licence Application ............................................................................................................... 46 

7.3  Regulatory Reporting Requirements .................................................................................... 46 

7.4  Requirement for Operating Strategies.................................................................................. 47 

8.0  Summary and Conclusions ........................................................................................................ 49 

 

 

TABLES

Table 1  Long Term Average Rainfall and Evaporation Data 

Table 2  WIR Bores Within 20 Km 

Table 3  Nearby Groundwater Well Licences 

Table 4  Exploration Drilling Results 

Table 5  Hydraulic Testing Data 

Table 6  Hydraulic Test Results 

Table 7  Test Production and Monitoring Bore Details 

Table 8  Test Pumping Summary 

Table 9  Test Pumping Results 

Table 10  Bore Details and Pumping Rates 

Table 11  Groundwater Quality 

Table 12  Chloride Mass Balance 

Table 13  Isotope Analysis Results 

Table 14  Mining Schedule 

Table 15  Dewatering Estimates 

Table 16  Dewatering Monitoring Schedule 

Table 17  Baseline Groundwater Flow Parameters 

Table 18  Pit Catchments 

Table 19  Pit Geometry Data 

Table 20  Model Runs 

Page 8: Hydrogeological Assessment II: Fractured Rock Aquifers

J1709R01    April 2018 

vi 

Table 21  Predicted Lake Levels and Residual Drawdowns 

Table 22  Water Supply Exploration Drilling Results 

Table 23  Water Supply Monitoring Bores 

Table 24  Current Resource Allocation 

Table 25  DWER Decision Matrix for Hydrogeological Assessments 

Table 26  DWER Decision Matrix for Operating Strategies 

FIGURES

Figure 1  Location Plan 

Figure 2  Project Tenements 

Figure 3  Regional Geology 

Figure 4  Surface Water Catchments 

Figure 5  Other Groundwater Users 

Figure 6  Fraser’s Drilling Results 

Figure 7  Bald Hill Drilling Results 

Figure 8  Yangibana North and West Drilling Results 

Figure 9  Fraser’s Model Simulated Post Closure Pit Lake 

Figure 10  Bald Hill Model Simulated Post Closure Pit Lake 

Figure 11  Yangibana North Simulated Post Closure Pit Lake 

Figure 12  Yangibana West Simulated Post Closure Pit Lake 

Figure 13  Fractured Rock Aquifer Drilling Target Areas 

Figure 14  Fractured Rock Aquifer Drill Hole Location Plan 

Figure 15  Fractured Rock Production and Monitoring Bores 

APPENDICES

Appendix A  Regional Water Quality 

Appendix B  GDE Atlas 

Appendix C  CAW183123 & CAW183464 

Appendix D  Test Pumping Analysis 

Appendix E  Fraser’s and Bald Hill Bore Logs 

Appendix F  Laboratory Certificates 

Appendix G  Isotope Analysis 

Appendix H  Revised Pit Modelling Report 

Appendix I  GWL 

Page 9: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

1  

 

1.0 INTRODUCTION Hastings Technology Metals Limited (Hastings) owns the Yangibana Rare Earths Project (the Project), 

located  approximately  150  km north  east  of Gascoyne  Junction,  in  the Upper Gascoyne  region of 

Western Australia (Figure 1). 

The Project’s  tenements  (Figure 2) cover approximately 650 km2, and hosts extensive  rare earths‐

bearing ferrocarbonatite/ironstone veins containing neodymium, praseodymium and dysprosium in 

a monazite ore.  The elements are of interest to the rare earths magnet market, and the advancing 

technologies in electric vehicles, wind turbines, robotics and digital services. 

Hastings has undertaken a Definitive Feasibility Study (DFS) on the basis of  initially developing two 

pits, i.e. Fraser’s and Bald Hill (Figure 3) with other pits following to the south and north‐west of the 

plant site.  Mineralisation also occurs at several other deposits including Yangibana West, Yangibana 

North, Yangibana South, Yangibana, Gossan, Lions Ear, Hook, Kane’s Gossan, Spider Hill, Tongue, and 

Auer  and  Auer  North  (Figure  3).    Yangibana  West,  Auer,  Auer  North  and  Yangibana  are  the 

immediate prospective pits following completion of the Fraser’s and Bald Hill mining.   

To date, mining schedules have been prepared by Hastings’ mining consultant (Snowden Group) for 

four proposed pits; Fraser’s, Bald Hill, Yangibana North and Yangibana West.  Project infrastructure 

includes on‐site processing, a FIFO / DIDO mine accommodation village and an airstrip.   

Hastings  is  currently  preparing  documentation  for  project  approval,  including  and  relevant  to 

groundwater are; 

the formal Environmental Impact Assessment under Part IV of the Environmental Protection 

Act 1986 (WA);  

a 5C licence to abstract groundwater under the Rights in Water and Irrigation Act 1914 (WA) 

a Mining Proposal under the Mining Act 1978 (WA); 

a works approval for pit dewatering under Part V of the Environmental Protection Act 1986 

(WA).   

The proposed pits will be developed using conventional open cut methods to depths of 120 m below 

ground  level  at  Fraser’s  and  Bald  Hill  and  95  m  below  ground  level  at  Yangibana  North  and 

Yangibana West.  The four pits extend well below the ambient groundwater level and will require pit 

dewatering to maintain dry mining conditions.   

On‐site  processing  will  produce  a  Mixed  Rare  Earth  Carbonate  (MREC),  via  a  crushing,  grinding, 

flotation  and  hydrometallurgy  circuit.    The  plant  has  a  proposed  annual  throughput  of  1  Mtpa, 

producing approximately 12,000 to 13,000 tpa of MREC concentrate.  The Project’s proposed Life of 

Mine (LoM) is 10 years. 

The Public Environmental Review (PER) document states that the project may require a raw water 

demand  of  up  to  2.5  GL/annum.  The  current  DFS  level  water  balance  for  the  process  plant  and 

associated  infrastructure  indicates  that  the  raw water  demand  is  likely  to  be  approximately  1.84 

GL/annum (58.5 L/s), for the purposes of mineral processing, dust suppression and camp / potable 

supply (via reverse osmosis treatment). The difference between this and the 2.5 GL stated in the PER 

document is considered to be a “reserve” that will be continuously refined as the plant detail design 

matures through to construction and ultimately, operations. Whilst the current estimates includes a 

Page 10: Hydrogeological Assessment II: Fractured Rock Aquifers

INTRODUCTION 

J1709R01   April 2018 

20%  contingency,  there  are  invariably  uncertainties  associated  with  plant  scale‐up  and  process 

optimisation that will only be confirmed once the plant is commissioned to full capacity.  

A  desktop  hydrogeological  report  for  the  Project was  completed  by Global  Groundwater  in  2016.  

Hastings  then  commissioned  Groundwater  Resource Management  Pty  Ltd  (GRM)  to  assist  it with 

identifying a water source for the Project.   A Stage I hydrogeological assessment was completed in 

February  2017  (GRM 2017), which  included preliminary  assessments  of  dewatering  requirements, 

water supply options, post closure conditions and a water balance.   

Hastings  subsequently  engaged  GRM  in  mid‐2017  to  undertake  the  Stage  II  study.    The  study 

comprised  revising  pit  dewatering  estimates  based  on  the  revised  mine  schedules,  revised  post 

closure conditions and identifying a suitable water supply for the project.  The Stage II water supply 

search was initially focussed on fractured rock targets, in the vicinity of the proposed pits.  However, 

the  focus  changed  to  palaeochannel  targets  towards  the  end  of  2017,  once  the  investigations 

identified limited capacity in the fractured rock aquifers.     

This  report  presents  the  Stage  II  fractured  rock  component  of  the  study,  which  includes  revised 

dewatering assessment, pit closure assessment and the initial (fractured rock) water supply search.  

The  palaeochannel  water  supply  assessment  will  be  reported  in  a  separate  document.    A  water 

balance for the Project’s LoM will be included in the palaeochannel assessment, along with licensing 

requirements to abstract from the palaeochannel aquifer.       

Page 11: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

3  

 

2.0 BACKGROUND 

2.1 PROJECT DESCRIPTION The Project  is  situated approximately 270 east north‐east of Carnarvon, and 150 km north east of 

Gascoyne Junction (Figure 1).  The Mount Augustus National Park is approximately 80 km east of the 

project and the Kennedy Range National Park is approximately 100 km to the south west. 

The  Project  is  located  within  tenure  covering  an  area  of  some  650  km2,  with  long  term  mining 

activities  proposed  across  six  mining  tenements  and  associated  infrastructure  across  numerous 

general purpose and miscellaneous tenements.  The project also lists numerous exploration licences.  

The  tenements  comprise  100% ownership  and 70%  joint  venture ownership.   A plan  showing  the 

project tenements and ownership is provided in Figure 2.   

The  tenements  comprising  the  Project  are within  the Gifford  Creek  and Wanna  pastoral  stations.  

There  are  no  other mining  developments  in  the  local  Shire  of  Upper  Gascoyne, with  the  nearest 

mining  operation  being  at  Useless  Loop  (in  the  Shire  of  Shark  Bay)  and  Lake Macleod  (north  of 

Carnarvon). 

The topography in the Project area has been influenced by the Lyons River to the south, to a lesser 

extent by the Edmund River to the east, and a small range of hills to the north of Fraser’s and Bald 

Hill  (Figure 2).    The  remainder of  the  area  is  characterised by  subdued  topography, with  rounded 

granitic hills and open flat areas, cross cut by small dendritic drainages.   

The Project is situated within several smaller catchments, which form part of the larger Lyons River 

catchment.    The  Lyons  River  itself  is  located  about  10  km  south  of  the  Project  and  flows  south‐

westward,  ultimately  discharging  to  the  Gascoyne  River.    Several  smaller  creeks,  including  Fraser 

Creek and Yangibana Creek cross the Project site in a roughly north to south direction, discharging 

into the Lyons River.  The creeks and rivers in the region are ephemeral, only flowing following large 

rainfall events. 

2.2 CLIMATE The Gascoyne region is semi‐arid to arid, characterised by cool daytime temperatures in winter and 

hot  daytime  temperatures  in  summer.    Rainfall  is  typically  bi‐modal,  whereby  intense  summer 

rainfall can result from the passage of tropical cyclones from the north west, whilst winter rainfall is 

typically less intense, and associated with cold winter fronts from the south west. 

The  nearest  registered  Bureau  of  Meteorological  (BoM)  weather  station  with  long‐term  data  is 

Wanna (station number 7028), located approximately 12 km south of the Project.  The station has a 

98%  complete  data  set  for  the  63  year  period  between  the  1st  of  January  1946  and  the  31st  of 

October  2009.    Mean  monthly  rainfall  data  from Wanna  is  provided  in  Table  1.    The  data  from 

Wanna  indicates  that  the  average  annual  rainfall  is  around  240  mm,  with  the  highest  rainfall 

occurring from January to March, closely followed by May and June rainfall events. 

Evaporation data is recorded at Paraburdoo (station number 7178), located 160 km north east of the 

Project, and Learmonth Airport (station number 5007), 290 km north west of the Project.  The data 

from Paraburdoo and Learmonth has been scaled, based upon distance, to develop an estimate of 

average monthly evaporation for Yangibana (Table 1). 

Page 12: Hydrogeological Assessment II: Fractured Rock Aquifers

BACKGROUND 

 J1709R01    April 2018 

 

4  

 

The  evaporation  data  indicates  that  the  pan  evaporation  exceeds  mean  monthly  rainfall  in  all 

months of the year, with the total annual evaporation is well over an order of magnitude higher than 

the annual rainfall.   

Table 1: Long Term Average Rainfall and Evaporation Data 

 

Month 

Wanna  

(BoM station 7028) Yangibana Project 

Mean Monthly Rainfall  

(mm) 

Mean Monthly Pan 

Evaporation (mm) 

January  32.5  411 

February  59.0  365 

March  32.3  335 

April  18.1  272 

May  25.3  187 

June  32.0  137 

July  18.9  147 

August  10.1  191 

September  2.7  261 

October  3.0  346 

November  3.3  396 

December  7.7  427 

Annual Total  240.2  3,475 

 

2.3 GEOLOGY The  description  of  the  geological  conditions  associated  with  the  project  is  derived  from  the 

1:100,000 Edmund Sheet and explanatory notes  (Martin et al. 1994), and  information provided by 

Hastings and Global Groundwater (2016).  Figure 3 provides the regional geological conditions in the 

immediate area of the Project. 

The  Project  is  located  within  the  Gascoyne  Province  of  the  Capricorn  Orogen,  bounded  by  the 

Archean Yilgarn Craton to the south, the Archean Pilbara Craton to the north, and the Phanerozoic 

Carnarvon Basin to the west. 

The  predominant  lithology  in  the  area  is  the  Durlacher  Supersuite  granites,  which  comprise  the 

Pimbyana  Granite,  the  Dingo  Creek  Granite,  the  Yangibana  Granite  and  several  other  un‐named 

units.    The  suite mainly  consists  of monzogranite  and  granodiorite,  with  lesser  syenogranite  and 

minor amounts of tonalite and rare gabbro. 

Within the Project area, the granites contain rafts of older sedimentary rocks, and intrusive dykes.  

The primary mineralisation occurs in narrow, regionally extensive ferrocarbonatitie/ironstone veins.   

Page 13: Hydrogeological Assessment II: Fractured Rock Aquifers

BACKGROUND 

 J1709R01    April 2018 

 

5  

 

The  dykes  carry  anomalous  rare  earths  within  the  monazite  mineralisation.    The  dykes  are 

understood  to  be  a  younger  intrusive  phase  which  has  cross  cut  slightly  older  ferrocarbonatite 

dykes,  possibly  leaching  and  upgrading  rare  earths  minerals  (and  base  metals).    The  carbonatite 

dykes (which form the Gifford Creek Carbonatite Complex), along with associated fenitic alteration, 

are considered  to be sourced  from (an as yet undiscovered) carbonatite  intrusion at depth, which 

could potentially host significant rare earths and base metals. 

2.4 REGIONAL HYDROGEOLOGY The  description  of  the  regional  hydrogeological  conditions  is  derived  from  publicly  available 

information, the desktop study completed by Global Groundwater (2016) and information collected 

during field investigations.  

The  Project  is  located  within  the  Bangemall/Capricorn  Groundwater  subarea  of  the  Gascoyne 

Groundwater  area.    Groundwater  resources  within  the  subarea  comprise  alluvium,  calcrete, 

palaeochannel and fractured rock aquifers. 

The hydrogeology of the area is characterised by a south westerly draining system, coincident with 

the  Lyons  River  surface  water  catchment.    Alluvial  cover  is  typically  thin  or  absent  across  the 

majority of the area but thickens near creeks and major drainages.        

Groundwater occurrences  in the fractured bedrock occur where permeability  in the natural rock  is 

enhanced by fracturing, dissolution and chemical weathering.  Away from the fractures permeability 

in  the  bedrock  is  typically  low.    In  the  Project  are  the  extensive  ironstone  veins  (the  target 

mineralisation) forms a locally significant fractured rock aquifer.  The ironstone aquifer is discussed 

in more detail later in this report.   

Tertiary  palaeochannel  aquifers  in  the  general  area  are  associated with  the  Lyons  palaeodrainage 

system.    Palaeochannel  aquifers  in  the  region  have  the  potential  to  provide  large  groundwater 

supplies, although salinity  is  typically higher than  in  fractured rock.   Very  little  is known about the 

Lyons palaeodrainage system and forms the focus of the Stage II palaeochannel study (which will be 

reported in a separate document).       

Groundwater  occurrences  are  also  known  to  occur  in  calcrete  aquifers  in  the  area.    Calcrete  is 

thought to extend up to 30 m in depth within the Edmund and Lyons Rivers, and likely extends over 

large areas beneath the alluvial cover (Global Groundwater, 2016). This network of shallow calcretes 

also forms the habitat of the Gifford Creek Calcrete Priority Ecological Community (discussed further 

in section 2.7), one of the larger stygofauna communities in Western Australia. Due to the ecological 

conservation values of  the calcrete aquifer  system,  they have not been  the  focus of water  source 

investigations other than to ensure drawdown in the target palaeochannel aquifers (deep confined) 

do not indirectly impact the calcrete aquifers (shallow unconfined). 

Small amounts of groundwater can occur  in alluvium associated with  the  larger drainage  systems.  

However, away from the larger drainage systems the alluvium is typically absent or situated above 

the water table.  

Groundwater  is  recharged  by  direct  rainfall  infiltration  or  by  stream  flow  during  episodic  rainfall 

events.    Recharge  is  expected  to  be  highest  following  streamflow  events,  in  locations  where  the 

Page 14: Hydrogeological Assessment II: Fractured Rock Aquifers

BACKGROUND 

 J1709R01    April 2018 

 

6  

 

alluvium  overlies  more  permeable  units  (such  as  calcrete  or  fractured  basement).    Groundwater 

recharge by direct infiltration of rainfall is likely to be minor.   

The surface water catchments within  the Project area  (as provided by  JDA 2016) are presented  in 

Figure 4.  These catchments are relatively small, drain to the south towards the Lyons River, forming 

part of the larger Lyons River Catchment.  The proposed Fraser’s and Bald Hill pits are located within 

the Fraser Creek Catchment, which covers an area of  just over 150 km2.   The proposed Yangibana 

North and Yangibana West pits are  located within the Yangibana Creek Catchment (to the west of 

the Fraser Creek Catchment) which is slightly larger, covering an area of almost 200 km2.      

Groundwater quality  in the area is typically fresh to brackish, with reported salinities ranging from 

about 900  to 4,000 mg/L  Total Dissolved  Solids  (TDS).    The  lowest  salinity  groundwater would be 

expected to occur closest to the areas of recharge, with salinity increasing away from the recharge 

areas. 

2.5 OTHER GROUNDWATER USERS A search of bore records within a 20 km radius of Bald Hill was carried using the Water Information 

Reporting (WIR) database, which is managed by the Water Division of the Department of Water and 

Environment Regulation (DWER). 

The WIR data indicates that there are 15 registered bores within 20 km of the Project tenements.  A 

summary of the bore information is provided in Table 2 below, and the bore locations closest to the 

Project area are shown in Figure 5.   

The WIR data indicates that: 

The closest bores  to  the proposed pits  are Yangibana Bore and Fraser Well,  located 5  km 

south of Yangibana North and 5 km west of the Fraser’s deposit, respectively.  The bores are 

listed  as  being  of  unknown  type  and  status.    However,  it  is  believed  the  bores  are 

operational livestock bores. 

Nine  of  the  15  bores  are  listed  as  livestock  bores.    The  Roadside  Bore  is  listed  as  an 

investigation  bore,  and  the  remaining  five  bores  are  of  unknown  type.    However,  it  is 

presumed that the bores listed as unknown type are also livestock bores, given the land use 

in the area. 

Pimbiana Bore is the only bore registered as being installed into a calcrete aquifer, which is 

consistent  with  the  1:100,000  Edmund  sheet  (Figure  5).    Pimbiana  Bore  is  located 

approximately 10 km east of Fraser’s (it should be noted the bore is referred to as Pimbiana 

Bore in the database, despite the name of the catchment being Pimbyana).       

Contessis Well is listed as installed into an alluvial aquifer, and is located approximately 9 km 

north of Yangibana North.   

The remainder of the listed bores are of unknown aquifer type.   However, based upon the 

shallow  drilled  depths  it  is  likely  the  bores  are  installed  into  either  alluvial,  calcrete  or 

shallow bedrock aquifers.   The Edmund sheet suggests that Dingo Well, Boogardi Bore and 

Benbageon Well are likely to be installed into shallow bedrock aquifers, whilst the remainder 

(6 bores) are likely to be installed into alluvial (or possibly calcrete) aquifers.  

Page 15: Hydrogeological Assessment II: Fractured Rock Aquifers

BACKGROUND 

 J1709R01    April 2018 

 

7  

 

Table 2: WIR Bores Within 20 Km 

Site Name 

Coordinates 

MGA Zone 50  Purpose  Status Aquifer 

Type 

Depth 

(m) Easting  Northing 

Hart Bore  435,911  7,343,600  Livestock  Operational  ‐  33.2 

Star Well  422,154  7,339,440  Livestock  Operational  ‐  9.5 

Benbageon Well  444,249  7,362,723  Livestock  Operational  ‐  25.6 

Boogardi Bore  441,689  7,366,535  ‐  Operational  ‐  48.77 

Dingo Well  438,838  7,371,621  Livestock  Operational  ‐  ‐ 

Cardibar Bore  434,984  7,362,312  ‐  Unknown  ‐  26.82 

Gap Bore  430,211  7,371,424  Livestock  Unknown  ‐  32.92 

Pimbiana Bore  439,609  7,350,284  Livestock  Unknown  Calcrete  ‐ 

Henderson Bore  437,326  7,353,953  Livestock  Operational  ‐  ‐ 

Wallaby Bore  440,420  7,354,405  ‐  Unknown  ‐  ‐ 

Roadside Bore  444,679  7,349,061  Investigation  Unknown  ‐  33.53 

Fraser Well  424,549  7,351,619  ‐  Operational  ‐  23.47 

E15 Contessis Well  416,352  7,370,553  Livestock  Operational  Alluvium  21.34 

E16 Red Hill Bore  419,949  7,368,896  Livestock  Operational  ‐  16.76 

Yangibana Bore  414,879  7,357,752  ‐  Operational  ‐  32.61 

 

Groundwater level and water quality data has been collected from a selection of regional livestock 

bores  (Figure  5)  for  the  purpose  of  providing  background  data  prior  to  the  commencement  of 

mining.   

Data was collected initially by ATC Williams (Hastings tailings consultant) as part of the pre‐feasibility 

study  (PFS)  for  the  Project,  and  then  ongoing  data  has  been  collected  by  Hastings.  The  data  is 

provided as Appendix A, and indicates that: 

The depth to groundwater ranges from 2.4 m below ground level at Edmund Homestead to 

31.9 m at Fraser Well. 

The pH  is neutral  to  slightly alkaline,  ranging  from 7.2  in  the Red Hill  2 Bore  to 8.6  in  the 

Edmund Homestead Bore. 

The water quality  is fresh to brackish, ranging from 530 mg/L TDS in the Contessis Bore to 

3,100 mg/L TDS in the Red Hill 2 Bore. 

The  groundwater  reports  concentrations  above  detection  limits  of  arsenic,  boron,  copper,  iron, 

molybdenum, silicon, vanadium, tin, strontium, selenium and uranium.   However, these values are 

below the ANZECC water quality guidelines for stock. 

Page 16: Hydrogeological Assessment II: Fractured Rock Aquifers

BACKGROUND 

 J1709R01    April 2018 

 

8  

 

2.6 DEPARTMENT OF WATER REGISTER The  DWER  online  water  register  was  interrogated  to  identify  the  presence  of  existing  licensed 

groundwater users in the vicinity of the Project.   

The information shows that there are two current groundwater licences within 30 km of the Project, 

both of which are held by Mr. James Millar from Cobra Station.  Both licences are on the southern 

side of the Lyons River, approximately 5 km and 10 km south of the proposed Fraser’s pit.   

One  licence  allows  up  to  10,000  kL  per  annum  from  the  Superficial  aquifer  and  the  other  allows 

41,500 kL per annum from the Combined Fractured Rock West aquifer. 

Table 3 below provides details of the existing licensees within 30 km of the Project. 

Table 3: Nearby Groundwater Well Licences 

GWL 

Holder GWL 

Allocation 

(kL/yr) Aquifer  Tenements 

Location from the 

Project 

James 

Millar, 

Cobra 

Station 

46673  100,000 Carnarvon ‐ 

Superficial M09/63  5km S 

James 

Millar, 

Cobra 

Station 

64561  415,000 

Combined – 

Fractured 

Rock West – 

Fractured 

Rock 

M09/79  10km S 

 

2.7 GROUNDWATER DEPENDANT ECOSYSTEMS A  review  of  the  BoM’s Groundwater  Dependant  Ecosystem  (GDE)  Atlas  indicates  that  the  Project 

area is classified as having: 

No  to  low  potential  for  groundwater  interaction  with  vegetation  reliant  on  subsurface 

groundwater. 

No identified vegetation GDE’s reliant on surface expression of groundwater (rivers, springs, 

wetlands). 

No identified subterranean GDEs (caves or aquifers). 

The nearest  significant GDE  is  along  the  Lyons River  (to  the  south of  the Project)  and  the 

Edmund River  (to  the west of  the Project), which both  report  vegetation GDE’s  reliant on 

surface water and groundwater.   

A copy of the GDE Atlas report, for an area of 25 km from 428,000 mE and 7,356,000 mN (Bald Hill) is 

provided as Appendix B.  

Ecoscape  (Australia)  Pty  Ltd  (2015)  completed  a  flora  and  vegetation  assessment  of  the  broad 

Project  region,  including  the  proposed  development  envelope.    The  assessment  reported  the 

Page 17: Hydrogeological Assessment II: Fractured Rock Aquifers

BACKGROUND 

 J1709R01    April 2018 

 

9  

 

presence of  one  vegetation  type which  represents  a GDE  (presence of Eucalyptus  camaldulensis), 

and three other vegetation types which represent potential GDEs (including Eucalyptus victrix).  GDE 

vegetation types are commonly associated with the Lyons River, Fraser Creek and Yangibana Creek 

and associated drainage channels.   

A  Department  of  Biodiversity  Conservation  and  Attractions  (DBCA)  listed  Priority  Ecological 

Community  (PEC)  occurs within  the  study  area,  and  the  development  envelope  occurs within  the 

northern portion of this PEC.  The PEC is listed as: 

Priority 1 (P1) Gifford Creek, Mangaroon, Wanna calcrete groundwater assemblage type on 

Lyons palaeodrainage on Gifford Creek, Lyons and Wanna Stations. 

The DBCA refer to the PEC as the “Gifford Creek Calcrete PEC”, which comprises unique assemblages 

of invertebrates (stygofauna) that have been identified in the groundwater calcretes. 

Stygofauna  occur  within  the  proposed  mineral  deposits  in  the  development  envelope  (Ecoscape 

2015; Bennelongia 2017).  Stygofauna samples of eight drill holes within the development envelope 

initially found 236 stygofauna specimens from four families representing 10 species (Ecoscape 2015). 

Additional  subterranean  fauna  surveys  within  the  broader  PEC  area  have  found  that  a  greater 

diversity  and  abundance  of  stygofauna  species  are  represented  within  the  calcretes  of  the  PEC 

(Bennelongia 2017).  A total of 830 specimens from 57 discrete species of stygofauna were recorded 

from the Project and surrounding region during surveys conducted in 2016.  Reference sites yielded 

730  specimens,  including  all  57  species,  while  impact  areas  yielded  100  specimens  from  6 

species.   Combining  results  from  current  and  previous  studies,  the  total  number  of  stygofauna 

species  known  from  the  broader Gifford  Creek  Calcrete  PEC  study  area  is  at  least  62.  Stygofauna 

species  recorded  in  impact areas were also collected  in  reference areas, and are common species 

that are known to be widespread outside of the study area (Bennelongia 2017). 

 

 

Page 18: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

10  

 

3.0 DEWATERING ASSESSMENT 

3.1 FIELD INVESTIGATIONS Field  investigations  to  assess  the  likely  dewatering  rates  for  the  proposed  Fraser’s,  Bald  Hill, 

Yangibana North and Yangibana West pits were undertaken as part of the Stage I assessment (GRM 

2017), supplemented by additional drilling during the Stage II assessment.   

Likely dewatering rates for additional pits (such as Auer and Auer North) will be estimated once the 

mining schedules become available.    

The field investigations comprised the following: 

Groundwater exploration drilling to collect hydrogeological data, and identify potential test 

bore locations.  

Airlift  recovery  testing  of  groundwater  exploration  holes  and/or  from  selected  existing 

mineral  exploration  drill‐holes  to  provide  a  range  of  estimates  of  hydraulic  conductivity 

within the mining area. 

Installation of three test bores at each of Fraser’s, Bald Hill and Yangibana West. 

Test pumping of four production bores (including the three above‐mentioned test bores plus 

testing  of  an  existing  bore  at  Yangibana  North)  to  estimate  hydraulic  parameters  for  the 

fractured rock aquifer and identify any potential boundary conditions. 

Collection of groundwater samples for laboratory analysis from the deposits. 

3.1.1 Exploration Drilling Hydrogeological  data  was  collected  during  the  drilling  of  eleven  exploration  drill‐holes  (two  at 

Fraser’s,  four  at Bald Hill,  three at  Yangibana North  and  two at  Yangibana West), which  varied  in 

depth from 70 to 126 m deep.  The selected drill‐holes primarily targeted the ironstone vein on the 

down‐dip side of the pit, for the purpose of collecting hydrogeological information as well as locating 

suitable test bore locations.    

The drilling was undertaken by Three Rivers Drilling between 20 October and 13 November 2016 at 

Fraser’s and Bald Hill, and  from 23  June  to 22  July 2017 at Yangibana North and Yangibana West.  

The exploration drill holes were completed using reverse circulation (RC) methods.  The programme 

was overseen by GRM and Hastings field personnel who were responsible for the collection and field 

assessment of geological and hydrogeological data.   

The  Fraser’s  and Bald Hill  groundwater  exploration holes were  drilled  under  a  granted  Licence  to 

Construct or Alter a Well (reference number CAW183123(1)), issued by the DWER on 3 August 2016.  

The  CAW  is  provided  in  Appendix  C.    The  Yangibana  North  and  Yangibana West  drill‐holes  were 

planned as part of the mineral exploration programme, thus not requiring a licence.    A summary of 

the drilling results is provided in Table 4.   

The exploration drilling results indicate the following: 

Groundwater inflows were associated with the ironstone veins, and associated fracturing. 

Page 19: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

11  

 

Away from the ironstone veins, the granite reported low groundwater inflows.  

There  were  no  reported  inflows  associated  with  alluvium  or  calcrete,  and  the  depth  of 

weathering was minimal. 

The  most  prospective  drill‐holes  from  each  proposed  pit  comprised  FRW01  at  Fraser’s, 

BHW04 at Bald Hill, YGRC094 and 095 at Yangibana North and YWRC075 at Yangibana West.  

These most prospective drill‐holes reported modest groundwater inflows, with airlift yields 

of between 1.5 and 3.1 L/s.     

The exploration drilling results support the presence of a discrete fractured rock aquifer associated 

with the ironstone veins and associated fracturing. 

It  should  be  noted  that  RC  drilling  generally  under‐predicts  yields,  due  to  the  narrow  annulus 

between the drill rod and the drill‐hole. Higher yields were reported during airlift recovery testing, as 

discussed in Section 3.1.2. 

Table 4: Exploration Drilling Results 

Location  Hole mE MGA 

Zn50 

mN MGA 

Zn50 

RL 

(mAHD) Depth (m) 

Max Airlift 

Yield During 

Drilling (L/s) 

Fraser’s FRW1  429,941  7,351,211  350.5  110  1.5 

FRW2  429,804  7,351,086  343.0  96  1.2 

Bald Hill 

BHW1  427,958  7,356,494  355.7  70  <1 

BHW2  428,017  7,356,253  353.6  85  <1 

BHW3  428,064  7,356,105  350.5  100  <1 

BHW4  428,189  7,356,019  346.7  102  2.2 

Yangibana 

North 

YGRC094  416,946  7,362,007  337.3  124  1.9 

YGRC095  417,135  7,361,989  339.1  126  1.9 

YGRC096  417,212  7,362,161  339.3  108  1.0 

Yangibana 

West 

YWRC075  415,885  7,362,889  336.4  126  3.1 

YWRC076  416,190  7,363,026  335.5  102  1.2 

 

3.1.2 Hydraulic Testing Airlift  recovery  testing  of  12  drill‐holes,  comprising  three  locations  at  Fraser’s,  seven  locations  at 

Bald  Hill  and  two  locations  at  Yangibana  North  and West,  was  conducted  between  October  and 

December 2016.  

The test locations comprised both existing resource drill‐holes and the water exploration drill‐holes 

completed as part of the Stage I programme.  The testing was undertaken by a combination of GRM 

and Hastings personnel, using the services of Three Rivers Drilling. 

Page 20: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

12  

 

The testing methodology comprised: 

i. A water level measurement was collected prior to testing. 

ii. Galvanised pipe (50 mm diameter) was run down the existing drill‐hole to about 12 m above 

the base of the hole. 

iii. The drill‐hole was airlifted until the flow stabilised (around an hour).   

iv. During airlifting, yield measurements  (using a V Notch weir) and water quality parameters 

were recorded at regular intervals. 

v. At  the  completion  of  airlifting  the  galvanized  pipe  was  un‐coupled  and  groundwater 

recovery measurements collected  through  the  inner  tube using a  combination of pressure 

transducers  and  manual  measurements,  until  the  recovery  came  to  within  90%  of  the 

standing water level.  

The  test  data  was  analysed  using  a  combination  of  standard  analytical  methods  including  Theis 

(1935) and the Theim (1906) steady state method.   The resulting transmissivities  from the various 

testing methods were then reviewed and an adopted hydraulic conductivity value was assigned for 

each test location. 

It should be noted that the recovery data for drill‐hole BHRC097 was erroneous and consequently a 

slug test was conducted for this drill‐hole.  The slug test data was analysed using Hvorslev (1951).   

A summary of the test data and results are provided in Tables 5 and 6.  The results are presented in 

Figures 6 to 8, and the analysis is provided as Appendix D.   

The test results indicate the following: 

Airlift yields ranged from 0.015 L/s in FFRC098 at Fraser’s deposit to 8 L/s in YGRC057 at the 

Yangibana North deposit.    

Three  test  locations  reported  hydraulic  conductivities  below  0.1  m/d.    These  results  are 

indicative  of  the  expected  low  permeability  conditions  of  the  bedrock  away  from  the 

ironstone vein.  

Three test  locations reported hydraulic conductivities between 0.1 m/d and 1 m/d.   These 

locations were  interpreted  to  represent minor  fractures or  thin  ironstone veins within  the 

otherwise low permeability bedrock. 

Six  test  locations  reported  conductivities  above  1  m/d,  which  confirm  the  modest 

permeability associated with the ironstone vein, characteristic of a fractured rock aquifer. 

Page 21: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

13  

 

Table 5: Hydraulic Testing Data 

Location  Hole mE MGA 

Zn50 

mN MGA 

Zn50 

RL 

(mAHD) 

Depth 

(m) 

SWL 

(mbtoc) 

SWL (m 

RL) 

Final Airlift 

Rate 

(L/s) 

Fraser’s 

FRW2  429,804  7,351,086  343  96  35.6  307.44  1.5 

FFRC082  429,925  7,351,046  338.89  60  35.5  303.36  3.4 

FFRC098  429,770  7,350,825  336.51  48  33.1  303.41  0.015 

Bald Hill 

BHW1  427,958  7,356,494  355.7  72  35.0  320.70  3.9 

BHW2  428,017  7,356,253  353.6  72  33.6  320.00  1.8 

BHW3  428,064  7,356,105  350.5  119  29.85  320.65  0.14 

BHRC161  428,397  7,355,720  343.6  75  25.87  317.73  3.0 

BHRC082  428,268  7,355,904  346.0  58  23.23  322.77  2.0 

BHRC095  428,206  7,356,149  337.12  58  29.14  307.98  0.33 

BHRC097  428,134  7,356,197  337.28  70  30.26  307.02  0.8 

Yangibana 

North YWRC003  417,291  7,362,277  342.38  48  8.38  334.00  3.7 

Yangibana 

West YWRC057  417,189  7,362,389  339.90  24  12.54  322.46  8.0 

 

Page 22: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

14  

 

 

Table 6: Hydraulic Test Results 

Hole ID 

Aquifer 

Thickness 

(m) 

Transmissivity (m2/d) Adopted 

Transmissivity 

(m2/d) 

Adopted 

Hydraulic 

Conductivity 

(m/d) 

Comments Airlift 

Recovery 

(Theis) ET 

Airlift 

Recovery 

(Theis) LT 

Steady 

State 

(Theim) 

Slug Test 

(Hvorslev) 

FRW02  60.4  243  34  3.7  ‐  19  0.3 

Aquifer less well defined in this location, results 

represent general rock mass, average of LT R and SS 

most representative, and consistent with airlift rate 

(1.5 L/s) 

FFRC082  11  ‐  223  27  ‐  27  2.5 

The R data is unreliable (minimal residual 

drawdown). The SS analysis result is consistent with 

the airlift rate (3.4 L/s) 

FRRC098  14.9  0.12  0.25  0.18  ‐  0.18  0.012 

The AR and SS analysis are consistent with the  low 

flow rate during airlifting (<0.1 L/s), indicative of 

general rock mass 

BHW01  20  100  ‐  26  ‐  63  3.15 The AR and SS analysis result is consistent with the 

airlift rate (3.9L/s) 

BHW02  20  0.8  32  6.8  ‐  13  0.66 

Aquifer less well defined in this location, results 

represent general rock mass, average of all tests is 

consistent with airlift rate (1.8 L/s) 

BHW03  87.25  ‐  ‐  0.36  ‐  0.36  0.004 

Unreliable results from AR test, SS analysis results 

and airlift rate (0.14L/s) indicative of general rock 

mass 

BHRC161  5  17  80  15  ‐  37  7.5 The AR and SS analysis are consistent with airlift 

yield (3 L/s)  

BHRC082  34.77  ‐  66  49  ‐  58  1.7 Aquifer less well defined in this location, results 

represent general rock mass, average of LT R and SS 

Page 23: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

J1709R01    April 2018 

   

15  

 

  

Hole ID 

Aquifer 

Thickness 

(m) 

Transmissivity (m2/d) Adopted 

Transmissivity 

(m2/d) 

Adopted 

Hydraulic 

Conductivity 

(m/d) 

Comments Airlift 

Recovery 

(Theis) ET 

Airlift 

Recovery 

(Theis) LT 

Steady 

State 

(Theim) 

Slug Test 

(Hvorslev) 

BHRC095  28.86  0.72  ‐  3.2  ‐  1.98  0.07 Aquifer less well defined in this location, results 

represent general rock mass, average of ET R and SS 

BHRC097  34.74  ‐  ‐  4.8  10  10  0.29 

Poor data during R test, ST and SS analysis 

consistent with airlift rate (0.8 L/s). Results 

indicative of general rock mass 

YWRC057  11.46  ‐  ‐  117  ‐  117  10 Unable to get reliable data during the R phase, SS 

analysis consistent with airlift rate (8 L/s) 

YWRC003  4  ‐  28  20  ‐  24  6.0 Reasonable fit to Theis, results consistent with 

airlift rate (3.7 L/s) 

Notes: CH constant head; LT late time; ET early time; R recovery; SS steady state; HC hydraulic conductivity; AR airlift recovery; ST slug test; T transmissivity 

Page 24: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

16  

 

3.1.3 Test Bore Installation Two  test  production  bores,  FRW03  and  BHW05,  were  installed  during  the  Stage  I  assessment 

adjacent  to  the  two  highest  yielding  exploration  drill‐holes  (FRW01  and  BHW04).    A  third  test 

production  bore  was  installed  at  Yangibana West  (YWWB01)  as  part  of  the  Stage  II  assessment, 

adjacent to mineral exploration hole YWRC075.  Please note that FRW03 was referred to as FRW01 

during  the  field  investigations,  but  has  subsequently  been  re‐named  to  maintain  consistent 

nomenclature and differentiate it from the original FRW01 drill‐hole.   

Drill‐holes FRW01 and BHW04 were constructed as temporary observation bores for test pumping 

purposes.  Nominal 50 mm uPVC casing was suspended in the drill‐holes using casing clamps to allow 

for water  level measurement.   A permanent monitoring bore  (YWMB01) was  installed adjacent  to 

YWWB01, completed with nominal 50 mm uPVC casing, with a concrete annular seal and  lockable 

cap.   The original YWRC075 drill‐hole was decommissioned  in accordance with  the minimum bore 

construction standards (National Uniform Drillers Licensing Committee 2011).     

The  test  production  bores were  drilled  and  constructed  by  Three  Rivers  Drilling  and  overseen  by 

GRM  and  Hastings  personnel.    The  bores  completed  during  the  Stage  I  assessment  (FRW03  and 

BHW05) were  installed  under  a  granted  CAW  (CAW183123(1)),  issued  by  the  DWER  on  3  August 

2016.  Bore YWWB01 was installed under a granted Licence to CAW (CAW183464(1)), issued by the 

DWER on 4 October 2016.  The CAWs are provided as Appendix C, although it should be noted that 

CAW183464(1) was  incorrectly  issued  for 6 exploratory wells,  rather  than 3 production wells.   An 

email confirming the error is also provided in Appendix C.  Form 2’s for the bores were submitted to 

the DWER on 14 August 2018, in accordance with the licensing requirements.    

The production bore installation methodology comprised: 

Collaring to 3 m, using 15.5 inch diameter air rotary methods.   

Installation of 10 inch diameter steel surface casing to 2 to 3 m depth, cement grouted. 

Drilling a pilot hole and then reaming out to 10 inch diameter hole to depth using air rotary 

methods.     

Installation of 155 mm class 9 uPVC casing, slotted over the aquifer sequence, as identified 

from drill‐cuttings and from geological logs from the original exploration hole, and capped at 

its base using an external uPVC end‐cap.   

Installation of +3.2 to 6.4 mm graded gravel pack in the annulus from the base of the bore to 

just below surface. 

Placement of an annular bentonite seal from the top of the gravel packed interval to surface 

to prevent surface water ingress. 

Airlift  development  of  the bore  for  a  period of  at  least  2  hours,  to  remove  fine  sediment 

from within the gravel pack and adjacent formation.       

Completion of the bore with a concrete plinth, and uPVC end‐cap.   

The details of the installed test production bores are provided in Table 7, and bore logs are provided 

in Appendix E.  

Page 25: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

    

17  

 

 

Table 7: Test Production and Monitoring Bore Details 

Parameter  Units Test Production Bores  Monitoring Bores 

FRW03  BHW05  YWWB01  FRW01  BHW04  YWMB01 

Exploration Drill Hole    FRW01  BHW04  YWRC075  ‐  ‐  ‐ 

Collar Location MGA Zn 50 (mE)  429,940  428,194  415,887  429,941  428,289  415,881 

(mN)  7,351,210  7,356,015  7,362,891  7,351,211  7,356,019  7,362,895 

RL  (mAHD)  350.97  345.45  336.4  350.5  346.7  336.7 

Depth Drilled/Reamed  (mbgl)  110  106  126  110  102  337.1 

Surface Casing Depth  (mbgl)  3.2  4  2  2  2  48 

Cased Depth  (mbgl)  95.2  104  126  66  66  48 

Casing Type  

155 mm Class 9 

uPVC 

155 mm Class 9 

uPVC 

155 mm Class 9 

uPVC 

50 mm uPVC  50 mm uPVC  50 mm Class 12 

uPVC 

Slotted Interval  (mbgl)  71.2 to 95.2  80 to 104  96 to 126  ‐  ‐  42 to 48 

Slot Type  1 mm  1 mm  1 mm   ‐  ‐  1 mm 

Gravel Pack Grade  mm  3.2 to 6.4  3.2 to 6.4  3.2 to 6.4  ‐  ‐  none 

Gravel Pack Interval    +0.1 to 95.5  +0.1 to 104  5 to 126  ‐  ‐  none 

Annual Bentonite Seal    0.1 to +0.1  0.1 to +0.1  3 to 5  ‐  ‐  Concrete 

Stick‐up  (magl)  0.1  0.1  0.2  ‐  ‐  0.4 

SWL  (mbtoc)  33.8  26.5  13.14  36.7  25.0  13.56 

SWL Date  4 Nov 2016  14 Nov 2016  11 Dec 2017  4 Nov 2016  14 Nov 2016  11 Dec 17 

Note: mbgl = metres below ground level; magl = metres above ground level; mbtoc = metres below top of casing 

Page 26: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

18  

 

3.1.4 Test Pumping Test pumping of FRW03, BHW05 and an existing dis‐used bore at Yangibana North  (YGWB03) was 

carried  out  as  part  of  the  Stage  I  assessment  by  Three  Rivers  Drilling  between  October  and 

December 2016.   Test pumping of YWWB01 was carried out as part of  the Stage  II assessment by 

Three  Rivers  Drilling  in  August  2017.    The  test  pumping  was  overseen  by  GRM  and  Hastings 

personnel 

The dis‐used bore  YGWB03  is  understood  to  be  constructed of  155 mm Class  9  uPVC  casing  to  a 

depth of 58.6 m, slotted between 34.6 and 58.6 m.   The bore  is believed to be gravel packed and 

completed with an annular bentonite seal.  

The production bores were tested using a 6 inch Grundfos SP46‐12 electrical submersible pump with 

a maximum capacity of about 15 L/s at 70 m head.   

Testing of FRW03, BHW05 and YGWB03 comprised a three or four hour step test (of 1 hour steps), 

followed after recovery by 48‐hour constant rate test and a recovery tests.  The results from the step 

test were used to  identify a suitable  rate  for  the constant  rate  test.   The pumping and drawdown 

data for the constant rate and subsequent recovery tests were used to: 

estimate the transmissivity and storativity of the aquifer using standard analytical methods; 

identify boundaries to the fractured rock aquifer; 

characterise the aquifer type (i.e. unconfined, confined or leaky); 

provide an indication of likely long term sustainable yields for the bores.   

Over the period of the 48‐hour constant rate test, pumping rates were measured and recorded at 

hourly  intervals  in  the  bore,  and  water  levels  monitored  periodically  in  the  pumping  bore  and 

adjacent monitoring bore.  Groundwater quality field parameters were measured from the pumping 

bore periodically throughout the constant rate tests.  

Testing  of  YWWB01  comprised  a  brief  30 minute  test, which  identified  that  yields  from  the  bore 

were  going  to  be  quite  low.    The  initial  test  was  followed  by  a  96‐hour  constant  rate  test.    The 

extended duration of the constant rate test was aimed at identifying boundary conditions within the 

fractured rock aquifer. 

Over the period of the 96‐hour constant rate test, pumping rates were measured and recorded at 

hourly  intervals  in  the  bore,  and  water  levels  monitored  periodically  in  the  pumping  bore  and 

adjacent monitoring bore  (YWMB01).   Groundwater quality  field parameters were measured  from 

the pumping bore periodically throughout constant rate tests. 

The details of the step and constant rate tests are presented in Table 8. 

Page 27: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

19  

 

Table 8: Test Pumping Summary 

Production 

Bore ID 

Step Test Pumping Rates (L/s) 48‐Hour 

Pumping Rate 

(L/s) 

Maximum 

Drawdown 

after 48 

Hrs (m) 

Distance 

Between 

Production & 

Monitor Bore 

(m) 

Step 1  Step 2  Step 3  Step 4 

FRW03  4  5  8  10  8  4.5  6.0 

BHW05  5  6  11  18  16  10.8  7.4 

YGWB03  5  8  11*  ‐  3.15  9.7  7.87 

YWWB01  7 to 3  ‐  ‐  ‐  2.2  34.15  7.72 

Notes: *drawdown exceeded pumping depth 

The  test  data was  analysed  using  a  combination  of  standard  analytical methods  including  Cooper 

Jacob  (1946),  Neuman  (1974)  and  Theis  (1935).    The  resulting  transmissivities  from  the  various 

testing methods were then reviewed and an adopted hydraulic conductivity value was assigned for 

each test location. 

The test analysis is provided in Appendix D and a summary of the analyses is presented in Table 9. 

 

Page 28: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

J1709R01    April 2018 

   

20  

 

  

Table 9: Test Pumping Results 

Hole ID 

Aquifer 

Thickness 

(m) 

Transmissivity (m2/d) 

Adopted 

Transmissivity 

(m2/d) 

Adopted 

Hydraulic 

Conductivity 

(m/d) 

Storativity 

(S) Comments 

Constant 

Rate ET 

(Cooper 

Jacob) 

Constant 

Rate LT 

(Cooper 

Jacob) 

Constant 

Rate 

(Neuman) 

Recovery 

ET 

(Theis) 

Recovery 

LT 

(Theis) 

FRW03  11  ‐  28  ‐  329  197  28  2.5  ‐ 

CRT indicates boundary condition 

at about 1000 mins, LT data for 

CRT most representative 

FRW01  11  ‐  28  ‐  ‐  ‐  28  2.5  ‐ 

Results consistent with pumping 

bore, CRT LT data most 

representative 

BHW05  20  236  75  ‐  207  217  75  3.75  1.0 E‐04 

CRT indicated boundary condition 

at about 1000 mins, LT data for 

CRT most representative 

BHW04  20  214  75  ‐  232  ‐  75  3.75  4.0 E‐04 Results consistent with pumping 

bore 

YGWB03  10  ‐  55  ‐  30  83  56  5.6  1.0 E‐06 Poor curve fitting, average of all 

test data 

YGWB03obs  10  ‐  36  10  23  78  37  3.7  ‐ 

Good curve fit with Neuman, 

results consistent with pumping 

bore 

YWWB01  14  ‐  16  ‐  ‐  20  18  1.3  ‐ LT data indicates semi stabilised 

drawdown. 

Page 29: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

    

21  

 

 

Hole ID 

Aquifer 

Thickness 

(m) 

Transmissivity (m2/d) 

Adopted 

Transmissivity 

(m2/d) 

Adopted 

Hydraulic 

Conductivity 

(m/d) 

Storativity 

(S) Comments 

Constant 

Rate ET 

(Cooper 

Jacob) 

Constant 

Rate LT 

(Cooper 

Jacob) 

Constant 

Rate 

(Neuman) 

Recovery 

ET 

(Theis) 

Recovery 

LT 

(Theis) 

YWMB01  14  ‐  25  ‐  ‐  ‐  25  1.8  ‐ Results consistent with pumping 

bore 

Notes: CRT constant rate test; ET Early time; LT late time 

 

Page 30: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

22  

 

The test pumping results show the following: 

Barrier boundaries were encountered in both FRW03 and BHW05 at around 1,000 minutes, indicative of a  fractured  rock environment whereby smaller  fractures were drained during the testing. 

Drawdown patterns are consistent with a semi‐confined aquifer. 

The  results  indicate  the  hydraulic  conductivity  ranged  between  1.3  to  5.6  m/d  for  the fractured rock aquifer, and a bulk storativity value adopted of about 0.0001. 

Groundwater  quality  parameters  remained  stable  during  the  constant  rate  tests,  with FRW03  reporting  an  Electrical  Conductivity  (EC)  of  2.39  mS/cm  and  pH  of  7.45,  BHW05 reporting an EC of 2.11 mS/cm and pH of 6.88, YGWB03 reporting an EC of 1.83 mS/cm and pH of 7.15, and YWWB01 reporting an EC of 1.2 mS/cm and pH of 8.1. 

Total drawdown during the 48 hour constant rate test from FRW03 was 4.5 m, at a test rate of 8 L/s.  The data suggests a maximum duty rate of 7 L/s as a sustainable short term supply for construction, and 6 L/s as a long term operational rate is suitable for this bore. 

Total drawdown during  the 48 hour  constant  rate  test  from BHW05 was 10.8 m, at a  test rate of 16 L/s.  The data suggests a maximum duty rate of 10 L/s as a short term supply for construction, and 8 L/s as a long term operational rate is suitable for this bore. 

Total drawdown during  the 48 hour  constant  rate  test  from YGWB03 was 9.7 m, at a  test rate of 3.15 L/s.   The data suggests a maximum duty rate of about 1 L/s, and indicates the bore is unsuitable as a longer term water supply bore. 

Total drawdown during the 96 hr constant rate test  from YWWB01 was 34.15 m, at a test rate of 2.2 L/s.  The data suggests a maximum duty rate of about 2 L/s as a short term supply for construction, and 1 to 2 L/s as a longer term operational rate. 

It  must  be  noted,  fractured  rock  aquifers  have  limited  storativity  and  given  that  the  drawdown response during testing of FRW03 and BHW05 indicated boundary conditions early  in the test, the bores may experience yield reduction during operation.   

It should be noted that the bores were constructed primarily for test purposes.  The bores are likely to  be  damaged  or  destroyed  during  mining  (e.g.  blasting)  due  to  the  construction,  and  location (BHW05 is within the revised pit footprint).   The bores are therefore considered water sources for the construction phase and early mining stage only.  

Production bore details and recommended pumping rates are provided in Table 10 below.     

Table 10: Bore Details and Pumping Rates 

Bore ID 

Location  

(MGA zone 50) Bore 

Depth  

(m bgl) 

SWL  

(m 

btoc) 

Peak  

(Construction) 

Pumping Rate 

(L/s) 

Long Term 

Operational 

Pumping Rate 

(L/s) 

Pump Inlet 

Setting  

(m btoc) (mE)  (mN) 

FRW03  429,941  7,351,211  95.2  33.80  7  6  72 

BHW05  428,189  7,356,019  104.0  26.52  10  8  82 

YGWB03  417,265  7,362,211  58.6  18.03  <1  <1  36 

YWWB01  415,887  7,362,891  126  13.14  2  1‐2  94 

Page 31: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

23  

 

3.2 GROUNDWATER QUALITY Groundwater  samples  for  laboratory  analysis  were  collected  from  FRW03,  BHW05,  YGWB03  and 

YWWB01 at the completion of test pumping (between October and December 2016 for the Stage I 

bores, and August 2017 for YWWB01).   

The results of the analysis are provided in Table 11 and laboratory certificates provided as Appendix 

F.  The results indicate: 

The groundwater is slightly alkaline, reporting a pH of 7.8 to 8.5. 

The groundwater is fresh to slightly brackish, with TDS ranging from 920 to 1,200 mg/L TDS. 

The groundwater is of sodium chloride type.   

Table 11: Groundwater Quality 

Analyte  Unit  FRW03  BHW05  YGWB03  YWWB01 

pH    8.5  8.0  7.8  8.1 

Electrical Conductivity  µS/cm  2,100  1,900  1,500  1,200 

Total Dissolved Solids  mg/L  1,200  1,000  920  720 

Total Alkalinity  mg/L  ‐  ‐  270  180 

Carbonate Alkalinity  mg/L  11  <1  <1  <1 

Bicarbonate Alkalinity  mg/L  280  <5  330  220 

Chloride  mg/L  380  330  250  200 

Sulphate  mg/L  160  100  89  66 

Fluoride  mg/L  ‐  ‐  ‐  2 

Nitrite  mg/L  <0.2  <0.05  <0.2  ‐ 

Nitrate  mg/L  9.1  65  63  ‐ 

Calcium  mg/L  72  81  85  ‐ 

Magnesium  mg/L  67  51  44  ‐ 

Potassium  mg/L  9.5  9.0  7.5  ‐ 

Silica, soluble  mg/L  52  72  91  ‐ 

Silicon  mg/L  ‐  34  43  ‐ 

Sodium  mg/L  230  240  180  ‐ 

Total Hardness  mg/L  460  410  390  ‐ 

Aluminium  mg/L  <5  <5  <5  ‐ 

Iron  mg/L  73  9  5  ‐ 

Manganese  mg/L  <1  <1  <1  ‐ 

Selenium  mg/L  4  7  6  ‐ 

 

Page 32: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

24  

 

3.3 CHLORIDE MASS BALANCE The results of the laboratory analysis have been used to estimate rainfall recharge using the chloride 

mass balance method.  Chloride mass balance is a method used to estimate rainfall recharge, based 

upon the chloride concentrations in the groundwater and rainfall.  The method is as follows: 

   

Where: 

Re = recharge  

P = precipitation, in mm/yr 

[Cl]rain  = chloride concentration in rainfall, in mg/L 

[Cl]gw = chloride concentration in groundwater, in mg/L 

The chloride content of rainfall was assumed to be 2 mg/L. 

The chloride mass balance for the production bores is provided in Table 12.  The results indicate that 

rainfall recharge rates are in the order of 1.3 to 2.4 mm/yr.   

Table 12: Chloride Mass Balance 

Production Bore 

ID 

Rainfall 

(mm/yr) 

Chloride Concentration 

(mg/L)  Recharge 

(mm/yr) Rainfall  Groundwater 

FRW03  240.2  2  380  1.3 

BHW05  240.2  2  330  1.5 

YGWB03  240.2  2  250  1.9 

YWWB01  240.2  2  200  2.4 

 

3.4 ISOTOPE ANALYSIS Groundwater  samples  were  collected  from  Fraser’s,  Bald  Hill  and  Yangibana  North  for  isotopic 

analysis to assist in assessing whether modern recharge exists in the fractured rock aquifer.  Samples 

were collected at the start and end of the 48‐hr constant rate test at Fraser’s and Bald Hill, and at 

the end of test pumping at Yangibana North. 

The  samples  were  sent  to  Australian  Nuclear  Science  and  Technology  Organisation  (ANSTO) 

Laboratory,  in  Sydney  and  analysed  for  Tritium  concentrations.    The  results  were  assessed  by 

ANSTO’s Senior Research Scientist, Dr Karina Meredith.  The report is provided as Appendix G, and 

the results summarised below. 

Tritium is a short‐lived isotope (half‐life of 12.43 years) and can be used for determining whether or 

not modern recharge exists in groundwater.  Tritium is produced naturally by cosmic radiation, and 

until the 1950’s concentrations were consistent in the atmosphere and rainfall.  However, since the 

early  1950’s,  as  a  result  of  thermonuclear  testing,  additional  Tritium  was  introduced  into  the 

atmosphere.  In 1963 Tritium concentrations reached two to three orders of magnitude higher than 

natural background levels. 

Page 33: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

25  

 

Tritium can be used to determine whether or not modern recharge exists in groundwater and can be 

used to date waters back to approximately 60 years, with its presence providing evidence of recent 

recharge and conversely its absence indicating a lack of recent recharge.  The results of the isotope 

analysis are presented in Table 13 below, and indicate: 

The only sample to record measurable Tritium, above the  lower  limit of detection was the 

sample collected from FRW03 at the commencement of test pumping.   

The  late  sample  from FRW03 did not  report measurable Tritium, nor did any of  the other 

samples collected from BHW05 and YGW03. 

These results suggest that the bore is screened over both younger and older groundwater, 

and  the  bore  is  primarily  drawing  from  the  older  groundwater,  which  likely  has  higher 

permeability. 

The results from BHW05 and YGWB03 indicate that these groundwaters are not modern (i.e. 

greater than 60 years old) and no recent groundwater recharge has occurred. 

Table 13: Isotope Analysis Results 

Production Bore 

ID 

Sample Collection 

Date 

Tritium Units (TU) 

Tritium 

Ratio Uncertainty^  LLDº 

FRW03* Early  04/11/2016  0.13  0.03  0.05 

FRW03* Late  06/11/2016  0.01’  0.03  0.05 

BHW05 Early  09/12/2016  0.05’  0.03  0.05 

BHW05 Late  11/12/2016  0.02’  0.03  0.05 

YGWB03 Late  16/12/2016  0.02’  0.03  0.05 

Notes: *samples are  incorrectly  reported  from FRW1  in Appendix G, ^values  reported are combined uncertainty calculated  to 1 sigma, 

ºLower Limit of Detection (LLD) corresponds to the fractional measurement standard uncertainty, ‘the result is below the LLD 

3.5 RECHARGE AND STORAGE Fraser’s and Bald Hill are located within a small catchment (150 km2), which is dominated by Frasers 

Creek, situated west of the two pits (Figure 4).  The proposed pits are located on the upper reaches 

of  tributaries  to  Frasers  Creek  (JDA  Associates  2016).    The  Yangibana North  and  Yangibana West 

proposed pits are located within a small catchment of approximately 200 km2, which is dominated 

by Yangibana Creek, situated to the west of the Frasers and Bald Hill catchment (Figure 4).   

Recharge within the two catchments is likely to occur predominantly by stream flow of the dominant 

creek and its tributaries during episodic rainfall (i.e. downstream of the proposed pits), with minor 

direct  infiltration  of  rainfall.    Regionally,  rainfall  recharge  is  enhanced  by  the  presence  of  more 

permeable calcrete units.  However, the calcrete associated with Fraser Creek is quite limited (Figure 

3) and no additional calcrete has been observed through surface mapping or resource drilling within 

the catchment.  Calcrete is known to occur on the flanks of Yangibana Creek (Figure 4).   

Page 34: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

26  

 

The small size of the catchments, the location of the pits (within the upper tributaries), the limited 

rate of recharge (as evidenced by chloride mass balance calculations and isotope analysis), combined 

with  low and sporadic  rainfall  suggests  that  rainfall  recharge  in  the vicinity of  the proposed pits  is 

limited.   

Aquifer storage within the fractured rock is also expected to be limited.  Aquifer storage in fractured 

rock systems is a function of the open void space associated with the fracturing, and the degree of 

connection between the fractures.  The test pumping data indicated barrier boundary conditions at 

both  the  Fraser’s  and  Bald  Hill  bores  (as  discussed  in  Section  3.1.4),  and  low  yields  at  Yangibana 

North and Yangibana West, indicative of limited storage.    

The limited recharge to the fractured rock aquifer and possible storage limitations indicate that bore 

yields and dewatering rates may diminish during the life of the Project. 

3.6 DEWATERING REQUIREMENTS Pit  dewatering  requirements  were  estimated  based  on  the  hydrogeological  data  collected  during 

field  investigations  and  the mining  schedules  provided  by  Hastings’ mining  consultants,  Snowden 

Group  (Snowden)  for  the  proposed  Fraser’s,  Bald Hill,  Yangibana North  and  Yangibana West  pits.  

The Fraser’s and Bald Hills mining schedules have been revised since the Stage I assessment.   

It should be noted that groundwater modelling was used to estimate dewatering rates as part of the 

Stage  I  study  (GRM  2017).    However,  analytical  methods  to  determine  dewatering  rates  have 

subsequently been adopted  for  the Stage  II hydrogeological assessment,  rather  than groundwater 

flow modelling, due to the limitations of modelling fractured rock systems. 

However given that the models were already developed, Hastings requested that GRM update the 

models with the revised mining schedules for Fraser’s and Bald Hills, despite the limitations of the 

method, to provide an  indication of  likely drawdown impacts associated with mine dewatering for 

the purpose of environmental assessment.  The revised modelling is presented as a letter report in 

Appendix H.    

3.6.1 Mining Schedule Snowden provided GIS  files of  the pit outline at yearly  increments, and a  summary  table with  the 

base of  the pit  (at quarterly  increments)  for Fraser’s and Bald Hill.   Preliminary pit  shells at yearly 

increments for Yangibana North and Yangibana West were provided by Snowden during the Stage I 

study.   

The pit development stages are provided  in Figures 6 and 7  for Fraser’s and Bald Hill  respectively, 

and the pit shells for Yangibana North and Yangibana West provided as Figure 8.  The tabulated data 

is presented in Table 14 below. 

 

Page 35: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

27  

 

  Table 14: Mining Schedule 

Quarter 

Fraser’s  Bald Hill Yangibana 

North 

Yangibana 

West 

Base of Pit 

(mRL) Base of Pit (mRL)  Base of Pit 

(mRL) 

Base of Pit 

(mRL) FR1  FR2  BH1  BH2  BH3  BH4  BH5 

4  ‐  ‐  350  ‐  ‐  ‐  ‐  ‐  ‐ 

5  ‐  ‐  345  ‐  ‐  ‐  ‐  ‐  ‐ 

6  335  ‐  340  ‐  ‐  ‐  ‐  ‐  ‐ 

7  320  350  340  340  ‐  ‐  ‐  ‐  ‐ 

8  310  340  335  335  ‐  ‐  ‐  ‐  ‐ 

9  305  330  330  330  ‐  ‐  ‐  ‐  ‐ 

10  305  325  330  320  ‐  ‐  ‐  ‐  ‐ 

11  ‐  315  ‐  305  365  ‐  ‐  ‐  ‐ 

12  ‐  305  ‐  300  350  ‐  ‐  ‐  ‐ 

13  ‐  295  ‐  ‐  340  ‐  ‐  ‐  ‐ 

14  ‐  285  ‐  ‐  330  355  ‐  ‐  ‐ 

15  ‐  270  ‐  ‐  320  345  ‐  ‐  ‐ 

16  ‐  230  ‐  ‐  315  340  ‐  340  ‐ 

17  ‐  ‐  ‐  ‐  310  330  ‐  340  ‐ 

18  ‐  ‐  ‐  ‐  ‐  320  ‐  340  ‐ 

19  ‐  ‐  ‐  ‐  ‐  310  ‐  340  ‐ 

20  ‐  ‐  ‐  ‐  ‐  300  ‐  315  340 

21  ‐  ‐  ‐  ‐  ‐  285  ‐  315  340 

22  ‐  ‐  ‐  ‐  ‐  280  340  315  340 

23  ‐  ‐  ‐  ‐  ‐  265  335  315  340 

24  ‐  ‐  ‐  ‐  ‐  265  325  290  315 

25  ‐  ‐  ‐  ‐  ‐  255  315  290  315 

26  ‐  ‐  ‐  ‐  ‐  235  285  290  315 

27  ‐  ‐  ‐  ‐  ‐  ‐  ‐  290  315 

28  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  290 

29  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  290 

30  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  290 

31  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  290 

32  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  250 

33  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  250 

34  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  250 

35  ‐  ‐  ‐  ‐  ‐  ‐  ‐  250  250 

 

Page 36: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

28  

 

3.6.2 Estimated Dewatering Rates Average dewatering  rates  for each pit  at  yearly  increments have been estimated using  the Thiem 

equation for unconfined flow, represented as: 

 

   Where: 

Q = the discharge in m3/day 

K = hydraulic conductivity in m/day 

H = static head measured from the final pit floor, in m 

hw = distance from base of final pit floor to the current pit floor, in m 

rw = radius of pit floor, in m      R0 = radius of influence 

With the radius of influence (R0) estimated using the Weber equation: 

0 2.45  

Where: 

R0 = radius of influence  

H = static head measured from the bottom of the pit, in m 

K = hydraulic conductivity in m/d 

t = time, in days 

ne = effective porosity  

The hydraulic conductivity values used in the Thiem equation were based on the average value from 

field testing of the surrounding country rock (i.e. excluding the test conducted in the ore body) for 

Fraser’s  and  Bald  Hill.  Values  of  0.16  m/d  for  Fraser’s,  0.5  m/d  for  Bald  Hill  were  used  in  the 

equations.    Given  the  limited  test  data,  values  for  Yangibana  North  and  Yangibana  West  were 

assumed to be similar to Bald Hill (i.e. 0.5 m/d).   

The pit geometry inputs were based on data provided by Snowden, and the static water levels were 

assumed to be 308 m RL for Fraser’s, 316 m RL for Bald Hill and 323 mRL for Yangibana North and 

Yangibana West, which is consistent with the data collected to date. 

The  results  of  the  dewatering  estimates  are  provided  in  Table  15  below.    However,  it  should  be 

noted that short term higher than anticipated yields may result if large water bearing structures are 

encountered  which  were  not  identified  during  field  investigations.    Dewatering  rates  could  also 

potentially be lower than estimated, particularly towards the latter stages of mining, due to limited 

aquifer storage (as discussed in Section Error! Reference source not found.).  

Page 37: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

29  

 

  Table 15: Dewatering Estimates 

Quarter 

Dewatering Estimates (L/s) 

Fraser’s  Bald Hill Yangibana 

North 

Yangibana 

West 

Total 

9  2.9  ‐  ‐  ‐  2.9 

10  3.0  ‐  ‐  ‐  3.0 

11  3.2  15.8  ‐  ‐  19.0 

12  3.6  13.3  ‐  ‐  16.9 

13  6.8  13.0  ‐  ‐  19.8 

14  8.3  15.2  ‐  ‐  23.4 

15  10.2  15.7  ‐  ‐  25.9 

16  8.0  16.0  ‐  ‐  24.0 

17  7.9  16.2  ‐  ‐  24.1 

18  ‐  16.3  ‐  ‐  16.3 

19  ‐  16.5  ‐  ‐  16.5 

20  ‐  17.0  7.5  ‐  24.4 

21  ‐  24.6  7.5  ‐  32.0 

22  ‐  25.0  7.5  ‐  32.5 

23  ‐  28.4  7.5  ‐  35.9 

24  ‐  28.1  19.6  7.1  54.8 

25  ‐  26.2  19.6  7.1  52.9 

26  ‐  22.7  19.6  7.1  49.4 

27  ‐  22.6  19.6  7.1  49.3 

28  ‐  ‐  21.1  15.7  36.8 

29  ‐  ‐  21.1  15.7  36.8 

30  ‐  ‐  21.1  15.7  36.8 

31  ‐  ‐  21.1  15.7  36.8 

32  ‐  ‐  20.8  16.7  37.5 

33  ‐  ‐  20.8  16.7  37.5 

34  ‐  ‐  20.8  16.7  37.5 

35  ‐  ‐  20.8  16.7  37.5 

 

3.7 DEWATERING STRATEGY The inflow rates estimated above indicate dewatering of the proposed pits will be best achieved by 

sump pumping methods, potentially supplemented by dewatering bores.   

Sufficient additional contingency will need to be considered to account for surface water inflows as a 

result of rainfall and runoff to the pits.   Sufficient contingency will also be required for short term, 

Page 38: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

30  

 

higher  than  anticipated  groundwater  inflow  rates  upon  interception  of  additional  water  bearing 

features  in  the  fresh  bedrock.    Contingency  of  at  least  50  L/s  should  be  considered  to  manage 

increases in groundwater inflows.  

The test bores (FRW03, BHW05 and YWWB01) may be used as temporary dewatering bores during 

early stages of development, but are unlikely to remain in operation beyond the first year of mining, 

due to potential damage during blasting and location (BHW05 is within the revised pit footprint for 

the Stage 1 pit). 

The  test  bores  can  be  used  for  water  supply  during  the  construction  phase,  which  will  facilitate 

dewatering ahead of mining to some degree.  It is recommended that the performance of the bores 

is closely monitored during the construction phase to assess whether or not dewatering bores will 

likely  be  beneficial  during  mining,  or  whether  or  not  Hastings  can  rely  solely  on  sump  pumping 

methods  for  dewatering.    If  bore  yields  begin  to  diminish  during  the  construction  phase  of  the 

Project then replacement dewatering bores are not likely to be necessary.  

Dewatering bores, if required, should be constructed using 6” schedule 40 steel casing (7.1 mm wall 

thickness).    The  steel  casing  should be  slotted across  the main  aquifer  zone  (as per  the  test bore 

construction), with the bore annulus gravel packed to just below the surface.  The annulus will need 

to  be  sealed  at  the  surface,  with  cement  grout  or  bentonite,  to  prevent  surface  water  ingress.   

Dewatering  bores,  should  be  positioned  into  a  thick  (preferably  greater  than  10 m)  sequence  of 

ironstone, and located just outside the crest of the pits, on the down dip side.     

Sump pumping is expected to provide the primary method of dewatering and will require ongoing 

management  during  the  operational  life  of  the  pits.  Sumps  should  be  strategically  located  at  low 

points along the pit floor.  

All dewatering discharge can be used for dust suppression and mineral processing.  There should be 

no requirement to discharge mine water to the environment, since the predicted dewatering rates 

are low with respect to the Project water demand. 

3.8 MONITORING PROGRAMME A monitoring programme will be required during mining to verify the simulated drawdown impacts 

as a result of dewatering activities.  Monitoring will also be necessary to assess the performance of 

the existing test bores to determine whether or not additional dewatering bores will be required. 

A preliminary groundwater monitoring programme is provided in Table 16 below. 

Page 39: Hydrogeological Assessment II: Fractured Rock Aquifers

DEWATERING ASSESSMENT 

 J1709R01    April 2018 

 

31  

 

  Table 16: Dewatering Monitoring Schedule 

Scope Monitoring Frequency 

Criteria  Monitoring Sites 

Test Bores (during construction) 

Weekly  Abstraction Volume 

FRW03, BHW05, YWWB01 Weekly  Water Level 

Weekly  Field testing for EC and pH 

Quarterly*  Laboratory Analysis 

In‐Pit Sumps 

Monthly  Abstraction Volume Fraser’s, Bald Hill, Yangibana North and Yangibana West  

Quarterly  Field testing for EC and pH 

Annually  Laboratory Analysis 

Dewatering Bores 

Monthly  Abstraction Volume 

tba Monthly  Water Level 

Quarterly  Field testing for EC and pH 

Annually  Laboratory Analysis 

Regional Bores Quarterly 

Water Level (excluding equipped bores) 

Edmund HST, Minga Well, Edmund Well, Yangibana Bore, Woodsys Bore, Frasers Well, Contesse Bore, Red Hill 2 Annually  Laboratory Analysis 

*This  may  be  overridden  by  the  requirements  of  the  Drinking Water  Quality Management  Plan,  which  will  determine 

monitoring frequency of specific analytes. 

Laboratory  analysis  should  include  the major  component  analysis  (as  set  out  by  the  DWER),  plus 

additional  analytes  specific  to  the  Project  (as  set  out  by  Hastings  or  the  Department  of  Health).  

Laboratory analysis should include the following ions: 

Physico‐chemical parameters – pH, EC, TDS, total hardness, and total alkalinity. 

Major  ions  –  sodium,  potassium,  calcium,  magnesium,  chloride,  sulphate,  bicarbonate, 

carbonate, nitrate. 

Minor ions/metals – silica, aluminium, iron and manganese. 

Additional analytes – silver, barium, bismuth, cadmium, cobalt, chromium, copper,  lithium, 

molybdenum, nickel, lead, strontium, thorium, titanium, uranium, vanadium, yttrium, zinc. 

 

Page 40: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

32  

 

4.0 PIT LAKE MODELLING The pit  lake model was developed using the generic systems modelling package GoldSim, which  is 

ideally suited to coupled water and solute balance modelling.   The model was run over a 500 year 

period to estimate pit lake conditions after mine closure. 

The  final mining depth  in  the  two planned pits  is below  the ambient groundwater  level.   At mine 

closure pumping will cease and the groundwater levels will recover forming a pit lake.   

In the Gascoyne region, where evaporation exceeds rainfall by more than an order of magnitude, the 

main drivers controlling the pit lake level will be groundwater inflow and evaporative outflow.   

In the semi‐arid zone of Western Australia two pit lake systems typically develop, namely: 

Evaporative  sink,  where  pit  lake  levels  are  maintained  at  a  lower  elevation  than  the 

surrounding groundwater system because of evaporation.   

Throughflow  system  where  there  is  some  degree  outflow  of  pit  lake  water  to  the 

surrounding groundwater environment. 

For the evaporative sink pit lake scenario, the depressed lake level will result in the development of 

a local groundwater sink (i.e. where the lake level lies below the groundwater level down‐gradient of 

the pit), with no discharge of lake water to the surrounding groundwater environment. 

For  the  throughflow  system,  it  is  possible  that  the  pit  lake  level  will  lie  above  the  ambient 

groundwater  level on the down‐gradient side of the pit, thereby allowing pit  lake water to flow to 

the down‐gradient groundwater environment.   

4.1 WATER BALANCE SET‐UP The  GoldSim  pit  lake model  includes  four  sub‐models  that  simulate  the  development  of  pit  void 

lakes in four proposed pits.  The model comprises the following components: 

Pit lake storage volumes. 

Inflows to the pits comprising: 

groundwater  inflows,  which  occur  when  the  pit  lake  water  level  lies  below  the 

ambient groundwater level; 

direct (incidental) rainfall onto the pit lakes; and 

rainfall runoff from the pit walls into the pit void lakes. 

Outflows from the pit comprising: 

evaporation from the pit lakes; and 

groundwater outflows, which occur  if  the pit  lake water  level exceeds the ambient 

groundwater level on the downgradient portion of the pit. 

Page 41: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01    April 2018 

 

33  

 

4.1.1 Pit Lake Storage Volume The  volume  stored  in  the  pit  lake  is  estimated  by  the  model  based  upon  the  total  inflows  and 

outflows to the lake over a time step, and the volume of the lake at the previous time step.  At time 

zero  (i.e.  the  start  of  the  model  run)  the  lake  is  assumed  to  have  a  nominal  volume  of  50  m3.  

GoldSim requires a volume at the start of the model run for the solute balance calculations. 

The water balance equation used to calculate the stored volume is presented below. 

 

Where,  

Storagei = the pit lake volume at the current time step 

Inflow = the total inflow to the pit lake 

Outflow = the total outflow from the pit lake 

Storagei‐1 = the pit lake volume at the previous time step 

4.1.2 Groundwater Inflows and Outflows Estimation  of  seepage  outflows  and  inflows  from  the  pit  lakes  were  calculated  based  upon  the 

Dupuit equation for horizontal groundwater flow in an unconfined aquifer: 

Where,   

Q = seepage flow rate 

P = pit perimeter length 

K = hydraulic conductivity of the geological units adjacent to the pit lake 

hB = difference  in height between  the ambient groundwater  level  and  the base of  aquifer 

(assumed to be equivalent to the pit floor elevation) 

hA =difference  in height between  the pit  lake water  level and the base of pit  lake  (i.e.  the 

lake depth) 

L = flow path length. 

All parameters in the equation, apart from hA, are applied as constants by the water balance.   The 

perimeter length was estimated from revised mine plans provided by Snowden.   

The height of the ambient groundwater level, which represents the natural water level unaffected by 

mining  or  groundwater  production,  was  taken  from  monitoring  data  collected  during  the  field 

investigation.    Hydraulic  conductivity  and  flow  path  length  were  based  upon  modelling  studies 

completed during the dewatering assessment (Section 3.0) and adjusted during model verification. 

The parameter values used in the water balance models are provided in Table 17. 

Page 42: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01    April 2018 

 

34  

 

Table 17:  Baseline Groundwater Flow Parameters 

Pit  K (m/d) Ambient GWL 

(mAHD) 

Flow Path Length 

(m) 

Fraser’s  0.32  309  800 

Bald Hill  0.66  316  1,000 

Yangibana North  0.40  323  1,200 

Yangibana West  0.40  323  1,200 

Note K = hydraulic conductivity. 

4.1.3 Rainfall and Runoff Rainfall  and  rainfall  runoff  inflows  are  estimated  by  the model  using  daily  rainfall  data  from  the 

nearby Wanna meteorological station.   

Average and wet rainfall conditions were tested, based upon the analysis of the daily 10‐year rolling 

rainfall  totals  for  the station.   The average  rainfall  conditions were  taken  from the 10 year period 

(1985  to  1994,  inclusive),  which  best  matched  the  mean  rainfall  for  the  station,  and  the  wet 

conditions  were  taken  from  records  collected  between  1992  and  2001  inclusive,  which  had  the 

highest 10 year rainfall total.  Each 10‐year sequence was looped to cover the model run‐time.  The 

use of daily data is preferred as it captures the high rainfall variability characteristic of the region.  

It  was  assumed  that  at  closure  the  pit  will  be  surrounded  by  a  safety  bund,  which  will  prevent 

catchment runoff from entering the pit, and as such surface inflows from only direct rainfall and pit 

wall runoff have been considered in the model.  

A conservative runoff coefficient of 1 was applied to the pit. 

Table 18:  Pit Catchments 

Pit In‐Pit Catchment 

(m2) Runoff Coefficient 

Fraser’s  160,000  1 

Bald Hill  440,000  1 

Yangibana North  365,000  1 

Yangibana West  153,000  1 

 

4.1.4 Evaporative Outflows Evaporation  losses  are  estimated  by  the  model  using  the  synthetic  monthly  evaporation  rates 

estimated  for  the  Project  area  (Section  2.2),  which  uses  the  scaled mean  of measured  values  at 

Paraburdoo and Learmonth.  The monthly data is adjusted for pan to lake effects, using a coefficient 

of 0.7, and a salinity factor based on an empirical relationship developed by Turk (1970).  The solute 

balance used to estimate the pit lake salinities is described in a later section below. 

The  adjusted  evaporation  rate  was  applied  to  the  area  of  the  respective  pit  lake,  which  was 

calculated from the relationship between lake volume and surface area at each time step (discussed 

in the following section). 

Page 43: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01    April 2018 

 

35  

 

4.1.5 Pit Geometry The water balance uses the relationships between the pit volume (the independent variable), which 

is  tracked  by  the  model  at  each  time  step,  and  elevation  and  pit  area  (dependant  variables)  to 

estimate the groundwater‐pit lake interaction, rainfall/runoff inflows and evaporative losses.   

The pit geometry data (as provided by Snowden) is provided in Table 19. 

Page 44: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01    April 2018 

 

36  

 

 

Table 19:  Pit Geometry Data 

Fraser’s Pit  Bald Hill Pit  Yangibana North  Yangibana West 

RL Surface 

Area (m2) 

Cumulative 

Volume (m3) RL 

Surface 

Area (m2) 

Cumulative 

Volume (m3) RL 

Surface 

Area (m2) 

Cumulative 

Volume (m3) RL 

Surface 

Area (m2) 

Cumulative 

Volume (m3) 

230  1,464  7,319  235  2,952  14,760  253  3,544  29,306  253  3,544  29,306 

235  3,226  23,448  240  5,854  44,029  259  7,152  72,215  259  7,152  72,215 

240  4,921  48,052  245  11,026  99,156  265  12,022  144,345  265  12,022  144,345 

245  8,339  89,747  250  18,257  190,443  271  20,200  265,543  271  20,200  265,543 

250  10,689  143,191  255  22,374  302,310  277  28,440  436,184  277  28,440  436,184 

255  14,853  217,455  260  27,722  440,921  283  42,253  689,701  283  42,253  689,701 

260  23,331  334,109  265  41,459  648,218  289  55,110  1,020,357  289  55,110  1,020,357 

265  25,875  463,484  270  48,241  889,420  295  76,805  1,481,185  295  76,805  1,481,185 

270  29,283  609,902  275  58,056  1,179,701  301  93,085  2,039,690  301  93,085  2,039,690 

275  37,592  797,863  280  75,470  1,557,052  307  121,435  2,768,300  307  121,435  2,768,300 

280  40,885  1,002,288  285  86,226  1,988,185  313  142,064  3,620,682  313  142,064  3,620,682 

285  44,082  1,222,700  290  99,339  2,484,882  319  180,887  4,706,000  319  180,887  4,706,000 

290  53,978  1,492,589  295  125,101  3,110,386  325  197,885  5,893,310  325  197,885  5,893,310 

295  57,884  1,782,011  300  141,487  3,817,823  331  162,982  6,871,198  331  162,982  6,871,198 

300  62,694  2,095,481  305  165,537  4,645,510  ‐  ‐  ‐  ‐  ‐  ‐ 

305  74,339  2,467,175  310  198,672  5,638,867  ‐  ‐  ‐  ‐  ‐  ‐ 

310  84,388  2,889,114  315  222,536  6,751,546  ‐  ‐  ‐  ‐  ‐  ‐ 

315  90,171  3,339,967  320  252,081  8,011,951  ‐  ‐  ‐  ‐  ‐  ‐ 

320  104,976  3,864,848  325  297,724  9,500,573  ‐  ‐  ‐  ‐  ‐  ‐ 

Page 45: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01 draft   March 2018 

 

37  

 

 

Fraser’s Pit  Bald Hill Pit  Yangibana North  Yangibana West 

RL Surface 

Area (m2) 

Cumulative 

Volume (m3) RL 

Surface 

Area (m2) 

Cumulative 

Volume (m3) RL 

Surface 

Area (m2) 

Cumulative 

Volume (m3) RL 

Surface 

Area (m2) 

Cumulative 

Volume (m3) 

325  109,556  4,412,627  330  334,624  11,173,694  ‐  ‐  ‐  ‐  ‐  ‐ 

330  114,776  4,986,505  335  380,240  13,074,896  ‐  ‐  ‐  ‐  ‐  ‐ 

335  130,192  5,637,462  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

340  137,272  6,323,820  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

 

Page 46: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01    April 2018 

 

38  

 

4.1.6 Solute Balance Set‐Up A  solute  balance  model  was  developed  using  the  GoldSim  software  to  simulate  the  increase  in 

salinity of the pit lakes after closure.  The model assumptions are as follows: 

An initial TDS concentration of 1,200 mg/L and 1,000 mg/L for Fraser’s and Bald Hill pit lakes 

respectively (based on water quality results from the recent field investigations). 

A TDS concentration of 1,200 mg/L  for Fraser’s, 1,000 mg/L  for Bald Hill and 920 mg/L  for 

Yangibana North and West, for groundwater inflows to the respective pit lake. 

Zero salt inflows from rainfall. 

Zero salt losses from evaporation. 

Complete  mixing  within  the  respective  pit  lake  (i.e.  no  allowance  was  made  for 

stratification). 

The model simulated the gradual increase in salinity concentrations to the respective pit  lake from 

groundwater inflows.  

4.2 WATER BALANCE MODELLING RESULTS A run time of 500 years was adopted for the water balance model simulations, using a one day time 

step.   

Four model runs were completed, comprising: 

four base case runs (one per pit) using the pit only catchment and expected conditions 

four sensitivity runs (one per pit) using the pit only catchment and high rainfall conditions 

The  groundwater  inflow  rates  predicted  by  the  water  balance  for  the  four  pits  was  verified  by 

comparing the inflow rate against the dewatering requirements estimated in the groundwater flow 

models.  The water balance inflow rates approximate those derived from the dewatering assessment 

at the end of mining. 

Table 20:  Model Runs 

Run No  Pit  Rainfall  Catchment  Run Type 

01  Fraser’s  Average  Pit Only  Baseline 

02  Fraser’s  Wet  Pit Only  Sensitivity 

03  Bald Hill  Average  Pit Only  Baseline 

04  Bald Hill  Wet  Pit Only  Sensitivity 

05  Yangibana North  Average  Pit Only  Baseline 

06  Yangibana North  Wet  Pit Only  Sensitivity 

07  Yangibana West  Average  Pit Only  Baseline 

08  Yangibana West  Wet  Pit Only  Sensitivity 

 

Page 47: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01    April 2018 

 

39  

 

The predicted pit  lake water  levels  for model Runs 01  to 08 are presented as  time  series plots  in 

Figures 9 to 12.   The figures also present the adopted ambient groundwater  level at  the deposits.  

The pit  lake water  levels  and  lake  residual  drawdowns  for  the  eight model  runs  are  presented  in 

Table 21.  The figures and table show the following: 

All model runs show a similar pattern following the cessation of mining: 

A gradual pit  lake  level  increase over the initial 10 years when groundwater  inflow 

rates exceed evaporation rates, because of the high groundwater hydraulic gradient 

and the comparatively small lake area available for evaporation. 

Pit lake levels increases at a slower rate between 10 and 15 years after cessation of 

dewatering  due  to  increased  evaporation  rates,  because  of  the  expanded  pit  lake 

area  as  the  pit  fills,  and  the  reduced  groundwater  inflow  rate  in  response  to  the 

lower groundwater gradients towards the pit. 

The pit  lake water  levels  equilibrate after  about 20 years as  the groundwater and 

rainfall inflows are in equilibrium with the evaporative losses. 

By the end of the 500 year model run, the pit lake levels have stabilised, with minor 

seasonal and annual variations in response to variation in rainfall and evaporation. 

For the baseline condition (Runs 01, 03, 05 and 07) the final predicted pit lake level ranges 

from: 

302.7 mAHD in Fraser’s pit, which is 6.3 m lower than the surrounding groundwater 

level 

310.2 mAHD in Bald Hill pit, which is 5.8 m lower than the surrounding groundwater 

level 

304.8  mAHD  in  Yangibana  North,  which  is  18.2  m  lower  than  the  surrounding 

groundwater level 

296.0  mAHD  in  Yangibana  West,  which  is  27  m  lower  than  the  surrounding 

groundwater level 

However,  it should be noted that the pit geometry inputs for Yangibana North and 

Yangibana  West  were  preliminary  (as  part  of  the  Stage  I  study,  and  will  require 

refinement once the mining schedules are confirmed for these two pits). 

The results indicate that all pits act as groundwater sinks under baseline conditions.   

For the sensitivity analyses relating to wet years (Runs 02, 04, 06 and 08), the pit lake levels 

are 4.3 m (Bald Hill), 5.3 m (Fraser’s), 16 m (Yangibana North) and 25 m (Yangibana West) 

lower  than  the surrounding groundwater  levels,  indicating  that  the pits  continue  to act as 

groundwater sinks under high rainfall conditions. 

The  model  also  provides  an  estimate  of  TDS  concentrations  post‐closure,  based  upon 

evaporative  concentration  in  the  pit  lakes.    The  results  indicate  that  after  500  years  post 

closure the TDS in all pits increase to about 34,000 mg/L TDS.  

Page 48: Hydrogeological Assessment II: Fractured Rock Aquifers

PIT LAKE MODELLING 

 J1709R01    April 2018 

 

40  

 

The  results  of  the  pit  lake  modelling  indicate  that  the  risk  of  outflows  of  pit  lake  water  to  the 

groundwater environment post closure is low for the current climate regime.   

Note that the model results assumed that catchment runoff will be diverted around the pit, which 

will need to be confirmed during the final closure plan.   

Table 21:  Predicted Lake Levels and Residual Drawdowns 

Pit Run 

Number 

Minimum 

Pit Lake 

Level 

(mAHD) 

Maximum 

Pit Lake 

Level 

(mAHD) 

Mean Pit 

Lake Level 

(mAHD) 

Minimum 

Residual 

Drawdown 

(m) 

Maximum 

Residual 

Drawdown 

(m) 

Mean 

Residual 

Drawdown 

(m) 

Fraser’s Run 01  230.0  302.7  302.0  80.0  6.3  7.0 

Run 02  230.0  303.7  302.6  80.0  5.3  6.4 

Bald Hill Run 03  235.0  310.2  309.6  82.0  5.8  6.4 

Run 04  235.0  311.1  310.2  82.0  4.9  5.8 

Yangibana 

North 

Run 05  250.0  304.8  303.8  73.0  18.2  19.2 

Run 06  250.0  307.0  305.6  73.0  16.0  17.4 

Yangibana 

West 

Run 07  250.0  296.0  295.3  73.0  27.0  27.7 

Run 08  250.0  297.6  296.6  73.0  25.4  26.4 

Note:  bold italics = baseline condition 

 

Page 49: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

41  

 

5.0 WATER SUPPLY INVESTIGATION 

5.1 GROUNDWATER TARGETS The hydrogeological information collected during the dewatering investigation (Section 3.0) suggests 

that the intact fresh rock has very low permeability, but that permeability is enhanced in fracturing 

associated with  the  ironstone,  and even  further enhanced when  fractures  cross  cut  the  ironstone 

veins. 

Fractured  rock  groundwater  targets  for  the  water  supply  investigation  therefore  focussed  on 

identifying cross cutting structural features within the ironstone of the Western Belt.  The Western 

Belt lies to the north west of Bald Hill, and comprises an area of approximately 12 km of ironstone 

strike length (Figure 3).    

Hastings  engaged Applied  Scientific  Services  and Technology Pty  Ltd  (ASST)  to  assist with  locating 

suitable targets within the Western Belt.  ASST used ground based electrical resistivity imaging (ERI), 

in conjunction with airborne magnetic data to identify a series of structures along the Western Belt 

(Figure 13).   

The  drill‐holes  were  drilled  for  mineral  resource  purposes  to  provide  further  information  on  the 

ironstone veins, but also provided  information about groundwater  conditions along  the geological 

structures.  

In  addition  to  the  Western  Belt  targets,  three  mineral  exploration  holes  were  also  targeted  as 

potential water  supply  locations  (Figure  14).    These  targets were based on  anecdotal  information 

suggesting that previous drilling in this area intercepted groundwater inflows.   

Based upon previous results at Fraser’s and Bald Hill, a potential bore location was to be defined as 

an RC drill‐hole reporting an airlift yield of 2.2 L/s or higher.  As discussed previously, RC drill‐holes 

typically under‐predict likely groundwater inflows due to the narrow annulus between the drill rod 

and the drill‐hole.   

5.2 EXPLORATION DRILLING    Hydrogeological data was collected during  the drilling of 12 vertical groundwater exploration drill‐

holes (three at Auer North and nine along the Western Belt), which varied in depth from 101 to 126 

m deep (Figure 14).      

The drilling was undertaken by Three Rivers Drilling between 23 June and 11 August 2017, using RC 

methods.    The  programme was  overseen  by  a GRM hydrogeologist  and  a Hastings  geologist who 

were responsible for the collection and field assessment of geological and hydrogeological data.   

A summary of the drilling results is provided in Table 22 and the bore logs are provided in Appendix 

E.   

The exploration drilling results indicate the following: 

The  drilling  identified  one  potential  bore  location  at  LERC020  or  LERC021  (which  are 

adjacent holes). 

Page 50: Hydrogeological Assessment II: Fractured Rock Aquifers

WATER SUPPLY INVESTIGATION 

 J1709R01    April 2018 

 

42  

 

Groundwater  inflows  were  associated  with  ironstone  veins  and  associated  fracturing,  as 

identified  by  the  ERI  surveys.  However,  yields  were  typically  low  to  modest  and  often 

diminished with time (indicating limited connectivity between the fractures).   

Groundwater inflows in the intact fresh rock were very low.  

There  were  no  reported  inflows  associated  with  alluvium  or  calcrete  and  the  depth  to 

weathering was very shallow. 

The exploration drilling results support the presence of a discrete fractured rock aquifer associated 

with the ironstone veins and associated fracturing.  However, the drilling indicates that permeability 

along strike of the Belt is inconsistent. 

Table 22: Water Supply Exploration Drilling Results 

Location  Hole mE MGA 

Zn50 

mN MGA 

Zn50 

RL 

(mAHD) Depth (m) 

Max Airlift 

Yield During 

Drilling (L/s) 

Auer North 

ANW1  425,005  7,350,799  ‐  101  0.3 

ANW2  424,965  7,350,758  ‐  114  0.8 

ANW3  424,965  7,350,804  ‐  120  0.8 

Western 

Belt 

LERC020  419,993  7,360,889  343.5  124  2.2 

LERC021  419,943  7,361,078  346.4  120  2.5 

LERC022  422,945  7,359,497  348.128  126  0.3 

LERC023  422,990  7,359,315  349.3  120  <0.1 

LERC024  422,898  7,359,783  347  120  0.4 

KGRC019  425,475  7,358,365  337.751  108  1.8 

KGRC020  425,526  7,358,866  335.23  120  1.8 

KGRC021  425,506  7,358,646  340.37  120  0.3 

KGRC022  426,516  7,357,389  331.888  108  0.2 

 

Page 51: Hydrogeological Assessment II: Fractured Rock Aquifers

WATER SUPPLY INVESTIGATION 

 J1709R01    April 2018 

 

43  

 

5.3 MONITORING BORE INSTALLATION Three monitoring bores were constructed in exploration drill holes KGRC019, KGRC022 and LERC020.  

Details of monitoring bores are provided in Table 23 below, and locations shown in Figure 15. 

Figure  15  also  shows  groundwater  contours,  using  the  water  level  data  collected  to  date.    The 

contours indicate a groundwater flow direction to the south west, which is consistent with regional 

conditions. 

Table 23: Water Supply Monitoring Bores 

Parameter  Units Monitoring Bores 

KGRC019  KGRC022  LERC020 

Collar Location MGA Zn 50 (mE)  425,475  426,516  425,526 

(mN)  7,358,365  7,357,389  7,358,866 

RL Ground Level  (mAHD)  337.54  331.89  335.23* 

RL Top of Casing  (mAHD)  338.16  332.67  335.53* 

Depth Drilled  (mbgl)  108  120  124 

Cased Depth  (mbgl)  24  108  47 

Casing Type  

50 mm Class 

12 uPVC 

50 mm Class 

12 uPVC 

50 mm Class 

12 uPVC 

Slotted Interval  (mbgl)  +0.6 to 24  +0.8 to 108  41 to 47 

Gravel Pack Grade  mm  none  none  none 

Gravel Pack Interval    none  none  none 

Annual Bentonite Seal    none  none  none 

Stick‐up  (magl)  0.6  0.8  0.3 

SWL  (mbtoc)  10.27  4.46  14.17 

SWL Date  11 Dec 17  11 Dec 17  11 Dec 17 

Note:  *  RL  estimated  from DTM; mbgl  = metres  below  ground  level; magl  = metres  above  ground  level; mbtoc  = 

metres below top of casing 

 

 

Page 52: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

44  

 

6.0  WATER SUPPLY DISCUSSION The fractured rock field investigations has resulted in three water supply bores, providing a potential 

combined 16 L/s for the construction phase of the Project.  The investigations also identified at least 

one other potential bore location at LERC020 or 021.   

The fractured rock investigations completed to date indicate that low to modest bore yields (i.e. up 

to 8 L/s) of  low salinity groundwater are possible within  the fractured rock.   However,  the aquifer 

storage and recharge are limited, and bore yields could potentially diminish with extended use.   

Whilst  dewatering  inflows  will  contribute  to  the  Project  water  supply  in  the  latter  stages  of  the 

Project, the pits do not extend below the water table until quarter 9 (i.e. year 3).  Consequently, the 

full demand of 79 L/s will need to be met by water supply bores for the initial three year period.  

The  investigations  indicate  that  it  is  likely  to be a  long and costly programme to meet  the Project 

water  demand  of  79  L/s  from  fractured  rock  sources.    Investigations would  likely  need  to  extent 

further  afield,  potentially  off‐tenement,  and  would  likely  require  a  geophysical  survey  and 

exploration drilling.  Bore yields in the fractured rock aquifer are low to modest and bore locations 

would require suitable spacing (perhaps 2 km or greater) to account for the low recharge and limited 

aquifer  storage.    Sufficient  borefield  contingency  would  also  be  required  to  allow  for  the  risk  of 

diminishing yields.     

Given  the  risks  identified  above and  through  consultation with DWER and DBCA,  in  late 2017  the 

focus  of  the  water  supply  investigation  moved  to  palaeochannel  sources.    Whilst  palaeochannel 

aquifers can report higher salinity than fractured rock aquifers, aquifer storage is typically higher and 

consequently more reliable.   

The palaeochannel investigation is well underway and will be the focus of a separate report. 

  

 

 

Page 53: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

45  

 

7.0 GROUNDWATER LICENSING Any groundwater abstraction for the Project will require a groundwater licence (GWL), issued by the 

DWER, under the Rights in Water and Irrigation Act 1914 (WA).   

The DWER  issues GWLs using  a  risk  based  assessment  tool  termed  the  Level  of Water  Allocation.  

Under this system a water allocation limit is placed on each aquifer resource within a groundwater 

area  or, where  defined,  groundwater  sub‐area.    The  scale  of  assessment  required  for  licensing  is 

then set depending upon the proportion of the maximum allocation that has already been assigned, 

with  the  aim  to minimise  the  risk  of  unacceptable  impacts  upon  existing  users  and  future  public 

water supplies, and to support future development in the area/sub‐area. 

Once the maximum allocation is reached, the DWER will review any new applications to identify any 

unacceptable  impacts.    If  unacceptable  risks  are  identified  by  the  department,  then  the  licence 

application  will  be  rejected.    Securing  of  additional  water  supplies  will  then  be  limited  to  water 

trading with existing  licence holders or seeking supplies from other aquifer resources.    Inherent  in 

this scheme is the allocation of new licences on a first‐come first‐served basis. 

7.1 RESOURCE AREA AND CURRENT ALLOCATION The Project area  lies within  the Bangemall/Capricorn subarea of  the Gascoyne Groundwater Area.  

The  groundwater  resources  available  for  each  of  the  Project  Mining  Lease  tenements,  and  the 

corresponding  current  level  of  allocation  (as  sourced  from  the  DWER  Water  Register)  for  each 

resource are provided in Table 29 below.  

Any  groundwater  resources  listed  as  having  limited  information,  indicate  that  there  is  insufficient 

information for the groundwater resource and an allocation has not been set for that resource.  The 

DWER would evaluate each application individually and apply an allocation limit when sufficient data 

is available to assign a suitable allocation limit. 

The  information  provided  in  Table  29  below  indicates  that  there  is  available  allocation  for  all 

groundwater  resources  associated  with  the  Project  Mining  Lease  tenements.    This  suggests  that 

licensing for the Project, for either the fractured rock or palaeochannel sources, is not likely to be a 

Project risk, assuming the hydrogeological investigation is conducted to a suitable level, as discussed 

further in Section 7.3.  

Table 24: Current Resource Allocation 

Tenement  Groundwater Area 

Sub Area  Groundwater Resource Current Allocation 

M09/157, M09/158, M09/159, M09/160, M09/161, M09/162 

Gascoyne  Bangemall / Capricorn 

Combined – Fractured Rock West – Alluvium  Allocation Available 

Combined – Fractured Rock West – Calcrete  Allocation Available 

Combined ‐ Fractured Rock West –Palaeochannel 

Allocation Available 

Combined Fractured Rock West – Fractured Rock  Allocation Available 

 

Page 54: Hydrogeological Assessment II: Fractured Rock Aquifers

GROUNDWATER LICENSING 

 J1709R01    April 2018 

 

46  

 

7.2 LICENCE APPLICATION The  Project  will  require  two  groundwater  licences,  to  permit  groundwater  abstraction  from  the 

fractured rock aquifer, and from the palaeochannel aquifer.  Licensing of the palaeochannel aquifer 

will be addressed separately. 

Hastings has been  issued with an  initial Groundwater  Licence  (GWL183285(2))  to  cover  the water 

demand  for  the  construction  phase  of  the  Project.    The  GWL  permits  an  annual  entitlement  of 

280,000 kL per annum,  from the Combined – Fractured Rock West – Fractured Rock groundwater 

resource, expiring 11 September 2026. 

An  addendum  to  this  existing  licence will  be  required  for  the  long‐term water  supply.    Given  the 

uncertainty of  the  long‐term dewatering estimates  it  is  recommended that Hastings applies  for an 

annual entitlement of 820,000 kL per annum (26 L/s) initially.   This allocation should suffice for the 

first three to five years of operation, and cover groundwater abstraction from existing water supply 

bores and dewatering.    

Subsequent addendums can then be submitted throughout the life of the Project, once monitoring 

data allows for a more reliable estimate of future dewatering rates.  It is likely that an addendum to 

increase the allocation to over 1,000,000 kL per annum may be necessary during the latter stages of 

the Project.   

7.3 REGULATORY REPORTING REQUIREMENTS The DWER set the level of investigation required for any future groundwater abstraction based upon 

a decision matrix (defined under Operational Policy No. 5.12, Hydrogeological Reporting Associated 

with a Groundwater Well Licence).  The matrix uses five criteria; the volume requested, the level of 

allocation, the risk of impacts upon other users and GDEs, and the existing groundwater salinity. 

A  copy  of  the  decision  matrix  is  provided  in  Table  25,  with  the  highlighted  cells  providing  the 

assessment  for  the  proposed  fractured  rock  groundwater  usage  based  upon  a  demand  of  0.82 

GL/year, a salinity of between 500 and 1,500 mg/L TDS, and a level of allocation of 30 to 70%.  It is 

assumed that impacts to other users and GDE’s are unlikely.  

The results for Table 25 indicate a total score of 12 points, which is on the limit of requiring a H1 or 

H2  level  of  assessment.    A H2  assessment  requires  a  basic  hydrogeological  assessment,  including 

installation  and  testing  of  investigation  bores.    This  report  can  be  used  to  support  a  H2  level 

assessment.    

Note that the level of allocation and potential for unacceptable impacts has been estimated, based 

on available information, and the DWER reserve the right to request a higher level of assessment if 

they have uncertainty about the potential impact to the water resource, other groundwater users or 

the environment.   Hastings has, however,  consulted  regularly with DWER hydrogeology specialists 

throughout  the  investigations  and  is  confident  that  the  level  of  information  collected  will  be 

sufficient. 

 

Page 55: Hydrogeological Assessment II: Fractured Rock Aquifers

GROUNDWATER LICENSING 

 J1709R01    April 2018 

 

47  

 

Table 25: DWER Decision Matrix for Hydrogeological Assessments 

Volume Requested (kL/year) 

Level of Allocation 

Potential for Unacceptable Impacts Existing Salinity (mg/L TDS) Other Users GDE’s

<10,000 

(0 points) 

30‐70% (1 point) 

Impacts unlikely(0 points) 

Impacts unlikely(0 points) 

Fresh <500 (4 points) 

10,001–50,000  (2 points) 

70‐<100% (3 points) 

Impacts possible (2 points) 

Impacts possible (2 points) 

Marginal 501‐1,500 (3 points) 

50,000‐250,000  (4 points) 

100% + (5 points) 

Impacts likely (5 points) 

Impacts likely (5 points) 

Brackish 1,501‐5,000 (2 points) 

250,001‐500,000  (6 points) 

     Saline 5,001‐50,000 (1 point) 

500,001‐1,000,000 (8 points) 

     Hypersaline >50,000 (0 points) 

1,000,000‐2,500,000 (15 points) 

       

>2,500,000 (20 points) 

       

 

0 to 7 Points – Generally no assessment required, unless other knowledge of risks  indicates that H1 

level assessment is warranted. 

8 to 12 points – H1 level of assessment (desktop hydrogeological assessment).  However, low volume 

applications with low risk of impacts may not warrant an assessment. 

12 to 18 points – H2 level of assessment (basic hydrogeological assessment, including installation and 

testing of investigation bores). 

>19 points – H3  level of assessment  (detailed hydrogeological assessment  including  installation and 

testing of investigation bores and a groundwater model).    

7.4   REQUIREMENT FOR OPERATING STRATEGIES The DWER may  require an operating  strategy as part of  the GWL conditions.    This  requirement  is 

assessed using a decision matrix presented in Operational Policy 5.08 (Use of Operating Strategies in 

the Water Licensing Process), which  is similar to the matrix used to assess reporting requirements 

(Section 7.2).   

A copy of the operating strategy matrix is presented as Table 26, with the highlighted cells providing 

the  assessment  for  the  fractured  rock  groundwater  usage.    The  tabulated  results  indicate  a  total 

score of 7 points, which indicates an operating strategy is unlikely to be required.  Again, the DWER 

reserves the right to request a basic operating strategy if they have uncertainty about the potential 

impact to the water resource, other groundwater users or the environment. 

 

Page 56: Hydrogeological Assessment II: Fractured Rock Aquifers

GROUNDWATER LICENSING 

 J1709R01    April 2018 

 

48  

 

Table 26: DWER Decision Matrix for Operating Strategies 

Volume Requested (kL/year) 

Level of Allocation 

Potential for Unacceptable Impacts Existing Salinity (mg/L TDS) Other Users GDE’s

0‐499,999 

(0 points) 

0‐30% (0 point) 

Impacts unlikely(0 points) 

Impacts unlikely(0 points) 

Fresh <1500 (4 points) 

500,000‐2,000,000  (2 points) 

30‐70% (1 point) 

Impacts possible (2 points) 

Impacts possible (2 points) 

Brackish 1,501‐5,000 (2 points) 

2,000,001‐5,000,000  (5 points) 

70‐<100% (3 points) 

Impacts likely (5 points) 

Impacts likely (5 points) 

Saline 5,001‐50,000 (1 point) 

>5,000,001  (8 points) 

100% + (5 points) 

   Hypersaline >50,000 (0 point) 

 

0 to 7 Points – Development of an operating strategy unlikely to be required. 

8 to 12 points – A basic operating strategy is likely to be required. 

12 to 18 points – Development of a detailed operating strategy is required. 

 

 

 

 

Page 57: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

49  

 

8.0 SUMMARY AND CONCLUSIONS Hastings  Technology  Metals  Limited  (Hastings)  holds  the  Yangibana  Rare  Earths  Project,  located 

approximately 150 km north east of Gascoyne Junction,  in  the Upper Gascoyne region of Western 

Australia (Figure 1).  The Project’s tenement package (Figure 2) covers approximately 650 km2, and 

hosts  extensive  rare  earths‐bearing  ferrocarbonatite/ironstone  veins  containing  neodymium, 

praseodymium and dysprosium in a monazite ore.  Rare earth elements will be mined and processed 

at the Project area.  

Hastings has undertaken a Definitive Feasibility Study (DFS) on the basis of  initially developing two 

pits, i.e. Fraser’s and Bald Hill (Figure 3) with other pits following to the south and north‐west of the 

plant site.  Mineralisation also occurs at several other deposits including Yangibana West, Yangibana 

North, Yangibana South, Yangibana, Gossan, Lions Ear, Hook, Kane’s Gossan, Spider Hill, Tongue, and 

Auer  and  Auer  North  (Figure  3).    Yangibana  West,  Auer,  Auer  North  and  Yangibana  are  the 

immediate prospective pits following completion of the Fraser’s and Bald Hill mining.   

To date, mining schedules have been prepared by Hasting’s mining consultant (Snowden Group) for 

four proposed pits; Fraser’s, Bald Hill, Yangibana North and Yangibana West.  Project infrastructure 

includes  on‐site  processing,  a  FIFO  /  DIDO  mine  accommodation  village  and  an  airstrip.  The 

proposed pits will  be  developed using  conventional  open  cut methods  to depths of  120 m below 

ground level at Fraser’s and Bald Hill and 95 m at Yangibana North and Yangibana West.     The pits 

extend below the ambient groundwater level and will require pit dewatering to maintain dry mining 

conditions.   

The project  has  an estimated water demand of up  to 2.5 GL/annum  (79  L/s),  for  the purposes of 

mineral processing, dust suppression and camp / potable supply (via reverse osmosis treatment).     

A Stage I assessment was undertaken in 2016 (GRM 2017).  The Stage II study comprised a fractured 

rock  and  palaeochannel  study,  aimed  at  identifying  a water  source  for  the  Project  and  providing 

sufficient supporting documentation to meet Approvals requirements.   

The fractured rock component of the Stage II study can be summarised as follows:  

Field  investigations  for  the  dewatering  assessment  of  the  Fraser’s  and  Bald  Hill  pits 

comprised 11 exploration drill‐holes, 12 airlift recovery tests, the installation of three test 

bores and  test pumping of  four bores  (including a dis‐used bore).   Groundwater  samples 

were collected for groundwater chemistry and isotope analysis. 

The  results  indicate  that  permeability  in  the  fresh  bedrock  is  enhanced  by  fracturing, 

dissolution and chemical weathering.  Away from the fractures permeability in the bedrock 

is typically low. Permeability in the immediate area of the proposed pits is associated with 

the  ferrocarbonatite/ironstone  veins  (which  host  the  ore),  further  enhanced  by  cross 

cutting  structures.    The  three  test production bores are expected  to provide a  combined 

water supply of 16 L/s for the construction phase of the Project. 

The laboratory analysis indicates that the groundwater is slightly alkaline, fresh to brackish 

and of sodium chloride type.  Chloride mass balance calculations indicate recharge rates in 

the  order  of  1.3  to  2.4  mm  per  year,  and  the  isotope  analysis  indicates  that  the 

Page 58: Hydrogeological Assessment II: Fractured Rock Aquifers

SUMMARY AND CONCLUSIONS 

 J1709R01    April 2018 

 

50  

 

groundwater  is  not  modern,  and  no  recent  (within  the  past  60  years)  recharge  had 

occurred. 

Given  the small  surface water catchment size  (150  to 200 km2),  low average  rainfall,  low 

recharge rates and the isotope results; recharge to the fractured rock aquifer is expected to 

be limited.  In addition, aquifer storage is also likely to be limited, based upon test pumping 

results.       

Average  dewatering  rates  for  the  proposed  Fraser’s,  Bald  Hill,  Yangibana  North  and 

Yangibana West pits have been estimated using the Thiem equation for unconfined flow.  

The estimated dewatering inflows range from 2.9 L/s in Q9 (year 3), and peak at 54.8 L/s in 

Q29 (year 7). 

 However,  it  should be noted  that  short  term higher  than anticipated yields may  result  if 

large water bearing structures are encountered which were not identified during the field 

investigations.   Alternatively, dewatering  rates may be  lower  than anticipated due  to  the 

limited storage and recharge rates, particularly during the latter stages of the Project. 

The estimated inflow rates indicate that dewatering will be best achieved by sump pumping 

methods, potentially supplemented by dewatering bores.  The test bores (FRW03, BHW05 

and YWWB01) are not considered dewatering bores as  they were constructed  for  testing 

purposes only, using uPVC casing, and may not withstand  the pressure of blasting during 

mining.  In addition, BHW05 is now within the pit footprint for the Stage 1 pit and will be 

destroyed during the pre‐strip for the mine.  However, the test bores can be utilised during 

the  construction  phase  and  early  operational  phase  of  the  Project  and  will  facilitate 

dewatering ahead of mining to some degree.   

It  is  recommended  that  the performances of  test bores are closely monitored during  the 

construction phase to assess the degree of future dewatering during mining.   Dewatering 

bores,  if  required,  should be  constructed using 6”  schedule 40  steel  casing  (7.1 mm wall 

thickness), slotted against the inflow zones.   

A  groundwater  monitoring  programme  will  be  required,  and  a  preliminary  monitoring 

schedule has been provided in Table 16. 

Pit  lake modelling was  undertaken  to  assess  pit  lake  conditions  after mine  closure.    The 

models  were  run  over  a  period  of  500  years  under  both  average  and  wet  climatic 

conditions.    The  results  indicate  a  rapid  pit  lake  level  rise  over  the  initial  10  years when 

groundwater inflow rates exceed evaporation.  The rate of rise reduces between 10 and 15 

years, before reaching a state of equilibrium after 20 years, when inflows (groundwater and 

rainfall) balance evaporative losses.  The models indicate that both pits act as groundwater 

sinks (i.e. no groundwater throughflow) under average and wet conditions. 

The pit lake model also provides an estimate of salinity concentrations post closure, based 

upon evaporative concentration in the pit lakes.  The results indicate a rise in salinity over 

500 years to about 34,000 mg/L TDS. 

The  pit  lake  modelling  indicates  potential  for  pit  water  flowing  into  the  groundwater 

environment  post  closure  is  low,  assuming  no  catchment  runoff  reporting  to  the  pit.  

Page 59: Hydrogeological Assessment II: Fractured Rock Aquifers

SUMMARY AND CONCLUSIONS 

 J1709R01    April 2018 

 

51  

 

Therefore,  the pit  lake modelling will  require  re‐running  if  the mine closure plan  indicate 

the potential for catchment runoff reporting to the mine void after closure.  

A fractured rock water supply investigation was undertaken during 2017 to target fractured 

rock  aquifers  away  from  the  pit  areas.    The  investigations  focussed  on  the  area  of  Auer 

North which  reported anecdotal  groundwater  inflows during exploration drilling,  and  the 

Western  Belt.    The  Western  Belt  lies  between  Yangibana  West  to  Kane’s  Gossan  and 

comprises  an  area  of  approximately  12  km  of  ironstone  strike  length.    Targets  were 

identified along  the Western Belt using Electrical Resistivity  Imaging  (ERI)  to define  cross 

cutting structural features along the ironstone. 

Twelve drill‐holes were  tested as part of  the water  supply  investigation, which  identified 

one potential bore locations along the Western Belt.   

The groundwater quality along the Western Belt and at Auer North is fresh to brackish and 

slightly  alkaline,  consistent with  the  results  from Fraser’s, Bald Hill,  Yangibana North and 

Yangibana West. 

Four monitoring bores were installed along the Western Belt, which indicate a groundwater 

flow direction to the south west, which is consistent with regional conditions. 

Dewatering  and  abstraction  from  production  bores  will  require  an  addendum  to  the 

existing  licence.    It  is  recommended  that  an  allocation  increase  to  820,000  kL/annum  is 

requested, which should cover the first three to five years of groundwater abstraction from 

the  fractured  rock  aquifer.    The  addendum may  require  an  H2  level  of  hydrogeological 

assessment  (this  report  is  expected  to  constitute  this  level of  assessment).   However,  an 

operating strategy is not expected to be required at this stage.  The licence addendum and 

supporting documentation are expected to be submitted to the DWER by early April 2018.  

The focus of the water supply investigation was shifted to target palaeochannel aquifers in late 

2017.   The  results of  the palaeochannel assessment will be  reported  in a  separate  report.   A 

water balance for the Project’s Life of Mine will be included in the palaeochannel assessment, 

along with licensing requirements to abstract from the palaeochannel aquifer.       

 

Page 60: Hydrogeological Assessment II: Fractured Rock Aquifers

SUMMARY AND CONCLUSIONS 

 J1709R01    April 2018 

 

52  

 

 

Groundwater Resource Management Pty Ltd 

 

 

Kathy McDougall  Jan Vermaak 

Principal Hydrogeologist  Principal Hydrogeologist 

 

Doc Ref: J1709R01 

This report has been printed on paper that contains a proportion of recycled material as a gesture of 

Groundwater  Resource  Management’s  commitment  to  sustainable  management  of  the 

environment. 

 

Page 61: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

53  

 

REFERENCES Bennelongia Environmental Consultants 2017 “Yangibana Project: Subterranean Fauna Assessment”, 

unpublished  report prepared for Hastings Technology Metals Limited,  January 2017. 

Cooper, H.H., Jacob, C.E., 1946 “A Generalised Graphical Method for Evaluating Formation Constants 

and Summarising Well Field History, Am. Geophys. Union Trans., vol. 27, pp. 526‐534. 

Department of Water 2011 “Operational policy 5.08 – Use of Operating Strategies” Department of 

Water, Perth. 

Department  of Water  2011  “Operational  Policy  5.12  – Hydrogeological  Reporting  Associated with 

Groundwater Well Licenses” Department of Water, Perth. 

Ecoscape  2017  “Impact  of  Post  Mining  Groundwater  Drawdown  in  Groundwater  Dependant 

Ecosystems”, unpublished  report prepared for Hastings Technology Metals Limited, January 2017. 

Global  Groundwater  2016  “Yangibana  Rare  Earth  Project  Conceptual  Hydrogeological  Appraisal”, 

unpublished report prepared for Hastings Technology Metals Limited, October 2016. 

Groundwater  Resource  Management  2017  “DFS  Study  ‐  Stage  I  Hydrogeological  Assessment 

Yangibana  Rare  Earths  Project”,  unpublished  report  prepared  for  Hastings,  J160014R01,  dated 

February 2017. 

Hvorslev, M.J.,  1951  “Time  Lag  and  Soil  Permeability  in Groundwater Observations”,  Bull. No.  36, 

Waterways Exper. Sta. Corps of Engrs, U.S. Army, Vicsburg, Mississippi, pp. 1‐50. 

JDA Consultant Hydrologists  2016  “Yangibana Rare  Earth Project, Gascoyne Preliminary Hydrology 

Assessment, unpublished report prepared for Hastings Technology Metals Limited, December 2016. 

National  Uniform  Drillers  Licensing  Committee  2012  “Minimum  Construction  Requirements  for 

Water Bores in Australia Third Edition”. 

Neuman,  S.P.,  1974  “Effects  of  Partial  Penetration  on  Flow  I  Unconfined  Aquifers  Considering 

Delayed Gravity Response”, Water Resource Research, vol 10, no. 2, pp. 303‐312. 

Martin, D. McB.,  Sheppard, S.,  and Thorne, A.M., Geology of  the Maroonah, Ullawarra, Capricorn, 

Mangaroon,  Edmund  and  Elliott  Creek  1:100  000  sheets:  Western  Australian  Geological  Survey, 

1:100 000 Geological Series Explanatory Notes, 65p. 

Theis, C.V., 1935 “The Relationship Between The Lowering of the Piezometric Surface and the Rate 

and Duration of Discharge of a Well Using Groundwater Storage”, Am. Geophys. Union Trans., vol. 

16, pp. 519‐524. 

Thiem, G., 1906 “Hydrologische Methoden”, Gebhardt, Leipzig. 

Turk.  L.J.,  1970  “Evaporation  of  Brine:  A  Field  Study  of  the  Bonneville  Salt  Flats,  Utah”,  Water 

Resource Research, vol 6, no. 4, pp 1209‐1215.  

 

 

Page 62: Hydrogeological Assessment II: Fractured Rock Aquifers

Yangibana Stage II FR (J1709R01)

Hastings Technology Metals Ltd

FIGURE 1KM Mar 18

SITE LOCATION PLAN

FILE:\\G:\Jobs2017\J1709_Yangibana/figures/other/locplan.pptx

YangibanaRare Earths

Project

Page 63: Hydrogeological Assessment II: Fractured Rock Aquifers

395,000 400,000 405,000 410,000 415,000 420,000 425,000 430,000 435,000 440,000 445,000 450,000

Easting (MGA94 Zone 50)

7,340,000

7,345,000

7,350,000

7,355,000

7,360,000

7,365,000

7,370,000

7,375,000

Nor

thin

g (M

GA

94 Z

one

50)

LEGEND

Page 64: Hydrogeological Assessment II: Fractured Rock Aquifers

410,000 412,000 414,000 416,000 418,000 420,000 422,000 424,000 426,000 428,000 430,000 432,000 434,000 436,000 438,000 440,000 442,000 444,000

Easting (MGA94 Zone 50)

7,346,000

7,348,000

7,350,000

7,352,000

7,354,000

7,356,000

7,358,000

7,360,000

7,362,000

7,364,000

Nor

thin

g (M

GA

94 Z

one

50)

Fraser's

LEGEND

Geology of the 1:100 000 Edmund Sheet

Gossan Lion's EarHook

Kane's Gossan

Turbine

Yangibana

TongueYangibana South

Terry's Find

Hatchett

Spider Hill Simon's Find

Auer North

Leceq

Hisinger

Auer

Mosander

Demarcay

WESTERN BELT

Auer

Page 65: Hydrogeological Assessment II: Fractured Rock Aquifers

405,000 410,000 415,000 420,000 425,000 430,000 435,000 440,000 445,000 450,000 455,000

Easting (MGA94 Zone 50)

7,340,000

7,345,000

7,350,000

7,355,000

7,360,000

7,365,000

7,370,000N

orth

ing

(MG

A94

Zon

e 50

)

Proposed Pits

Surface Water Catchments(JDA, 2016)

YANGIBANACREEK CATCHMENT

FRASER CREEKCATCHMENT

PIMBYANACREEK CATCHMENT

Fraser's

LEGEND

Page 66: Hydrogeological Assessment II: Fractured Rock Aquifers

BENBAGEON WELL (W16)

BOOGARDI BORE (W17)

DINGO WELL (W18)

CARDIBAR BORE W12

GAP BORE (E17)

PIMBIANA BORE W10

HENDERSON BORE W11

(W13) WALLABY BORE

ROADSIDE BORE (W14)

FRASER WELL F1

E15 CONTESSE WELL

E16 RED HILL BORE

YANGIBANA BORE F2

Edmund HST

Minga Well

Contessi Bore

Edmund Well

Frasers Well

Yangibana Bore

Woodsys Bore

Red Hill 2

405,000 410,000 415,000 420,000 425,000 430,000 435,000 440,000 445,000

Easting (MGA94 Zone 50)

7,350,000

7,355,000

7,360,000

7,365,000

7,370,000

Nor

thin

g (M

GA

94 Z

one

50)

LEGEND

WIR Bores

Bores Sampled

Proposed Pits

Bald Hill

Fraser's

Yangibana NorthYangibana West

Page 67: Hydrogeological Assessment II: Fractured Rock Aquifers

FRW02

FRRC082

FRRC098

(1.5 L/sec)

(3.4 L/sec)

(0.015 L/sec)

(316.7 mRL)

(307.44 mRL)

(303.36 mRL)

(303.41 mRL)

429,400 429,500 429,600 429,700 429,800 429,900 430,000 430,100 430,200

Easting (MGA94 Zone 50)

7,350,300

7,350,400

7,350,500

7,350,600

7,350,700

7,350,800

7,350,900

7,351,000

7,351,100

7,351,200

7,351,300

7,351,400

7,351,500

7,351,600

7,351,700

Nor

thin

g (M

GA

94 Z

one

50)

Test Production Bore

Test Location(1.5 L/sec) - airlift yeild(316.7 mRL) - static water level

Proposed Stage 1 Pit

Proposed Stage 2 Pit

FRW03

Page 68: Hydrogeological Assessment II: Fractured Rock Aquifers

BHW01

BHW02

BHW03

BHW04

BHRC082

BHRC161

BHRC097BHRC095

(3.9 L/sec)

(1.8 L/sec)

(0.14 L/sec)

(2 L/sec)

(3 L/sec)

(0.8 L/sec)

(0.33 L/sec)

(320.7 mRL)

(320 mRL)

(320.65 mRL)(320.18 mRL)

(322.77 mRL)

(317.73 mRL)

(307.02 mRL)

(307.98 mRL)BHW05

427,600 427,800 428,000 428,200 428,400 428,600 428,800

Easting (MGA94 Zone 50)

7,354,800

7,355,000

7,355,200

7,355,400

7,355,600

7,355,800

7,356,000

7,356,200

7,356,400

7,356,600

7,356,800

7,357,000

Nor

thin

g (M

GA

94 Z

one

50)

LEGEND

Test Production Bore

Test Location(3.9 L/sec) - airlift yield(320.7 mRL) - static water level

Proposed Stage 1 Pit

Proposed Stage 2 Pit

Proposed Stage 3 Pit

Proposed Stage 4 Pit

Proposed Stage 5 Pit

Page 69: Hydrogeological Assessment II: Fractured Rock Aquifers

YGWB03

YWRC003

YWRC057

YGRC094 YGRC095

YGRC096

YWRC075YWWB01YWMB01

YWRC076

YWWB01

415,500 416,000 416,500 417,000 417,500 418,000

Easting (MGA94 Zone 50)

7,360,000

7,360,500

7,361,000

7,361,500

7,362,000

7,362,500

7,363,000

7,363,500

7,364,000

Nor

thin

g (M

GA

94 Z

one

50)

(8 L/sec)(322.5 mRL)

(1.9 L/sec)

(1 L/sec)

(1.2 L/sec)

(3.7 L/sec)

(339.1 mRL)

(339.3 mRL)

(335.5 mRL)

(334.0 mRL)

(337.3 mRL)(1.9 L/sec)

(323.3 mRL)

Page 70: Hydrogeological Assessment II: Fractured Rock Aquifers

E:\D

ropbox (G

RM

)\GR

M Team

Folder\J1709_Y

angibana Stage II\figures\grapher\F

rasers pit lake modelling.grf

0 100 200 300 400 500Years Post Closure

230

240

250

260

270

280

290

300

310

320

m R

L

R01 - Pit Only, Average Rainfall

R02 - Pit Only, High Rainfall

Ambient Groundwater Level

Page 71: Hydrogeological Assessment II: Fractured Rock Aquifers

E:\D

ropbox (G

RM

)\GR

M Team

Folder\J1709_Y

angibana Stage II\figures\grapher\B

ald Hills pit lake m

odelling.grf

0 100 200 300 400 500Years Post Closure

230

240

250

260

270

280

290

300

310

320

330

m R

L

R03 - Pit Only, Average Rainfall

R04 - Pit Only, High Rainfall

Ambient Groundwater Level

Page 72: Hydrogeological Assessment II: Fractured Rock Aquifers

E:\D

ropbox (G

RM

)\GR

M Team

Folder\J1709_Y

angibana Stage II\figu

res\grap

her\Yangi N

orth pit lake modelling.grf

0 100 200 300 400 500Years Post Closure

230

240

250

260

270

280

290

300

310

320

330

m R

L

R05 - Pit Only, Average Rainfall

R06 - Pit Only, High Rainfall

Ambient Groundwater Level

Page 73: Hydrogeological Assessment II: Fractured Rock Aquifers

E:\D

ropbox (G

RM

)\GR

M Team

Folder\J1709_Y

angibana Stage II\figures\graph

er\Yangi W

est pit lake modelling.grf

0 100 200 300 400 500Years Post Closure

230

240

250

260

270

280

290

300

310

320

330

m R

L

R07 - Pit Only, Average Rainfall

R08 - Pit Only, High Rainfall

Ambient Groundwater Level

Page 74: Hydrogeological Assessment II: Fractured Rock Aquifers

YWWB01

414,000 416,000 418,000 420,000 422,000 424,000 426,000 428,000 430,000 432,000 434,000

Easting (MGA94 Zone 50)

7,350,000

7,352,000

7,354,000

7,356,000

7,358,000

7,360,000

7,362,000

7,364,000

Nor

thin

g (M

GA

94 Z

one

50)

Auer North

LEGEND

Bald Hill

Fraser's

Yangibana North

Yangibana West

FRW03

BHW05

Page 75: Hydrogeological Assessment II: Fractured Rock Aquifers

LERC020LERC021

LERC022

LERC023

LERC024

ANW1ANW2

ANW3

KGRC022

KGRC019

KGRC020

KGRC021

YWWB01

414,000 416,000 418,000 420,000 422,000 424,000 426,000 428,000 430,000 432,000 434,000

Easting (MGA94 Zone 50)

7,350,000

7,352,000

7,354,000

7,356,000

7,358,000

7,360,000

7,362,000

7,364,000

Nor

thin

g (M

GA

94 Z

one

50)

Existing Production Bores

Completed Exploration Holes

ERI Transects

LEGEND

FRW03

BHW05

Page 76: Hydrogeological Assessment II: Fractured Rock Aquifers

YWMB01

LERC020

KGRC019

KGRC022

313 mA

HD

315 mA

HD

317 mA

HD

319

mA

HD

319 mAHD

321 mAHD

321 mAHD 323 mAHD

323 mAHD

325 mAHD

325 mAHD

327 mAHD

327 mAHD

329 mAHD

412,000 414,000 416,000 418,000 420,000 422,000 424,000 426,000 428,000 430,000 432,000 434,000

Easting (MGA94 Zone 50)

7,350,000

7,352,000

7,354,000

7,356,000

7,358,000

7,360,000

7,362,000

7,364,000

Nor

thin

g (M

GA

94 Z

one

50)

Groundwater Contours

Completed Production Bores

Completed Monitoring Bores

YWWB01

LEGEND

FRW03

BHW05

Page 77: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

A1  

 

 

APPENDIX A 

 

Regional Water Quality

Page 78: Hydrogeological Assessment II: Fractured Rock Aquifers

Appendix A ‐ Regional Water Quality

Parameter

Easting (MGA z50)

Northing(MGA z50)

Sampling Date Jun-17 09-08-17 22-10-17 Jun-17 09-08-17 22-10-17 Jun-17 09-08-17 22-10-17 Jun-17 09-08-17 22-10-17 Jun-17 09-08-17 22-10-17 Jun-17 09-08-17 22-10-17 Jun-17 09-08-17SWL mbtc 10.6 9.1 2.6 2.4 14.9 9.2 7.3 31.9

Arsenic - Dissolved mg/L 0.003 0.001 #N/A <0.001 0.001 #N/A 0.002 0.002 #N/A 0.003 0.001 #N/A <0.001 <0.001 #N/A 0.004 0.002 #N/A <0.001 0.001 <0.001 <0.001 #N/A

Antimony - Dissolved mg/L <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A <0.001 #N/A #N/A

Aluminium - Dissolved mg/L <0.1 #N/A #N/A <0.1 #N/A #N/A <0.1 #N/A #N/A <0.1 #N/A #N/A <0.1 #N/A #N/A <0.1 #N/A #N/A <0.1 #N/A <0.1 #N/A #N/A

Barium - Dissolved mg/L 0.02 #N/A #N/A 0.04 #N/A #N/A 0.04 #N/A #N/A 0.02 #N/A #N/A 0.16 #N/A #N/A 0.07 #N/A #N/A 0.03 #N/A 0.04 #N/A #N/A

Beryllium - Dissolved mg/L <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A <0.01 #N/A #N/A

Boron - Disolved mg/L #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

Cadmium - Dissolved mg/L <0.002 <0.002 #N/A <0.002 <0.002 #N/A <0.002 <0.002 #N/A <0.002 <0.002 #N/A <0.002 <0.002 #N/A <0.002 <0.002 #N/A <0.002 <0.002 <0.002 <0.002 #N/A

Chromium - Dissolved mg/L <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 <0.01 <0.01 #N/A

Cobalt - Dissolved mg/L <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A <0.01 #N/A #N/A

Copper - Dissolved mg/L <0.01 <0.01 #N/A 0.04 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A 0.02 0.02 #N/A <0.01 <0.01 #N/A <0.01 <0.01 <0.01 <0.01 #N/A

Iron - Dissolved mg/L 0.07 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A 0.07 #N/A #N/A <0.01 #N/A #N/A 0.19 #N/A #N/A <0.01 #N/A <0.01 #N/A #N/A

Manganese - Dissolved mg/L <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A 0.87 #N/A #N/A <0.01 #N/A <0.01 #N/A #N/A

Mercury - Dissolved mg/L #N/A <0.0002 #N/A #N/A <0.0002 #N/A #N/A <0.0002 #N/A #N/A <0.0002 #N/A #N/A <0.0002 #N/A #N/A <0.0002 #N/A #N/A <0.0002 #N/A <0.0002 #N/A

Molybdenum - Dissolved mg/L <0.01 #N/A #N/A 0.01 #N/A #N/A 0.01 #N/A #N/A <0.01 #N/A #N/A 0.01 #N/A #N/A 0.01 #N/A #N/A <0.01 #N/A 0.02 #N/A #N/A

Nickel - Dissolved mg/L <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 <0.01 <0.01 #N/A

Lead - Dissolved mg/L <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 <0.01 <0.01 #N/A

Selenium - Dissolved mg/L 0.007 #N/A #N/A 0.003 #N/A #N/A 0.003 #N/A #N/A 0.007 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A 0.003 #N/A 0.005 #N/A #N/A

Silicon - Dissolved mg/L 32 #N/A #N/A 23 #N/A #N/A 36 #N/A #N/A 32 #N/A #N/A 30 #N/A #N/A 31 #N/A #N/A 26 #N/A 24 #N/A #N/A

Silver - Dissolved mg/L <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A <0.01 #N/A #N/A

Strontium - Dissolved mg/L 0.76 #N/A #N/A 1.1 #N/A #N/A 0.41 #N/A #N/A 0.76 #N/A #N/A 0.3 #N/A #N/A 2.2 #N/A #N/A 0.82 #N/A 0.52 #N/A #N/A

Tin - Dissolved mg/L <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A #N/A 0.02 #N/A #N/A <0.01 #N/A #N/A <0.01 #N/A <0.01 #N/A #N/A

Titanium - Dissolved mg/L #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

Thorium - Dissolved mg/L <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A #N/A <0.001 #N/A <0.001 #N/A #N/A

Uranium - Dissolved mg/L 0.004 #N/A #N/A 0.038 #N/A #N/A 0.004 #N/A #N/A 0.004 #N/A #N/A 0.02 #N/A #N/A 0.079 #N/A #N/A 0.009 #N/A 0.025 #N/A #N/A

Vandanium - Dissolved mg/L #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A #N/A

Zinc - Dissolved mg/L <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 <0.01 #N/A <0.01 0.02 #N/A <0.01 <0.01 #N/A <0.01 <0.01 <0.01 <0.01 #N/A

Aluminium - Total mg/L <0.1 <0.1 <0.1 0.2 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 0.1 <0.1 0.9 <0.1 <0.1 <0.1 <0.1 <0.1 0.3 0.1

Arsenic - Total mg/L 0.001 0.001 0.002 0.001 <0.001 0.002

Cadmium - Total mg/L <0.002 <0.002 <0.002 <0.002 <0.002 <0.002

Chromium - Total mg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 47 49 53

Calcium - Dissolved mg/L 66 82 81 79 74 75 39 52 52 66 82 81 30 71 73 250 260 170

Copper - Total mg/L 0.03 <0.01 <0.01 0.03 0.06 <0.01

Iron - Total mg/L 0.15 0.05 0.02 0.22 0.12 0.04 0.07 0.01 <0.01 0.15 0.05 0.02 0.03 0.33 0.01 1.5 0.03 0.02 0.02 0.51 0.84

Mercury - Total mg/L <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002

Nickel - Total mg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Lead - Total mg/L <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Sulphur - Dissolved mg/L 96 #N/A #N/A 110 #N/A #N/A 38 #N/A #N/A 96 #N/A #N/A 17 #N/A #N/A 250 #N/A #N/A 52 #N/A #N/A

Potassium - Dissolved mg/L #N/A 4 2.8 #N/A 15 16 #N/A 4.4 4 #N/A 4 2.8 #N/A 4.6 4.4 #N/A 22 17 #N/A 10 9.1

Magnesium - Dissolved mg/L 90 40 40 100 94 95 58 46 46 90 40 40 48 51 53 130 150 98 40 42 41

Sodium - Dissolved mg/L 280 31 26 610 530 450 150 120 88 280 31 26 70 44 37 620 670 410 550 530 420

Selenium - Total mg/L #N/A 0.001 0.002 #N/A 0.004 0.004 #N/A 0.003 0.002 #N/A 0.001 0.002 #N/A <0.001 <0.001 #N/A 0.01 0.007 #N/A 0.006 0.005

Zinc - Total mg/L 0.02 <0.01 <0.01 0.02 0.05 0.02

Uranium - Total mg/L #N/A 0.001 0.001 #N/A 0.037 0.031 #N/A 0.039 0.003 #N/A 0.001 0.001 #N/A 0.029 0.027 #N/A 0.25 0.13 #N/A 0.035 0.029

Chloride mg/L 270 83 75 810 700 750 110 95 110 270 83 75 95 82 81 710 890 720 570 700 510

Fluoride mg/L 1.4 #N/A #N/A 2.9 #N/A #N/A 2.3 #N/A #N/A 1.4 #N/A #N/A 2.5 #N/A #N/A 4 #N/A #N/A 3 #N/A #N/A

Sulphate mg/L 330 38 35 320 310 350 110 95 100 330 38 35 45 77 81 830 1200 700 160 190 170

Nitrate-N mg/L 8.97 2.7 2.9 17 18 16.97 6.5 5.1 4.69 8.97 2.7 2.9 0.05 0.7 1.1 <0.01 8.3 7.7 12 12 11

Hardness mg CaCO3/L 535 #N/A #N/A 609 #N/A #N/A 336 #N/A #N/A 535 #N/A #N/A 273 #N/A #N/A 1160 #N/A #N/A 282 #N/A #N/A

Alkalinity mg CaCO3/L 300 320 310 430 340 310 520 390 380 300 320 310 360 340 350 440 260 250 410 310 290

Alkalinity to pH9.5 mgCaCO3/L <5 #N/A #N/A <5 #N/A #N/A <5 #N/A #N/A <5 #N/A #N/A <5 #N/A #N/A <5 #N/A #N/A <5 #N/A #N/A

Acidity to pH9.5 mgCaCO3/L 82 #N/A #N/A 130 #N/A #N/A 120 #N/A #N/A 82 #N/A #N/A 77 #N/A #N/A 200 #N/A #N/A 93 #N/A #N/A

pH pH units 8.6 7.5 7.9 7.9 7.6 7.6 8.2 8.3 8.2 8.6 7.5 7.9 8.5 8.2 8.2 7.2 8.1 7.5 8 7.9 7.3

Total Dissolved Solids mg/L 1400 600 580 2200 1900 1800 920 680 700 1400 600 580 600 530 600 2800 3100 2100 1600 1500 1400

Total Suspended Solids mg/L <5 <5 <5 17 <5 <5 <5 <5 <5 <5 <5 <5 7 33 <5 76 7 <5 <5 26 5

Total Phosphorus mg/L 0.09 #N/A #N/A 0.07 #N/A #N/A 0.12 #N/A #N/A 0.09 #N/A #N/A 0.06 #N/A #N/A 0.39 #N/A #N/A 0.14 #N/A #N/A

Total Coliforms CFU/100mL #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A

E. Coli CFU/50mL #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A #N/A 0 #N/A

Radium 226 Bq/L #N/A 0 <0.05 #N/A 0 0 #N/A 0 0 #N/A 0 <0.05 #N/A 0 <0.05 #N/A 0 <0.05 #N/A 0 #N/A

Radium 228 Bq/L #N/A 0 <0.08 #N/A 0 0 #N/A 0 0 #N/A 0 <0.08 #N/A 0 <0.08 #N/A 0 <0.08 #N/A 0 #N/A

Water Microbiology

Radiation

7,346,769 7,351,570

Heavy Metals in Water

Metals in Water

Ions by Discrete Analyse

Physical Parameters

7,357,878 7,354,106 7,368,128 7,371,981 7,370,735 7,368,605

Woodsys Bore Fraser's Well414,866 405,351 407,894 410,186 416,349 419,832 413,896 424,854

Yangibana Bore Edmund Well Bore Minga Well  Bore Edmund Homestead Bore Contessis  Bore Red Hill 2 Bore

Page 79: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01 draft   March 2018 

 

B1  

 

 

APPENDIX B 

 

GDE Atlas

Page 80: Hydrogeological Assessment II: Fractured Rock Aquifers

Groundwater Dependent Ecosystem Map Report

25km of 428,000mE 7,356,000mN

Data source - Data are assumed to be correct as supplied from Commonwealth, State and Territory data suppliers or referenced projects. Disclaimer - Use of the information and data contained within this document is at your sole risk. Neither the Bureau nor its agents make any warranties or representations regarding the quality, accuracy, merchantability or fitness for purpose of any material in this document.

Date: 30 January, 2017

Page 81: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

C1  

 

APPENDIX C 

 

Licence to Construct or Alter a Well

Page 82: Hydrogeological Assessment II: Fractured Rock Aquifers
Page 83: Hydrogeological Assessment II: Fractured Rock Aquifers
Page 84: Hydrogeological Assessment II: Fractured Rock Aquifers
Page 85: Hydrogeological Assessment II: Fractured Rock Aquifers
Page 86: Hydrogeological Assessment II: Fractured Rock Aquifers

1

Kathy GRM

From: MAJOR Michael <[email protected]>Sent: Wednesday, May 10, 2017 1:01 PMTo: [email protected]: FW: Water Online - add a partyAttachments: Authorisation to act on Hastings behalf.pdf

Hi Kathy – Looks as though it must have a been a admin typo error as CAW 183464 should have read 3 x production bores and not 6 exploratory wells. Your licence is still valid to 29 September 2017 and you are not in breach of your licence to construct the 3 production wells. Kind Regards Mick   

From: Licence Enquiry  Sent: Wednesday, 10 May 2017 11:01 AM To: MAJOR Michael <[email protected]> Subject: FW: Water Online ‐ add a party  

Hi Mick  Could you please respond to Kathy regarding the question below.  Please call if you have any questions.  Thanks  Adam Viskovich Senior Natural Resource Management Officer  Business Support Unit, Department of Water

T: 1800 508 885 | E: [email protected] or [email protected]   

   

   

From: Kathy GRM [mailto:kathy@g‐r‐m.com.au]  Sent: Tuesday, 9 May 2017 3:51 PM 

Page 87: Hydrogeological Assessment II: Fractured Rock Aquifers

2

To: Licence Enquiry <[email protected]> Subject: RE: Water Online ‐ add a party  Is it only for 6 exploration wells? The application (ref 010045) was for 3 production wells!!  

From: Licence Enquiry [mailto:[email protected]] Sent: Tuesday, May 9, 2017 3:03 PM To: Kathy GRM Subject: RE: Water Online - add a party  

As requested   

From: Kathy GRM [mailto:kathy@g‐r‐m.com.au]  Sent: Tuesday, 9 May 2017 2:57 PM 

Page 88: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

D1  

 

APPENDIX D 

 

Test Pumping Analysis

Page 89: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.

2.

3.

4.

5.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: E:\to save to server\modelling\aqtesolv\FRW03_CR.aqtDate: 02/09/17 Time: 14:05:10

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FRW03Test Date: 4 Nov 2016

AQUIFER DATA

Saturated Thickness: 11. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FRW03 0 0

Observation WellsWell Name X (m) Y (m)

FRW03 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 28.1 m2/day S = 827.1

Page 90: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.

2.

3.

4.

5.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: E:\to save to server\modelling\aqtesolv\FRW03_recET.aqtDate: 02/09/17 Time: 14:07:30

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FRW03Test Date: 6 Nov 2016

AQUIFER DATA

Saturated Thickness: 11. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FRW03 0 0

Observation WellsWell Name X (m) Y (m)

FRW03 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 329.4 m2/day S/S' = 1.66E-9

Page 91: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.

2.

3.

4.

5.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: E:\to save to server\modelling\aqtesolv\FRW03_recLT.aqtDate: 02/09/17 Time: 14:09:08

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FRW03Test Date: 6 Nov 2016

AQUIFER DATA

Saturated Thickness: 11. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FRW03 0 0

Observation WellsWell Name X (m) Y (m)

FRW03 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 197.6 m2/day S/S' = 3.162E-5

Page 92: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

0.8

1.6

2.4

3.2

4.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: E:\to save to server\modelling\aqtesolv\FRW01obs_CR.aqtDate: 02/09/17 Time: 14:10:34

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FRW03Test Date: 4 Nov 2016

AQUIFER DATA

Saturated Thickness: 11. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FRW03 0 0

Observation WellsWell Name X (m) Y (m)

FRW01 6 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 28.37 m2/day S = 0.4489

Page 93: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

0.08

0.16

0.24

0.32

0.4

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY FRW02

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\FRW02_recET.aqtDate: 01/14/17 Time: 10:26:42

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FRW02Test Date: 25/10/2016

AQUIFER DATA

Saturated Thickness: 10. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FRW02 0 0

Observation WellsWell Name X (m) Y (m)

FRW02 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 242.3 m2/day S/S' = 0.321

Page 94: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

0.08

0.16

0.24

0.32

0.4

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY FRW02

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\FRW02_rec.aqtDate: 01/14/17 Time: 10:26:14

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FRW02Test Date: 25/10/2016

AQUIFER DATA

Saturated Thickness: 10. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FRW02 0 0

Observation WellsWell Name X (m) Y (m)

FRW02 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 34.1 m2/day S/S' = 3.638

Page 95: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

0.1

0.2

0.3

0.4

0.5

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY FFRC082

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\FRC082_rec_logger.aqtDate: 01/06/17 Time: 15:39:04

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FFRC082Test Date: 26/10/2016

AQUIFER DATA

Saturated Thickness: 6. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FFRC082 0 0

Observation WellsWell Name X (m) Y (m)

FFRC082 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 226.6 m2/day S/S' = 2.057

Page 96: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.6.

8.

10.

12.

14.

16.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY FFRC098

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\FRC098_rec_logger.aqtDate: 01/14/17 Time: 12:32:36

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FFRC082Test Date: 26/10/2016

AQUIFER DATA

Saturated Thickness: 14.9 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FFRC098 0 0

Observation WellsWell Name X (m) Y (m)

FFRC098 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 0.1156 m2/day S/S' = 6.315E-5

Page 97: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.6.

8.

10.

12.

14.

16.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY FFRC098

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\FRC098_rec_loggerLT.aqtDate: 01/14/17 Time: 12:32:12

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: FFRC082Test Date: 26/10/2016

AQUIFER DATA

Saturated Thickness: 14.9 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)FFRC098 0 0

Observation WellsWell Name X (m) Y (m)

FFRC098 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 0.02527 m2/day S/S' = 1.06

Page 98: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

3.2

6.4

9.6

12.8

16.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05_CR.aqtDate: 01/14/17 Time: 14:15:52

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05Test Date: 9 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05 0 0

Observation WellsWell Name X (m) Y (m)

BHW05 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 236.1 m2/day S = 0.0001196

Page 99: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

3.2

6.4

9.6

12.8

16.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05_crtLT.aqtDate: 01/14/17 Time: 14:14:42

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05Test Date: 9 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05 0 0

Observation WellsWell Name X (m) Y (m)

BHW05 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 74.81 m2/day S = 16.34

Page 100: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.2

2.4

3.6

4.8

6.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05_recET.aqtDate: 01/14/17 Time: 14:32:01

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05Test Date: 11 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05 0 0

Observation WellsWell Name X (m) Y (m)

BHW05 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 207. m2/day S/S' = 0.1134

Page 101: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.2

2.4

3.6

4.8

6.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05_recLT.aqtDate: 01/14/17 Time: 14:31:26

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05Test Date: 11 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05 0 0

Observation WellsWell Name X (m) Y (m)

BHW05 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 216.5 m2/day S/S' = 0.05542

Page 102: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.6

3.2

4.8

6.4

8.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05obs_crtET.aqtDate: 01/14/17 Time: 15:06:24

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05Test Date: 9 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05 0 0

Observation WellsWell Name X (m) Y (m)

BHW05obs 7.4 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 223.8 m2/day S = 0.0004285

Page 103: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.6

3.2

4.8

6.4

8.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05obs_crtLT.aqtDate: 01/14/17 Time: 15:06:05

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05Test Date: 9 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05 0 0

Observation WellsWell Name X (m) Y (m)

BHW05obs 7.4 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 68.36 m2/day S = 0.09607

Page 104: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.2

2.4

3.6

4.8

6.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05_obs recLT.aqtDate: 01/14/17 Time: 14:50:55

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05obsTest Date: 11 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05obs 7.4 0

Observation WellsWell Name X (m) Y (m)

BHW05obs 7.4 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 231.9 m2/day S/S' = 0.0347

Page 105: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.2

2.4

3.6

4.8

6.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW05_recET.aqtDate: 01/14/17 Time: 15:09:38

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW05Test Date: 11 Dec 2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW05 0 0

Observation WellsWell Name X (m) Y (m)

BHW05obs 7.4 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 221.2 m2/day S/S' = 0.05159

Page 106: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

0.32

0.64

0.96

1.28

1.6

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY BHW01

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW01.aqtDate: 01/14/17 Time: 15:48:09

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW01Test Date: 18/11/2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW01 0 0

Observation WellsWell Name X (m) Y (m)

BHW01 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 100. m2/day S/S' = 0.7462

Page 107: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

2.8

5.6

8.4

11.2

14.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY BHW02

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW02ET.aqtDate: 01/14/17 Time: 15:41:28

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW02Test Date: 16/11/2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW02 0 0

Observation WellsWell Name X (m) Y (m)

BHW02 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 0.8155 m2/day S/S' = 12.94

Page 108: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

2.8

5.6

8.4

11.2

14.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY BHW02

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHW02.aqtDate: 01/07/17 Time: 15:11:04

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHW02Test Date: 16/11/2016

AQUIFER DATA

Saturated Thickness: 20. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHW02 0 0

Observation WellsWell Name X (m) Y (m)

BHW02 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 31.58 m2/day S/S' = 1.999

Page 109: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

0.8

1.6

2.4

3.2

4.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY BHRC161

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHRC161 early.aqtDate: 01/14/17 Time: 15:55:21

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHRC161Test Date: 20/11/2016

AQUIFER DATA

Saturated Thickness: 5. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHRC161 0 0

Observation WellsWell Name X (m) Y (m)

BHRC161 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 16.99 m2/day S/S' = 10.51

Page 110: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

0.8

1.6

2.4

3.2

4.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY BHRC161

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHRC161.aqtDate: 01/06/17 Time: 16:26:26

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHRC161Test Date: 20/11/2016

AQUIFER DATA

Saturated Thickness: 5. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHRC161 0 0

Observation WellsWell Name X (m) Y (m)

BHRC161 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 79.91 m2/day S/S' = 1.117

Page 111: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000.0.

0.2

0.4

0.6

0.8

1.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY BHRC082

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHRC082.aqtDate: 01/14/17 Time: 16:01:00

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHRC082Test Date: 20/11/2016

AQUIFER DATA

Saturated Thickness: 34.77 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHRC082 0 0

Observation WellsWell Name X (m) Y (m)

BHRC082 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 66.01 m2/day S/S' = 1.505

Page 112: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

2.

4.

6.

8.

10.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

AIRLIFT RECOVERY BHRC095

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\BHRC095.aqtDate: 01/06/17 Time: 17:13:29

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHRC095Test Date: 20/11/2016

AQUIFER DATA

Saturated Thickness: 14. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)BHRC095 0 0

Observation WellsWell Name X (m) Y (m)

BHRC095 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 0.7155 m2/day S/S' = 4.002

Page 113: Hydrogeological Assessment II: Fractured Rock Aquifers

0. 100. 200. 300. 400. 500.0.001

0.01

0.1

1.

Time (sec)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\Daves\BHRC097.aqtDate: 01/14/17 Time: 16:14:46

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: BHRC097Test Date: 18 Dec 2016

AQUIFER DATA

Saturated Thickness: 40.48 m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA (BHRC097)

Initial Displacement: 0.1628 m Static Water Column Height: 40.48 mTotal Well Penetration Depth: 40.48 m Screen Length: 40.48 mCasing Radius: 0.075 m Well Radius: 0.075 m

Gravel Pack Porosity: 1.

SOLUTION

Aquifer Model: Unconfined Solution Method: Hvorslev

K = 0.25 m/day y0 = 0.1635 m

Page 114: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

2.4

4.8

7.2

9.6

12.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\Daves\YGWB003.aqtDate: 01/14/17 Time: 20:24:01

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: YGWB003Test Date: 14 Dec 2016

AQUIFER DATA

Saturated Thickness: 10. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)YGWB003 0 0

Observation WellsWell Name X (m) Y (m)

YGWB003 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 54.95 m2/day S = 1.008E-6

Page 115: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

0.8

1.6

2.4

3.2

4.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\YGWB003recET.aqtDate: 01/15/17 Time: 14:42:30

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: YGWB003Test Date: 16 Dec 2016

AQUIFER DATA

Saturated Thickness: 10. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)YGWB003 0 0

Observation WellsWell Name X (m) Y (m)

YGWB003 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 29.75 m2/day S/S' = 32.49

Page 116: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

0.8

1.6

2.4

3.2

4.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\YGWB003recLT.aqtDate: 01/15/17 Time: 14:42:57

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: YGWB003Test Date: 16 Dec 2016

AQUIFER DATA

Saturated Thickness: 10. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)YGWB003 0 0

Observation WellsWell Name X (m) Y (m)

YGWB003 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 82.61 m2/day S/S' = 0.0985

Page 117: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

1.

2.

3.

4.

5.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\YGWB003obs bore crt.aqtDate: 01/14/17 Time: 20:14:32

PROJECT INFORMATION

Company: GRMClient: Hastings Project: J160014Location: YangibanaTest Well: YGWB003Test Date: 14 Dec 2016

AQUIFER DATA

Saturated Thickness: 42. m Anisotropy Ratio (Kz/Kr): 2.848

WELL DATA

Pumping WellsWell Name X (m) Y (m)YGWB003 0 0

Observation WellsWell Name X (m) Y (m)

YGWB001 7.87 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 35.63 m2/day S = 0.002797

Page 118: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.1

1.

10.

Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\YGWB003 Obs.aqtDate: 01/15/17 Time: 15:40:51

PROJECT INFORMATION

Company: GRMClient: Hastings Metals LimitedProject: J160014Location: YangibanaTest Well: YGWB003Test Date: 14/12/16

AQUIFER DATA

Saturated Thickness: 42. m

WELL DATA

Pumping WellsWell Name X (m) Y (m)YGWB003 0 0

Observation WellsWell Name X (m) Y (m)

YGWB001 7.87 0

SOLUTION

Aquifer Model: Unconfined Solution Method: Neuman

T = 10.11 m2/day S = 0.0004562Sy = 0.1169 ß = 0.2

Page 119: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

0.8

1.6

2.4

3.2

4.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\YGWB003 Obs recET.aqtDate: 01/15/17 Time: 14:46:03

PROJECT INFORMATION

Company: GRMClient: Hastings Metals LimitedProject: J160014Location: YangibanaTest Well: YGWB003Test Date: 14/12/16

AQUIFER DATA

Saturated Thickness: 42. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)YGWB003 0 0

Observation WellsWell Name X (m) Y (m)

YGWB001 7.87 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 22.7 m2/day S/S' = 46.47

Page 120: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

0.8

1.6

2.4

3.2

4.

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\YGWB003 Obs rec.aqtDate: 01/11/17 Time: 08:43:06

PROJECT INFORMATION

Company: GRMClient: Hastings Metals LimitedProject: J160014Location: YangibanaTest Well: YGWB003Test Date: 14/12/16

AQUIFER DATA

Saturated Thickness: 42. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)YGWB003 0 0

Observation WellsWell Name X (m) Y (m)

YGWB001 7.87 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 78.24 m2/day S/S' = 0.1218

Page 121: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100.0.

0.24

0.48

0.72

0.96

1.2

Time, t/t'

Res

idua

l Dra

wdo

wn

(m)

WELL TEST ANALYSIS

Data Set: F:\J160014_Yangibana\modelling\aqtesolv\ygrc003.aqtDate: 01/15/17 Time: 15:02:26

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J160014Location: YangibanaTest Well: YGRC003Test Date: 17 Dec 2016

AQUIFER DATA

Saturated Thickness: 1. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)YWRC005 0 0

Observation WellsWell Name X (m) Y (m)

YWRC005 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Theis (Recovery)

T = 27.55 m2/day S/S' = 6.227

Page 122: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

8.

16.

24.

32.

40.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: E:\...\ywwb01_CR.aqtDate: 04/11/18 Time: 12:52:50

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J1709Location: YangibanaTest Well: YWWB01Test Date: 20 Aug 2017

AQUIFER DATA

Saturated Thickness: 14. m Anisotropy Ratio (Kz/Kr): 1.

WELL DATA

Pumping WellsWell Name X (m) Y (m)YWWB01 0 0

Observation WellsWell Name X (m) Y (m)

YWWB01 0 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 16.04 m2/day S = 1.529E-12

Page 123: Hydrogeological Assessment II: Fractured Rock Aquifers

1. 10. 100. 1000. 1.0E+40.

0.6

1.2

1.8

2.4

3.

Adjusted Time (min)

Dis

plac

emen

t (m

)

WELL TEST ANALYSIS

Data Set: E:\...\ywmb01_CR.aqtDate: 04/11/18 Time: 12:49:59

PROJECT INFORMATION

Company: GRMClient: HastingsProject: J1709Location: YangibanaTest Well: YWWB01Test Date: 20 Aug 2017

AQUIFER DATA

Saturated Thickness: 14. m Anisotropy Ratio (Kz/Kr): 0.1

WELL DATA

Pumping WellsWell Name X (m) Y (m)YWWB01 0 0

Observation WellsWell Name X (m) Y (m)

YWMB01 7.72 0

SOLUTION

Aquifer Model: Confined Solution Method: Cooper-Jacob

T = 25.08 m2/day S = 0.06301

Page 124: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

E1  

 

APPENDIX E 

 

Drill Logs

Page 125: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: brown, weakly lateritised,ferruginous, after granite

SAPROCK: brown grey, after granite

GRANITE: cream grey to grey, massive, distinctlyto slightly weathered

IRONSTONE: dark grey, brown, fractured

GRANITE: dark grey, brown, weakly foliated

50m: minor inflow

54m: minor inflow55m: inflow >0.1 L/sec

84m: increased inflow85m: inflow 1.2 L/sec,

pH 7.88, EC 2.47mS/cm

90m: inflow 1.5 L/sec,pH 7.97, EC 2.47

mS/cm96m: inflow 1.5 L/sec,

pH 8.03, EC 2.51mS/cm

102m: inflow 1.5 L/sec,pH 8.17, EC 2.47

mS/cm

+0.4-+0.2m annulargrout seal+0.4-2.3m collar pipe0-3m cementannular seal withcement surround

3-110m 10 inchdiameter air rotarydrill-hole

+0.4-71.2m 155mmND class 9 uPVCblank casing

+0.2-95m+3.2-6.4mm gradedfilter pack

71.2-95.2m 155mmND class 9 uPVCslotted casing

155mm uPVC endcap95-110m fallback

PO Box 2310 Kardinya WA 616323 Parry StreetFremantle WA 6160Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

FRW03 J160014

Hastings Yangibana DFS

22-Oct-15

TRD

PH/KF

SWL (date):

7351211

350.5

MGA z50

90 degrees

degrees0

mbtoc ( )

42994120-Oct-16

4-Nov-1633.8

Page 126: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: brown, weakly lateritised,ferruginous, after granite

SAPROCK: brown grey, after granite

GRANITE: cream grey to grey, massive, distinctlyto slightly weathered, fractures 27-30m; 33-36m;and 41-45m

GRANITE: grey, massive, fresh to slightlyweathered

IRONSTONE: dark grey, brown, fractured

GRANITE: dark grey, brown, weakly foliated

36m: minor inflow38m: inflow <0.1 L/sec

42m: inflow <0.1 L/sec

48m: inflow 0.2 L/sec

55m: inflow 0.2 L/sec

63m: inflow 0.1 L/sec

68m: inflow 0.8 L/sec

76m: inflow 1 L/sec78m: inflow 1.2 L/sec

81m: inflow 2.9 L/sec83m: inflow 1.8 L/sec84m: inflow 2.2 L/sec

+0.4-+0.2m annulargrout seal+0.4-2.3m collar pipe0-3m cementannular seal withcement surround

3-110m 10 inchdiameter air rotarydrill-hole

+0.4-80m 155mmND class 9 uPVCblank casing

+0.2-104m+3.2-6.4mm gradedfilter pack

80-104m 155mmND class 9 uPVCslotted casing

155mm uPVC endcap104-110m fallback

PO Box 2310 Kardinya WA 616323 Parry StreetFremantle WA 6160Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

BHW05 J160014

Hastings Yangibana DFS

13-Nov-16

TRD

PH/KF

SWL (date):

7356019

346.7

MGA z50

90 degrees

degrees0

mbtoc ( )

42818911-Nov-16

Page 127: Hydrogeological Assessment II: Fractured Rock Aquifers

110

100

90

80

70

60

50

40

30

20

10

0

CLAY: transported, maroon and white, mottled

SAPROLITE: in situ, granite saprolite, khaki, relicbiotite, feldspar and quartz

SAPROCK: in situ, granite saprock, black grey,relic biotite, feldspar and quartz

GRANITE: black grey, fresh, with quartz vein (30%quartz)

GRANITE: fresh, black grey, minor iron staining ofjoints and fractures. Coarse chips 48-51m, 52-57m,and 61-65m

GRANODIORITE: fresh, black, occasional ironstaining on joints and fractures

GRANITE: altered granite (Fenite), miinor limonite,magneticQUARTZ VEIN: 50% quartz, very coarse, white,massive, iron staining (hematite)GRANITE: altered granite (Fenite), magneticQUARTZ VEIN: 70 to 80% quartz, very coarse,white, massive, iron staining at baseGRANITE: foliated, slightly weathered, quartzveining, magnetic, iron staining (limonite)QUARTZ VEIN: white, coarse, massiveGRANITE: brown, foliated, magnetic, slightlyweathered, iron staining (hematite), possible shearzoneGRANITE: brown, foliated, magnetic, slightlyweathered, iron staining (hematite and limonite)GRANITE: brown black, slightly weathered, ironstaining (limonite)GRANITE: black to grey, fresh

7m: moist at 7m

30m: minor inflows

58m: 0.1 L/sec, pH7.97, EC 2.53 mS/cm

64m: 0.2 L/sec, pH7.87, EC 2.57 mS/cm

70m: 0.2 L/sec, pH7.96, EC 2.53 mS/cm

76m: 0.2 L/sec, pH7.97, EC 2.47 mS/cm

82m: 0.1 L/sec, pH7.8, EC 2.72 mS/cm

88m: 0.3 L/sec, pH7.75, EC 2.67 mS/cm

94m: 0.3 L/sec, pH7.92, EC 2.47 mS/cm

100m: 0.2 L/sec, pH8.05, EC 2.43 mS/cm

+0.1-4m uPVCcollar pipe

4-101m 5.25" inchRC drill hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

ANW1 J1709

Hastings Technology Metals Ltd Yangibana DFS

24-May-17

TRD

DMT

SWL (date):

7350799

MGA z50

90 degrees

degrees0

mbtoc ( )

42500524-May-17

Page 128: Hydrogeological Assessment II: Fractured Rock Aquifers

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM:SAPROCK: brown white, friable, extremelyweatheredSAPROCK: grey white , friable, extremelyweathered

SAPROCK: grey brown, friable, extremelyweathered

GRANITE: fresh, black, equigranular

GRANITE: fresh, grey white, massive

GRANITE: fresh, black, equigranular

GRANITE: fresh, black, foliated, minor iron oxidecoatings throughout

GRANITE: fresh, grey, massive. Minor iron oxidecoatings throughout

GRANITE fresh, black, foliated, minor iron oxidecoatings throughout

SCHIST: black green, friable, shear, minor ironoxide coatings throughout

GRANITE GNEISS: black, massive, minor ironoxide coatings throughout

QUARTZ VEIN: white, >80% quartz

GRANITE: black and white, foliated, minor ironoxide coatings throughout

GRANITE: black and white, massive, trace ironoxide coatings

47m: 0.1 L/sec, pH7.94, EC 2.72 mS/cm

53m: 0.2 L/sec, pH7.93, EC 2.76 mS/cm

59m: 0.2 L/sec, pH7.96, EC 2.76 mS/cm

65m: 0.3 L/sec, pH8.00, EC 2.72 mS/cm

71m: 0.3 L/sec, pH7.93, EC 2.67 mS/cm

77m: 0.3 L/sec, pH7.95, EC 2.71 mS/cm

83m: 0.3 L/sec, pH8.00, EC 2.73 mS/cm

89m: 0.4 L/sec, pH7.92, EC 2.71 mS/cm

95m: 0.4 L/sec, pH7.93, EC 2.68 mS/cm

101m: 0.5 L/sec, pH7.90, EC 2.59 mS/cm

107m: 0.7 L/sec, pH7.96, EC 2.63 mS/cm

113m: 0.8 L/sec, pH7.95, EC 2.60 mS/cm

+0.1-4m uPVCcollar pipe

4-114m 5.25" inchRC drill hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

ANW2 J1709

Hastings Technology Metals Ltd Yangibana DFS

25-May-17

TRD

DMT

SWL (date):

7350758

MGA z50

90 degrees

degrees0

mbtoc ( )

42496525-May-17

26-May-1710.2

Page 129: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0

SAPROLITE: dark red to yellow

GRANITE: extremely weathered, grey red, mediumto coarse grained, iron oxide staining (limonite)throughoutGRANITE: extremely weathered, yellow grey,medium to coarse grained, strong iron oxidestaining (limonite) up to 30% limoniteGRANITE: strongly weathered, yellow grey,medium to coarse grainedGRANITE: medium grey, strongly weathered, ironoxide staining throughout

GRANITE: medium grey, foliated, coarse grained,strongly weathered, iron oxide staining throughout

PEGMATITE: medium grey, foliated, stronglyweathered, iron oxide staining throughoutPEGMATITE & GRANITE: medium grey,moderately foliated, strongly weathered, Iron oxidestaining throughoutGRANITE: black to dark grey, moderately foliated,coarse grained, strongly to moderately weathered,iron oxide staining throughoutGRANITE: fresh, dark grey, moderately foliated tomassive, medium to coarse grainedGRANITE: slightly weathered, mid to dark grey,moderately foliated, medium to coarse grained, ironoxide coats 62-65 m.GRANITE: fresh, mid to dark grey, moderatelyfoliated, medium to coarse grained, iron oxidecoats 70-72 m

GRANITE: fresh, light to dark grey, massive,medium to coarse grained

GRANITE: fresh, black, massive, medium tocoarse grained

QUARTZ: in fresh granite, 30-50% quartz

GRANITE: fresh, black, massive, medium tocoarse grained

40m: 0.2 L/sec, pH8.01, EC 2.64 mS/cm

46m: 0.4 L/sec, pH7.97, EC 2.63 mS/cm

53m: 0.5 L/sec, pH7.91, EC 2.56 mS/cm

59m: 0.7 L/sec, pH8.00, EC 2.56 mS/cm

65m: 0.8 L/sec, pH8.03, EC 2.53 mS/cm

71m: 0.8 L/sec, pH7.98, EC 2.54 mS/cm

77m: 0.8 L/sec, pH7.87, EC 2.58 mS/cm

83m: 0.6 L/sec, pH7.92, EC 2.55 mS/cm

89m: 0.6 L/sec, pH7.85, EC 2.43 mS/cm

95m: 0.6 L/sec, pH7.97, EC 2.24 mS/cm

101m: 0.5 L/sec, pH7.98, EC 2.23 mS/cm

107m: 0.5 L/sec, pH7.96, EC 2.35 mS/cm

113m: 0.5 L/sec, pH8.04, EC 2.41 mS/cm

119m: 0.5 L/sec, pH8.06, EC 2.35 mS/cm

+0.1-4m uPVCcollar pipe

4-120m 5.25" inchRC drill hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

ANW3 J1709

Hastings Technology Metals Ltd Yangibana DFS

29-May-17

TRD

DMT

SWL (date):

7350804

MGA z50

90 degrees

degrees0

mbtoc ( )

42496528-May-17

29-May-1710.03

Page 130: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0

GRANITE: grey, porphyritic, slightly weathered,some fe staining

GRANITE: brown grey, fe staining, fractured

GRANITE: grey, porphyritic, slightly weathered,some fe staining

GRANITE & PEGMATITE: 23 to 24 m pink greypegmatite veins, 24 to 25m brown grey fracturedgranite with fe staining, 25 to 26m pink greypegmatite veins, 26 to 32m brown grey fracturedgranite with fe staining, 32 to 42m grey mediumgrained fresh granite, 42 to 44m pink greypegmatite veins

GRANITE: grey, medium grained, fresh

15m: 0.5 L/sec, pH7.95, EC 1.92 mS/cm

24m: 0.5 L/sec, pH8.12, EC 1.93 mS/cm

30m: 1.5 L/sec, pH8.08, EC 2.27 mS/cm

36m: 1.8 L/sec, pH8.10, EC 2.25 mS/cm

42m: 0.5 L/sec, pH8.24, EC 2.06 mS/cm

48m: 0.5 L/sec, pH7.89, EC 2.27 mS/cm

54m: 0.5 L/sec, pH8.01, EC 2.06 mS/cm

60m: 0.8 L/sec, pH7.90, EC 2.31 mS/cm

66m: 0.8 L/sec, pH7.81, EC 2.21 mS/cm

72m: 1.0 L/sec, pH7.92, EC 2.22 mS/cm

86m: 1 L/sec, pH 8.13,EC 2.25 mS/cm

90m: 1.2 L/sec, pH7.80, EC 2.14 mS/cm

96m: 1.2 L/sec, pH8.01, EC 2.24 mS/cm

102m: 1.5 L/sec, pH7.84, EC 2.17 mS/cm

108m: 1.5 L/sec, pH8.13, EC 2.20 mS/cm

0-1m A&B foam plug

+0.9-24m 50mmClass 12 uPVCslotted casing,suspended oncasing clamps

4-108m open hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

KGRC019 J1709

Hastings Technology Metals Ltd Yangibana DFS

03-Aug-17

TRD

KM

SWL (date):

7358365.231

337.751

MGA z50

90 degrees

degrees0

mbtoc ( )

425474.9602-Aug-17

4-Aug-1710.27

Page 131: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0 GRANITE: brown grey, slightly weathered,porphyritic

GRANITE: grey, porphyritic, fresh

PEGMATITE: pink grey coase grained pegmatiteveins in granite

GRANITE: grey, medium grained, quartz veins 28to 32m, fe staining 42 to 44m and 55 to 56m

SCHIST: black, fine grained, foliated

QUARTZ: pale green, some transluscent quartz

GRANITE: grey, medium grained, pegmatite vein90 to 91m, quartz vein 94 to 96m

SCHIST: black, fine grained, foliated

GRANITE: grey, medium grained

12m: minor inflow

30m: 0.1 L/sec, pH8.37, EC 3.22 mS/cm

36m: 0.1 L/sec, pH8.30, EC 2.98 mS/cm

42m: 0.2 L/sec, pH8.20, EC 2.98 mS/cm

48m: 0.1 L/sec, pH8.26, EC 3.15 mS/cm

54m: 0.5 L/sec, pH7.86, EC 2.81 mS/cm

60m: 0.3 L/sec, pH8.24, EC 2.83 mS/cm

66m: 0.6 L/sec, pH7.88, EC 2.51 mS/cm

78m: 0.8 L/sec, pH7.92, EC 2.61 mS/cm

84m: 1.4 L/sec, pH7.60, EC 2.44 mS/cm

90m: 1.2 L/sec, pH7.81, EC 2.40 mS/cm

96m: 1.8 L/sec, pH7.88, EC 2.24 mS/cm

102m: 1.8 L/sec, pH7.83, EC 2.01 mS/cm

108m: 1.8 L/sec, pH7.88, EC 2.24 mS/cm

114m: 1.5 L/sec, pH7.95, EC 2.33 mS/cm

120m: 1.8 L/sec, pH7.86, EC 1.89 mS/cm

+0.1-4m uPVCcollar pipe

4-120m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

KGRC020 J1709

Hastings Technology Metals Ltd Yangibana DFS

05-Aug-17

TRD

KM

SWL (date):

7358865.9

335.23

MGA z50

90 degrees

degrees0

mbtoc ( )

425525.8103-Aug-17

Page 132: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0 GRANITE: yellow brown, slightly weathered,abundant quartz, fe stainedGRANITE: grey, minor fe staining, with quartzveining

GRANITE: grey, fresh, porphyritic, some quartzveins 56 to 59m, minor fe staining 63 to 66m

GRANITE: yellow brown, altered, abundant festaining, fracture zone

GRANITE: grey, fresh, quartz veins 83 to 84m, festaining 85 to 87m, 91 to 94m, quartz veining andfe staining 101 to 103m, quartz veining 112 to113m, quartz veining and minor fe staining 119 to120m

66m: minor inflow

102m: 0.2 L/sec, pH8.22, EC 3.74 mS/cm

108m: 0.2 L/sec, pH8.26, EC 3.94 mS/cm

114m: 0.3 L/sec, pH8.43, EC 3.93 mS/cm

120m: 0.3 L/sec, pH7.93, EC 4.06 mS/cm

+0.1-4m uPVCcollar pipe

4-120m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

KGRC021 J1709

Hastings Technology Metals Ltd Yangibana DFS

07-Aug-17

TRD

KM

SWL (date):

7358645.9

340.37

MGA z50

90 degrees

degrees0

mbtoc ( )

425505.6705-Aug-17

Page 133: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0 CALCRETE: white, chalky, competent

GRANITE: orange grey, slightly weathered, somefe staining

GRANITE: grey, minor fe staining, quartz veining18 to 19m, 76 to 82m

19m: minor inflow

24m: 0.2 L/sec, pH8.11, EC 2.01 mS/cm

30m: 0.2 L/sec, pH8.10, EC 2.03 mS/cm

36m: 0.2 L/sec, pH8.12, EC 1.98 mS/cm

42m: 0.2 L/sec, pH8.07, EC 1.97 mS/cm

48m: 0.2 L/sec, pH8.07, EC 1.99 mS/cm

54m: 0.2 L/sec, pH8.04, EC 1.99 mS/cm

60m: 0.2 L/sec, pH8.02, EC 1.96 mS/cm

66m: no flow

78m: 0.2 L/sec, pH8.40, EC 1.94 mS/cm

84m: 0.2 L/sec, pH8.08, EC 1.90 mS/cm

90m: 0.1 L/sec, pH8.05, EC 1.90 mS/cm

96m: 0.2 L/sec, pH8.00, EC 1.88 mS/cm

102m: 0.2 L/sec, pH7.99, EC 1.87 mS/cm

108m: 0.2 L/sec, pH8.20, EC 1.86 mS/cm

0-1m A&B foam plug

+0.9-108m 50mmClass 12 uPVCslotted casing

4-108m open hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

KGRC022 J1709

Hastings Technology Metals Ltd Yangibana DFS

09-Aug-17

TRD

KM

SWL (date):

7357388.924

331.888

MGA z50

90 degrees

degrees0

mbtoc ( )

426515.83707-Aug-17

10-Aug-174.46

Page 134: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0

GRANITE: light grey to white, slightly weatheredwith occasional quartz veining and maficphases,iron oxides throughout

DOLERITE: dark grey, fine grained, maficsincluding biotite commonly foliated, iron oxidesthroughout

QUARTZ: massive quartz vein with minortourmaline crystals

GRANITE: dark grey, fracture zone 37 to 39m,trace iron oxides throughout

QUARTZ: green, massive microcrystaline quartziteor vein material with hardness < 7, no fizz withacid, possibly a feldspar vein

GRANITE: dark grey, with mafic schist lenses from76m

40m: minor inflow42m: pH 7.97, EC 2.55

mS/cm

48m: 0.4 L/sec, pH8.06, EC 2.45 mS/cm

60m: 0.5 L/sec, pH7.95, EC 2.45 mS/cm

66m: 0.4 L/sec, pH7.99, EC 2.46 mS/cm

72m: 2.2 L/sec, pH7.87, EC 2.54 mS/cm

84m: 2.2 L/sec, pH7.82, EC 2.51 mS/cm

90m: 1.3 L/sec

96m: 1.7 L/sec, pH8.04, EC 2.55 mS/cm

102m: 0.9 L/sec, pH8.04, EC 2.63 mS/cm

0-1m A&B foam plug

+0.3-41m 50mmClass 12 uPVCblank casing,suspended oncasing clamps

41-47m 50mmClass 12 uPVCslotted casing

4-126m open hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

LERC020 J1709

Hastings Technology Metals Ltd Yangibana DFS

17-Jul-17

TRD

DMT

SWL (date):

7360889

343.5

MGA z50

90 degrees

degrees0

mbtoc ( )

41999317-Jul-17

Page 135: Hydrogeological Assessment II: Fractured Rock Aquifers

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: red grey, weathered, after granite

GRANITE: grey, fine to medium grained, fresh,some iron oxide surfaces

QUARTZ: red brown, slightly weathered

GRANITE: grey, fine to medium grained, fresh,quartz veins 42 to 44m, 61 to 66m

29m: minor inflow

56m: 0.7 L/sec, pH7.19, EC 2.18 mS/cm

66m: 1 L/sec, pH 7.68,EC 2.08 mS/cm

72m: 2.5 L/sec, pH7.45, EC 2.10 mS/cm

78m: 0.8 L/sec, pH7.75, EC 2.10 mS/cm

84m: 1.2 L/sec, pH7.68, EC 2.08 mS/cm

90m: 1.3 L/sec, pH7.54, EC 2.08 mS/cm

96m: 1.5 L/sec, pH7.43, EC 2.07 mS/cm

102m: 1.8 L/sec, pH7.56, EC 2.12 mS/cm

108m: 1.8 L/sec, pH7.45, EC 2.18 mS/cm

114m: 2.0 L/sec, pH7.60, EC 2.16 mS/cm

120m: 1.8 L/sec, pH7.54, EC 2.18 mS/cm

+0.1-4m uPVCcollar pipe

4-124m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

LERC021 J1709

Hastings Technology Metals Ltd Yangibana DFS

25-Jul-17

TRD

KM

SWL (date):

7361078

346.4

MGA z50

90 degrees

degrees0

mbtoc ( )

41994324-Jul-17

27-Jul-1714.17

Page 136: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: red grey, weathered, after granite

GRANITE: grey, fine to medium grained, fresh,quartz vein 83 to 84m

66m: minor inflow

84m: 0.3 L/sec, pH8.08, EC 1.97 mS/cm

90m: 0.3 L/sec, pH8.10, EC 1.99 mS/cm

96m: 0.3 L/sec, pH8.09, EC 1.98 mS/cm

102m: 0.3 L/sec, pH8.03, EC 2.05 mS/cm

108m: 0.3 L/sec, pH8.05, EC 2.02 mS/cm

114m: 0.3 L/sec, pH8.08, EC 2.03 mS/cm

120m: 0.3 L/sec, pH7.65, EC 2.04 mS/cm

126m: 0.3 L/sec, pH7.69, EC 2.08 mS/cm

+0.1-4m uPVCcollar pipe

4-126m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

LERC022 J1709

Hastings Technology Metals Ltd Yangibana DFS

27-Jul-17

TRD

KM

SWL (date):

7359496.836

348.128

MGA z50

90 degrees

degrees0

mbtoc ( )

422945.08826-Jul-17

Page 137: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: red grey, weathered, after granite

GRANITE: gret, fine to medium grained,porphyritic, quartz veins 27 to 28m, 32 to 33m, 64to 65m, 78 to 80m, 95 to 97m

66m: minor inflow

120m: <0.1 L/sec

+0.1-4m uPVCcollar pipe

4-120m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

LERC023 J1709

Hastings Technology Metals Ltd Yangibana DFS

29-Jul-17

TRD

KM

SWL (date):

7359315

349.3

MGA z50

90 degrees

degrees0

mbtoc ( )

42299028-Jul-17

Page 138: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0

GRANITE: grey, medium grained, fresh

QUARTZ: white, opaque, quartz vein

GRANITE: grey, medium grained, fresh

GRANITE: red grey, fe staining common

PEGMATITE: pink grey coase grained pegmatiteveins in quartz

GRANITE: grey, medium grained, fresh, quartzvein 83 to 84m

QUARTZ: white, opaque, quartz veins within granite

GRANITE: grey, medium grained

60m: minor inflow

108m: 0.3 L/sec, pH8.03, EC 1.95 mS/cm

114m: 0.4 L/sec, pH8.11, EC 1.93 mS/cm

120m: 0.4 L/sec, pH8.12, EC 1.91 mS/cm

+0.1-4m uPVCcollar pipe

4-120m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

LERC024 J1709

Hastings Technology Metals Ltd Yangibana DFS

31-Jul-17

TRD

KM

SWL (date):

7359783

347

MGA z50

90 degrees

degrees0

mbtoc ( )

42289830-Jul-17

Page 139: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: brown, weathered, after granite

GRANITE: pale grey, fresh, hard, high quartz 3 to11m, iron staining 19 to 20 m, very high quartzcontent 31 to 40, 46 to 47 m, iron staining 55 m,quartz vein 55 to 58 m

90m: inflow 1.9 L/sec,pH 7.90, EC 1.82

mS/cm96m: inflow 1.9 L/sec,

pH 7.94, EC 1.85mS/cm

102m: inflow 1.5 L/sec,pH 8.02, EC 1.87

mS/cm108m: inflow 1.0 L/sec,

pH 8.04, EC 1.87mS/cm

115m: inflow 1.8 L/sec,pH 7.80, EC 1.84

mS/cm121m: inflow 1.8L/sec,

pH 7.85, EC 1.87mS/cm

123m: inflow 1.8 L/sec,pH 8.01, EC 1.85

mS/cm

+0.1-4m uPVCcollar pipe+0.1-4m uPVCcollar pipe

4-126m 5.25" inchdiameter RC hole4-108m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

YGRC095 J1709

Hastings Technology Metals Ltd Yangibana DFS

28-Jun-17

TRD

KM/KF

SWL (date):

7361989

339.1

MGA z50

90 degrees

degrees0

mbtoc ( )

41713525-Jun-17

Page 140: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0

GRANITE: dark grey, fine to medium grained,equigranular, massive, slightly weathered, ironoxide coats and stains common, pegmatite/quartzveins 11 to 13m and 16 to 17.5m

IRONSTONE & GRANITE: brown, magnetic, majoriron staining and coats

GRANITE: dark grey to black, fine to mediumgrained, equigranular, commonly gneissic, freshfrom 32m, quartz veins 36 to 38m

PEGMATITE/QUARTZ VEIN, pink and creamblack, fine grained quartz, pink feldspar and mica,slightly weathered, massive, iron oxide throughout

PHOSCORITE: black and cream, massive, stronglymagnetic, quarttz, phlogopite/muscovite, ironoxides throughoutIRONSTONE: dark brown, fine to medium grainediron oxides, magnetic, distinctly weathered

GRANITE: dark grey green, fine to coarse grained,porphyritic to equigranular, fresh, quartz vein 75 to76m

GRANITE GNEISS: black, fine to medium grained,equigranular, fresh, quartz vein 92 to 95m

53m: minor flow

66m: inflow 0.2 L/sec,pH 7.88, EC 1.86

mS/cm72m: inflow 0.2 L/sec,

pH 7.86, EC 1.84mS/cm

82m: inflow 0.1 L/sec,pH 7.74, EC 1.92

mS/cm88m: inflow 0.1 L/sec,

pH 7.97, EC 1.86mS/cm

96m: inflow 0.9 L/sec,pH 7.95, EC 1.80

mS/cm102m: inflow 0.5 L/sec,

pH 7.98, EC 1.80mS/cm

108m: inflow 1.0 L/sec,pH 7.97, EC 1.70

mS/cm

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

YGRC096 J1709

Hastings Technology Metals Ltd Yangibana DFS

06-Jul-17

TRD

DMT/TBR

SWL (date):

7362161

339.3

MGA z50

90 degrees

degrees0

mbtoc ( )

41721203-Jul-17

Page 141: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: brown, weathered, after granite

GRANITE: light to dark grey, slightly weathered,fine to medium grained, equigranular matrix withcommon feldspar phenocrysts, commonly foliated,30% quartz from 11 to 12m, trace iron oxide coatsand stains 12 to 66m, fracture 62 to 64m, maficincreasing

Granite as above but sample brown grey withironstone and mostly fine chips, water brown andgreatly reduced flow. Fracture zone and/ormineralised zone.

GRANITE: dark grey, fresh, fine to mediumgrained, equigranular matrix with common feldsparphenocrysts, mafics increased, commonly foliated,significant iron oxide coats and stains, fracturezone 67 to 72m, 74 to 75m, 91 to 92m, 110 to 112m

IRONSTONE and GRANITE: brown, ironstone 50%of sample, magnetic, major iron staining and coats,mineralisation and/or fracture zoneGRANITE: dark green grey, fresh to slighltyweathered, fine to course, equigranular matrix withcommon feldspar phenocrysts, fractured with ironoxide coats and stains throughout, driller reportedcavity 123 to 124m.

30m minor inflow

48m inflow: 0.04 L/sec,pH 8.01, EC 1.28

mS/cm54m inflow: 0.05 L/sec,pH 7.95, EC 1.2 mS/cm

60m inflow: 0.15 L/sec,pH 8.07, EC 1.28

mS/cm66m inflow: 0.3 L/sec,pH 8.1, EC 1.34 mS/cm

72m inflow: 0.2 L/sec,EC mS/cm

78m inflow: 0.2 L/sec,pH 8.09, EC 1.4 mS/cm

84m inflow: 0.5 L/sec,pH 7.84, EC 1.34

mS/cm90m inflow: 0.1 L/sec,

pH 8.05, EC 1.42mS/cm

96m inflow: 0.4 L/sec,pH 7.86, EC 1.36

mS/cm102m inflow: 0.5 L/sec,

pH 7.82, EC 1.36mS/cm

108m inflow: 0.7 L/sec,pH 7.83, EC 1.36

mS/cm114m inflow: 1.1 L/sec,

pH 7.94, EC 1.44mS/cm

120m inflow: 3.1 L/sec,pH 7.94, EC 1.63

mS/cm126m inflow: 1.3 L/sec,

pH 7.85, EC 1.72mS/cm

+0.1-4m uPVCcollar pipe

4-126m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

YWRC075 J1709

Hastings Technology Metals Ltd Yangibana DFS

01-Jul-17

TRD

DMT/TBR

SWL (date):

7362889

336.4

MGA z50

90 degrees

degrees0

mbtoc ( )

41588530-Jun-17

Page 142: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0 GRANITE: grey brown, very fine to coarse grained,equigranular, distinctly weathered, 40% Iron oxides

GRANITE: dark grey, fine to medium grained,equigranular, fresh, quartz veins 25 to 28m, 35.5 to36m, 44 to 46m, 47 to 50m

Fracture zone in granite, significant iron oxidecoats and stains

GRANITE: green grey, fine to mediumgrained,equigranular, fresh, quartz veins 65 to66m, 69 to 71m, 72 to 73m, 75 to 76m, 91 to 95m,96 to 97m

28m: minor inflow

36m: 0.1 L/sec, pH8.05, EC 1.35 mS/cm

47m: 0.1 L/sec, pH8.05, EC 1.35 mS/cm

54m: 0.2 L/sec, pH8.12, EC 1.34 mS/cm

60m: 0.6 L/sec, pH7.90, EC 1.39 mS/cm

66m: 0.7 L/sec, pH7.96, EC 1.38 mS/cm

72m: 0.9 L/sec, pH7.88, EC 1.38 mS/cm

78m: 0.8 L/sec, pH8.06, EC 2.35 mS/cm

84m: 0.6 L/sec, pH7.87, EC 1.85 mS/cm

90m: 1.2 L/sec, pH7.89, EC 1.92 mS/cm

98m: 0.8 L/sec, pH7.80, EC 1.66 mS/cm

+0.1-4m uPVCcollar pipe

4-102m 5.25" inchdiameter RC hole

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

YWRC076 J1709

Hastings Technology Metals Ltd Yangibana DFS

02-Jul-17

TRD

DMT/TBR

SWL (date):

7363026

335.5

MGA z50

90 degrees

degrees0

mbtoc ( )

41619001-Jul-17

Page 143: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: brown, weathered, after granite

GRANITE: light to dark grey, slightly weathered,fine to medium grained, equigranular matrix withcommon feldspar phenocrysts, commonly foliated,30% quartz from 11 to 12m, trace iron oxide coatsand stains 12 to 66m, fracture 62 to 64m, maficincreasing

Granite as above but sample brown grey withironstone and mostly fine chips, water brown andgreatly reduced flow. Fracture zone and/ormineralised zone.

GRANITE: dark grey, fresh, fine to mediumgrained, equigranular matrix with common feldsparphenocrysts, mafics increased, commonly foliated,significant iron oxide coats and stains, fracturezone 67 to 72m, 74 to 75m, 91 to 92m, 110 to 112m

IRONSTONE and GRANITE: brown, ironstone 50%of sample, magnetic, major iron staining and coats,mineralisation and/or fracture zoneGRANITE: dark green grey, fresh to slighltyweathered, fine to course, equigranular matrix withcommon feldspar phenocrysts, fractured with ironoxide coats and stains throughout, driller reportedcavity 123 to 124m.

+0.4-2m collar pipe0-6m steel collarsleeve3-5m annularbentonite seal

6-126m 9 inchdiameter air rotarydrill-hole

+0.4-96m 155mmND class 9 uPVCblank casing

+0.2-126m+3.2-6.4mm gradedfilter pack

96-126m 155mmND class 9 uPVCslotted casing

155mm uPVC endcap

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

YWWB01 J1709

Hastings Technology Metals Ltd Yangibana DFS

22-Jul-17

TRD

KM

SWL (date):

7362891

336.4

MGA z50

90 degrees

degrees0

mbtoc ( )

41588707-Jul-17

24-Jul-1713.14

Page 144: Hydrogeological Assessment II: Fractured Rock Aquifers

130

120

110

100

90

80

70

60

50

40

30

20

10

0 COLLUVIUM: brown, weathered, after granite

GRANITE: light to dark grey, slightly weathered,fine to medium grained, equigranular matrix withcommon feldspar phenocrysts, commonly foliated,30% quartz from 11 to 12m, trace iron oxide coatsand stains 12 to 47m

0-1m A&B foam plug

+0.55-42m 50mmClass 12 uPVCblank casing

42-48m 50mmClass 12 uPVCslotted casing

PO Box 244 Bayswater WA 693315 Harborne StreetWembley WA 6014Ph: +61 8 9433 2222 Fx: +61 8 9433 2322Email: [email protected]

Depth(m bgl)

Gra

phic

+S

trat

igra

phy

Lithological Description FieldNotes

Bore Construction

ID: JOB NUMBER:

CLIENT: PROJECT:

COMMENCED:

COMPLETED:

DRILLED BY:

LOGGED BY:

INCLINATION:

AZIMUTH:

EASTING:

NORTHING:

ELEVATION:

GRID SYSTEM:

YWMB01 J1709

Hastings Technology Metals Ltd Yangibana DFS

23-Jul-17

TRD

KM

SWL (date):

7362895

336.7

MGA z50

90 degrees

degrees0

mbtoc ( )

41588123-Jul-17

24-Jul-1713.56

Page 145: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

F1  

 

APPENDIX F 

 

Laboratory Certificates

Page 146: Hydrogeological Assessment II: Fractured Rock Aquifers

Date Reported

Contact

SGS Perth Environmental

28 Reid Rd

Perth Airport WA 6105

Ros Ma

(08) 9373 3500

(08) 9373 3556

[email protected]

1

SGS Reference

Email

Facsimile

Telephone

Address

Manager

Laboratory

J160014

Yangibana

[email protected]

9433 2322

9433 2222

PO Box 8110 Fremantle High Street, Fremantle,

WA, 6160

23 Parry Street

Fremantle 6160

KARDINYA WA

Groundwater Resource Management

Kathy Garnett

Samples

Order Number

Project

Email

Facsimile

Telephone

Address

Client

CLIENT DETAILS LABORATORY DETAILS

02 Dec 2016

ANALYTICAL REPORT

PE112242 R0

23 Nov 2016Date Received

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(898/20210).

For determination of soluble metals, filtered sample was not received so samples were laboratory filtered on receipt. This may give soluble metals

results that do not represent the concentrations present at the time of sampling.

Metals: Dissolved: Spike recovery failed due to the presence of significant concentration of the target analyte (i.e. the concentration of analyte

exceed spike level).

COMMENTS

Donald Smith

Chemist

Louise Hope

Laboratory Technician

Mary Ann Ola-A

Inorganics Team Leader

Michael McKay

Inorganics and ARD Supervisor

Tommy Cheng

ICP Chemist

SIGNATORIES

SGS Australia Pty Ltd

ABN 44 000 964 278

Environment, Health and Safety 28 Reid Rd

PO Box 32

Perth Airport WA 6105

Welshpool WA 6983

Australia

Australia

t +61 8 9373 3500

f +61 8 9373 3556

www.sgs.com.au

Member of the SGS Group

Page 1 of 702-December-2016

Page 147: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112242 R0ANALYTICAL REPORT

PE112242.001

Water

06 Nov 2016

FRWI

Parameter LORUnits

Sample Number

Sample Matrix

Sample Date

Sample Name

pH in water Method: AN101 Tested: 23/11/2016

pH** pH Units - 8.5

Conductivity and TDS by Calculation - Water Method: AN106 Tested: 23/11/2016

Conductivity @ 25 C µS/cm 2 2100

Total Dissolved Solids (TDS) in water Method: AN113 Tested: 30/11/2016

Total Dissolved Solids Dried at 175-185°C mg/L 10 1200

Alkalinity Method: AN135 Tested: 23/11/2016

Carbonate Alkalinity as CO3 mg/L 1 11

Bicarbonate Alkalinity as HCO3 mg/L 5 280

Chloride by Discrete Analyser in Water Method: AN274 Tested: 25/11/2016

Chloride, Cl mg/L 1 380

Sulphate in water Method: AN275 Tested: 25/11/2016

Sulphate, SO4 mg/L 1 160

Page 2 of 702-December-2016

Page 148: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112242 R0ANALYTICAL REPORT

PE112242.001

Water

06 Nov 2016

FRWI

Parameter LORUnits

Sample Number

Sample Matrix

Sample Date

Sample Name

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: AN258 Tested: 28/11/2016

Nitrate Nitrogen, NO₃ as N mg/L 0.05 9.1

Nitrite, NO₂ as NO₂ mg/L 0.2 <0.2

Metals in Water (Dissolved) by ICPOES Method: AN320/AN321 Tested: 30/11/2016

Calcium, Ca mg/L 0.2 72

Magnesium, Mg mg/L 0.1 67

Potassium, K mg/L 0.1 9.5

Silica, Soluble mg/L 0.05 52

Sodium, Na mg/L 0.5 230

Total Hardness by Calculation mg CaCO3/L 1 460

Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 29/11/2016

Aluminium, Al µg/L 5 <5

Manganese, Mn µg/L 1 <1

Selenium, Se µg/L 1 4

Trace Metals (Total) in Water by ICPMS Method: AN022/AN318 Tested: 25/11/2016

Total Iron µg/L 5 73

Page 3 of 702-December-2016

Page 149: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112242 R0QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided

by the average of the two results as a percentage. Where the DUP RPD is 'NA' , the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

MB

Carbonate Alkalinity as CO3 LB125163 mg/L 1 <1

Bicarbonate Alkalinity as HCO3 LB125163 mg/L 5 <5

LORUnits Parameter QC

Reference

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Chloride, Cl LB125188 mg/L 1 <1 0 - 1% 102 - 105% 89 - 103%

LORUnits Parameter QC

Reference

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

MB DUP %RPD LCS

%Recovery

Conductivity @ 25 C LB125162 µS/cm 2 <2 0% 99 - 101%

LORUnits Parameter QC

Reference

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Calcium, Ca LB125348 mg/L 0.2 <0.2 4% 94 - 97% 104%

Magnesium, Mg LB125348 mg/L 0.1 <0.1 3% 91 - 94% -507%

Potassium, K LB125348 mg/L 0.1 <0.1 3% 95 - 96% -115%

Silica, Soluble LB125348 mg/L 0.05 <0.05

Sodium, Na LB125348 mg/L 0.5 <0.5 5% 99 - 101% 10290%

Total Hardness by Calculation LB125348 mg CaCO3/L 1 <1

LORUnits Parameter QC

Reference

Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: ME-(AU)-[ENV]AN258

MB DUP %RPD LCS

%Recovery

Nitrate Nitrogen, NO₃ as N LB125253 mg/L 0.05 <0.05 0 - 44% NA

LORUnits Parameter QC

Reference

Page 4 of 702-December-2016

Page 150: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112242 R0QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided

by the average of the two results as a percentage. Where the DUP RPD is 'NA' , the results are less than the LOR and thus the RPD is not applicable.

pH in water Method: ME-(AU)-[ENV]AN101

MB DUP %RPD LCS

%Recovery

pH** LB125162 pH Units - 6.0 - 6.2 0 - 1% 101%

LORUnits Parameter QC

Reference

Sulphate in water Method: ME-(AU)-[ENV]AN275

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Sulphate, SO4 LB125188 mg/L 1 <1 0 - 1% 102 - 106% 100 - 102%

LORUnits Parameter QC

Reference

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

MB DUP %RPD LCS

%Recovery

MS

%Recovery

MSD %RPD

Total Dissolved Solids Dried at 175-185°C LB125237 mg/L 10 <10 1 - 6% 96% 95% 1%

LORUnits Parameter QC

Reference

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

MB LCS

%Recovery

MS

%Recovery

Aluminium, Al LB125311 µg/L 5 <5 81% 99%

Manganese, Mn LB125311 µg/L 1 <1 97% 101%

Selenium, Se LB125311 µg/L 1 <1 114% 122%

LORUnits Parameter QC

Reference

Trace Metals (Total) in Water by ICPMS Method: ME-(AU)-[ENV]AN022/AN318

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Total Iron LB125178 µg/L 5 <5 4% 86% 251%

LORUnits Parameter QC

Reference

Page 5 of 702-December-2016

Page 151: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112242 R0

METHOD METHODOLOGY SUMMARY

METHOD SUMMARY

Nitrate and Nitrite by FIA: In an acidic medium, nitrate is reduced quantitatively to nitrite by cadmium metal. This

nitrite plus any original nitrite is determined as an intense red-pink azo dye at 540 nm following diazotisation with

sulphanilamide and subsequent coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. Without the

cadmium reduction only the original nitrite is determined. Reference APHA 4500-NO3- F.

Following acid digestion of un filtered sample, determination of elements at trace level in waters by ICP-MS

technique, in accordance with USEPA 6020A.

AN022/AN318

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus

reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is

made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN101

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is

calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or

µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on

the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity

using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA

2510 B.

AN106

Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the

residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available.

Reference APHA 2540 C.

AN113

This method is used to calculation the balance of major Anions and Cations in water samples and converts major

ion concentration to milliequivalents and then summed. Anions sum and Cation sum is calculated as a difference

and expressed as a percentage.

AN121

The sum of cations and anions in mg/L may also be reported. This sums Na, K, Ca, Mg, NH3, Fe, Cl, Total

Alkalinity, SO4 and NO3.

AN121

Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre)

and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or

recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135

AN135

Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the

presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride

concentration. Reference APHA 4500Cl-

AN274

sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is

measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate

concentration in the sample. Reference APHA 4500-SO42-. Internal reference AN275.

AN275

Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.AN318

Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals.

This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at

8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy

levels. The emitted light is focused onto a diffraction grating where it is separated into components .

AN320/AN321

Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly

proportional to concentration. Corrections are required to compensate for spectral overlap between elements.

Reference APHA 3120 B.

AN320/AN321

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L.

If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

Calculation

Page 6 of 702-December-2016

Page 152: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112242 R0

METHOD METHODOLOGY SUMMARY

METHOD SUMMARY

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual

analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing

the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg,

the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the " Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a

coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS -SOP, radionuclide or gross radioactivity concentrations are

expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one

nuclear transformation per second.

Note that in terms of units of radioactivity:

a. 1 Bq is equivalent to 27 pCi

b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS -SOP, less than (<) values indicate the detection limit for

each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO

11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here :

http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client 's behalf, by the Company under its General Conditions of Service available on request and accessible at

http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues

defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company 's findings at the time of its intervention only

and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to

a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

IS

LNR

*

**

Insufficient sample for analysis.

Sample listed, but not received.

NATA accreditation does not cover the

performance of this service.

Indicative data, theoretical holding time exceeded.

FOOTNOTES

LOR

↑↓

QFH

QFL

-

NVL

Limit of Reporting

Raised or Lowered Limit of Reporting

QC result is above the upper tolerance

QC result is below the lower tolerance

The sample was not analysed for this analyte

Not Validated

Page 7 of 702-December-2016

Page 153: Hydrogeological Assessment II: Fractured Rock Aquifers

Accreditation No. 2562

Date Reported

Contact

SGS Perth Environmental

28 Reid Rd

Perth Airport WA 6105

Ros Ma

(08) 9373 3500

(08) 9373 3556

[email protected]

1

SGS Reference

Email

Facsimile

Telephone

Address

Manager

Laboratory

J160014

Yangibana

[email protected]

9433 2322

9433 2222

PO Box 8110 Fremantle High Street, Fremantle,

WA, 6160

23 Parry Street

Fremantle 6160

KARDINYA WA

Groundwater Resource Management

Kathy McDougall

Samples

Order Number

Project

Email

Facsimile

Telephone

Address

Client

CLIENT DETAILS LABORATORY DETAILS

05 Jan 2017

ANALYTICAL REPORT

PE112957 R0

21 Dec 2016Date Received

Accredited for compliance with ISO/IEC 17025. NATA accredited laboratory 2562(898/20210).

COMMENTS

Donald Smith

Chemist

Hue Thanh Ly

Metals Team Leader

Michael McKay

Inorganics and ARD Supervisor

SIGNATORIES

SGS Australia Pty Ltd

ABN 44 000 964 278

Environment, Health and Safety 28 Reid Rd

PO Box 32

Perth Airport WA 6105

Welshpool WA 6983

Australia

Australia

t +61 8 9373 3500

f +61 8 9373 3556

www.sgs.com.au

Member of the SGS Group

Page 1 of 705-January-2017

Page 154: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112957 R0ANALYTICAL REPORT

PE112957.001

Water

BHW5

Parameter LORUnits

Sample Number

Sample Matrix

Sample Name

pH in water Method: AN101 Tested: 21/12/2016

pH** pH Units 0.1 8.0

Conductivity and TDS by Calculation - Water Method: AN106 Tested: 21/12/2016

Conductivity @ 25 C µS/cm 2 1900

Total Dissolved Solids (TDS) in water Method: AN113 Tested: 3/1/2017

Total Dissolved Solids Dried at 175-185°C mg/L 10 1000

Alkalinity Method: AN135 Tested: 21/12/2016

Carbonate Alkalinity as CO3 mg/L 1 <1

Bicarbonate Alkalinity as HCO3 mg/L 5 <5

Chloride by Discrete Analyser in Water Method: AN274 Tested: 22/12/2016

Chloride, Cl mg/L 1 330

Sulphate in water Method: AN275 Tested: 22/12/2016

Sulphate, SO4 mg/L 1 100

Page 2 of 705-January-2017

Page 155: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112957 R0ANALYTICAL REPORT

PE112957.001

Water

BHW5

Parameter LORUnits

Sample Number

Sample Matrix

Sample Name

Low Level Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: AN258 Tested: 22/12/2016

Nitrate, NO₃ as NO₃ mg/L 0.05 65

Nitrite, NO₂ as NO₂ mg/L 0.05 <0.05

Metals in Water (Dissolved) by ICPOES Method: AN320/AN321 Tested: 21/12/2016

Calcium, Ca mg/L 0.2 81

Magnesium, Mg mg/L 0.1 51

Potassium, K mg/L 0.1 9.0

Silica, Soluble mg/L 0.05 72

Silicon, Si mg/L 0.02 34

Sodium, Na mg/L 0.5 240

Total Hardness by Calculation mg CaCO3/L 1 410

Trace Metals (Dissolved) in Water by ICPMS Method: AN318 Tested: 21/12/2016

Aluminium, Al µg/L 5 <5

Iron, Fe µg/L 5 9

Manganese, Mn µg/L 1 <1

Selenium, Se µg/L 1 7

Page 3 of 705-January-2017

Page 156: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112957 R0QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided

by the average of the two results as a percentage. Where the DUP RPD is 'NA' , the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

MB

Carbonate Alkalinity as CO3 LB126339 mg/L 1 <1

Bicarbonate Alkalinity as HCO3 LB126339 mg/L 5 <5

LORUnits Parameter QC

Reference

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Chloride, Cl LB126336 mg/L 1 <1 1% 102 - 103% 80 - 96%

LORUnits Parameter QC

Reference

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

MB DUP %RPD LCS

%Recovery

Conductivity @ 25 C LB126337 µS/cm 2 <2 0 - 2% 96 - 99%

LORUnits Parameter QC

Reference

Low Level Nitrate Nitrogen and Nitrite Nitrogen (NOx) by FIA Method: ME-(AU)-[ENV]AN258

MB

Nitrate, NO₃ as NO₃ LB126342 mg/L 0.05 <0.05

Nitrite, NO₂ as NO₂ LB126342 mg/L 0.05 <0.05

LORUnits Parameter QC

Reference

Metals in Water (Dissolved) by ICPOES Method: ME-(AU)-[ENV]AN320/AN321

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Calcium, Ca LB126304 mg/L 0.2 <0.2 1 - 3% 95% 92%

Magnesium, Mg LB126304 mg/L 0.1 <0.1 0 - 3% 98% 93%

Potassium, K LB126304 mg/L 0.1 <0.1 0 - 3% 95% 87%

Silica, Soluble LB126304 mg/L 0.05 <0.05

Silicon, Si LB126304 mg/L 0.02 <0.02 0% 103%

Sodium, Na LB126304 mg/L 0.5 <0.5 1 - 4% 108% 100%

Total Hardness by Calculation LB126304 mg CaCO3/L 1 <1

LORUnits Parameter QC

Reference

Page 4 of 705-January-2017

Page 157: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112957 R0QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided

by the average of the two results as a percentage. Where the DUP RPD is 'NA' , the results are less than the LOR and thus the RPD is not applicable.

pH in water Method: ME-(AU)-[ENV]AN101

MB DUP %RPD LCS

%Recovery

pH** LB126337 pH Units 0.1 5.7 - 6.0 0 - 1% 100 - 101%

LORUnits Parameter QC

Reference

Sulphate in water Method: ME-(AU)-[ENV]AN275

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Sulphate, SO4 LB126336 mg/L 1 <1 0 - 2% 98 - 99% 90 - 94%

LORUnits Parameter QC

Reference

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

MB DUP %RPD LCS

%Recovery

MS

%Recovery

MSD %RPD

Total Dissolved Solids Dried at 175-185°C LB126510 mg/L 10 <10 0 - 2% 89% 101% 3%

LORUnits Parameter QC

Reference

Trace Metals (Dissolved) in Water by ICPMS Method: ME-(AU)-[ENV]AN318

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Aluminium, Al LB126303 µg/L 5 <5 0% 99% 107%

Iron, Fe LB126303 µg/L 5 <5 7% 103% 109%

Manganese, Mn LB126303 µg/L 1 <1 0% 100% 105%

Selenium, Se LB126303 µg/L 1 <1 0% 107%

LORUnits Parameter QC

Reference

Page 5 of 705-January-2017

Page 158: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112957 R0

METHOD METHODOLOGY SUMMARY

METHOD SUMMARY

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus

reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is

made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN101

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is

calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or

µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on

the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity

using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA

2510 B.

AN106

Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the

residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available.

Reference APHA 2540 C.

AN113

Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre)

and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or

recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135

AN135

Nitrate and Nitrite by FIA: In an acidic medium, nitrate is reduced quantitatively to nitrite by cadmium metal. This

nitrite plus any original nitrite is determined as an intense red-pink azo dye at 540 nm following diazotisation with

sulphanilamide and subsequent coupling with N-(1-naphthyl) ethylenediamine dihydrochloride. Without the

cadmium reduction only the original nitrite is determined. Reference APHA 4500-NO3- F.

AN258

Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the

presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride

concentration. Reference APHA 4500Cl-

AN274

sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is

measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate

concentration in the sample. Reference APHA 4500-SO42-. Internal reference AN275.

AN275

Determination of elements at trace level in waters by ICP-MS technique, in accordance with USEPA 6020A.AN318

Metals by ICP-OES: Samples are preserved with 10% nitric acid for a wide range of metals and some non-metals.

This solution is measured by Inductively Coupled Plasma. Solutions are aspirated into an argon plasma at

8000-10000K and emit characteristic energy or light as a result of electron transitions through unique energy

levels. The emitted light is focused onto a diffraction grating where it is separated into components .

AN320/AN321

Photomultipliers or CCDs are used to measure the light intensity at specific wavelengths. This intensity is directly

proportional to concentration. Corrections are required to compensate for spectral overlap between elements.

Reference APHA 3120 B.

AN320/AN321

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L.

If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

Calculation

Page 6 of 705-January-2017

Page 159: Hydrogeological Assessment II: Fractured Rock Aquifers

PE112957 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual

analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing

the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg,

the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the " Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a

coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS -SOP, radionuclide or gross radioactivity concentrations are

expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one

nuclear transformation per second.

Note that in terms of units of radioactivity:

a. 1 Bq is equivalent to 27 pCi

b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS -SOP, less than (<) values indicate the detection limit for

each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO

11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here :

http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued, on the Client 's behalf, by the Company under its General Conditions of Service available on request and accessible at

http://www.sgs.com/en/terms-and-conditions. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues

defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company 's findings at the time of its intervention only

and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to

a transaction from exercising all their rights and obligations under the transaction documents.

This report must not be reproduced, except in full.

IS

LNR

*

**

Insufficient sample for analysis.

Sample listed, but not received.

NATA accreditation does not cover the

performance of this service.

Indicative data, theoretical holding time exceeded.

FOOTNOTES

LOR

↑↓

QFH

QFL

-

NVL

Limit of Reporting

Raised or Lowered Limit of Reporting

QC result is above the upper tolerance

QC result is below the lower tolerance

The sample was not analysed for this analyte

Not Validated

Page 7 of 705-January-2017

Page 160: Hydrogeological Assessment II: Fractured Rock Aquifers

Accreditation No. 2562

Date Reported

Contact

SGS Perth Environmental

28 Reid Rd

Perth Airport WA 6105

Ros Ma

(08) 9373 3500

(08) 9373 3556

[email protected]

2

SGS Reference

Email

Facsimile

Telephone

Address

Manager

Laboratory

J1709

Yangibona

[email protected]

9433 2322

9433 2222

PO Box 8110 Fremantle High Street, Fremantle,

WA, 6160

23 Parry Street

Fremantle 6160

KARDINYA WA

Groundwater Resource Management

Kathy McDougall

Samples

Order Number

Project

Email

Facsimile

Telephone

Address

Client

CLIENT DETAILS LABORATORY DETAILS

27 Sep 2017

ANALYTICAL REPORT

PE119413 R0

14 Sep 2017Date Received

Accredited for compliance with ISO/IEC 17025-Testing. NATA accredited laboratory 2562(898/20210).

For determination of soluble metals, filtered sample was not received for HYRCO3 so samples were laboratory subsamples and filtered on

receipt. This may give soluble metals results that do not represent the concentrations present at the time of sampling.

All metals subcontracted to SGS Perth Minerals, 28 Reid Rd Perth Airport WA, NATA Accreditation Number 1936, WM179032.

COMMENTS

Louise Hope

Laboratory Technician

Rachel Harrison

Inorganics Team Leader

Shino Pecoult

Laboratory Technician

SIGNATORIES

SGS Australia Pty Ltd

ABN 44 000 964 278

Environment, Health and Safety 28 Reid Rd

PO Box 32

Perth Airport WA 6105

Welshpool WA 6983

Australia

Australia

t +61 8 9373 3500

f +61 8 9373 3556

www.sgs.com.au

Member of the SGS Group

Page 1 of 727-September-2017

Page 161: Hydrogeological Assessment II: Fractured Rock Aquifers

PE119413 R0ANALYTICAL REPORT

PE119413.001

Water

YWWB01

PE119413.002

Water

HYRC03

Parameter LORUnits

Sample Number

Sample Matrix

Sample Name

pH in water Method: AN101 Tested: 14/9/2017

pH** pH Units 0.1 8.1 7.7

Conductivity and TDS by Calculation - Water Method: AN106 Tested: 14/9/2017

Conductivity @ 25 C µS/cm 2 1200 3900

Total Dissolved Solids (TDS) in water Method: AN113 Tested: 21/9/2017

Total Dissolved Solids Dried at 175-185°C mg/L 10 720 2400

Alkalinity Method: AN135 Tested: 14/9/2017

Total Alkalinity as CaCO3 mg/L 5 180 280

Hydroxide Alkalinity as OH mg/L 5 <5 <5

Carbonate Alkalinity as CO3 mg/L 1 <1 <1

Bicarbonate Alkalinity as HCO3 mg/L 5 220 340

Fluoride by Ion Selective Electrode in Water Method: AN141 Tested: 26/9/2017

Fluoride by ISE mg/L 0.1 2.0 1.0

Chloride by Discrete Analyser in Water Method: AN274 Tested: 26/9/2017

Chloride, Cl mg/L 1 200 870

Page 2 of 727-September-2017

Page 162: Hydrogeological Assessment II: Fractured Rock Aquifers

PE119413 R0ANALYTICAL REPORT

PE119413.001

Water

YWWB01

PE119413.002

Water

HYRC03

Parameter LORUnits

Sample Number

Sample Matrix

Sample Name

Sulfate in water Method: AN275 Tested: 26/9/2017

Sulfate, SO4 mg/L 1 66 300

Sample Subcontracted Method: Tested: 27/9/2017

Sample Subcontracted* No unit - Appended Appended

Page 3 of 727-September-2017

Page 163: Hydrogeological Assessment II: Fractured Rock Aquifers

PE119413 R0QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided

by the average of the two results as a percentage. Where the DUP RPD is 'NA' , the results are less than the LOR and thus the RPD is not applicable.

Alkalinity Method: ME-(AU)-[ENV]AN135

MB LCS

%Recovery

Total Alkalinity as CaCO3 LB136739 mg/L 5 <5 101%

Hydroxide Alkalinity as OH LB136739 mg/L 5 <5

Carbonate Alkalinity as CO3 LB136739 mg/L 1 <1

Bicarbonate Alkalinity as HCO3 LB136739 mg/L 5 <5

LORUnits Parameter QC

Reference

Chloride by Discrete Analyser in Water Method: ME-(AU)-[ENV]AN274

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Chloride, Cl LB136832 mg/L 1 <1 0 - 7% 103 - 106% 111%

LORUnits Parameter QC

Reference

Conductivity and TDS by Calculation - Water Method: ME-(AU)-[ENV]AN106

MB LCS

%Recovery

Conductivity @ 25 C LB136731 µS/cm 2 <2 105%

LORUnits Parameter QC

Reference

Fluoride by Ion Selective Electrode in Water Method: ME-(AU)-[ENV]AN141

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Fluoride by ISE LB136808 mg/L 0.1 <0.1 0% 103% 88%

LORUnits Parameter QC

Reference

pH in water Method: ME-(AU)-[ENV]AN101

MB LCS

%Recovery

pH** LB136731 pH Units 0.1 5.8 100%

LORUnits Parameter QC

Reference

Sulfate in water Method: ME-(AU)-[ENV]AN275

MB DUP %RPD LCS

%Recovery

MS

%Recovery

Sulfate, SO4 LB136832 mg/L 1 <1 1 - 7% 98 - 100% 95 - 102%

LORUnits Parameter QC

Reference

Page 4 of 727-September-2017

Page 164: Hydrogeological Assessment II: Fractured Rock Aquifers

PE119413 R0QC SUMMARY

MB blank results are compared to the Limit of Reporting

LCS and MS spike recoveries are measured as the percentage of analyte recovered from the sample compared the the amount of analyte spiked into the sample.

DUP and MSD relative percent differences are measured against their original counterpart samples according to the formula : the absolute difference of the two results divided

by the average of the two results as a percentage. Where the DUP RPD is 'NA' , the results are less than the LOR and thus the RPD is not applicable.

Total Dissolved Solids (TDS) in water Method: ME-(AU)-[ENV]AN113

MB DUP %RPD LCS

%Recovery

MS

%Recovery

MSD %RPD

Total Dissolved Solids Dried at 175-185°C LB136726 mg/L 10 <10 1% 97% 102% 1%

LORUnits Parameter QC

Reference

Page 5 of 727-September-2017

Page 165: Hydrogeological Assessment II: Fractured Rock Aquifers

PE119413 R0

METHOD METHODOLOGY SUMMARY

METHOD SUMMARY

pH in Soil Sludge Sediment and Water: pH is measured electrometrically using a combination electrode (glass plus

reference electrode) and is calibrated against 3 buffers purchased commercially. For soils, an extract with water is

made at a ratio of 1:5 and the pH determined and reported on the extract. Reference APHA 4500-H+.

AN101

Conductivity and TDS by Calculation: Conductivity is measured by meter with temperature compensation and is

calibrated against a standard solution of potassium chloride. Conductivity is generally reported as µmhos/cm or

µS/cm @ 25°C. For soils, an extract with water is made at a ratio of 1:5 and the EC determined and reported on

the extract, or calculated back to the as-received sample. Total Dissolved Salts can be estimated from conductivity

using a conversion factor, which for natural waters, is in the range 0.55 to 0.75. SGS use 0.6. Reference APHA

2510 B.

AN106

Total Dissolved Solids: A well-mixed filtered sample of known volume is evaporated to dryness at 180°C and the

residue weighed. Approximate methods for correlating chemical analysis with dissolved solids are available.

Reference APHA 2540 C.

AN113

Alkalinity (and forms of) by Titration: The sample is titrated with standard acid to pH 8.3 (P titre) and pH 4.5 (T titre)

and permanent and/or total alkalinity calculated. The results are expressed as equivalents of calcium carbonate or

recalculated as bicarbonate, carbonate and hydroxide. Reference APHA 2320. Internal Reference AN135

AN135

Determination of Fluoride by ISE: A fluoride ion selective electrode and reference electrode combination , in the

presence of a pH/complexation buffer, is used to determine the fluoride concentration. The electrode millivolt

response is measured logarithmically against fluoride concentration. Reference APHA F- C.

AN141

Chloride by Aquakem DA: Chloride reacts with mercuric thiocyanate forming a mercuric chloride complex. In the

presence of ferric iron, highly coloured ferric thiocyanate is formed which is proportional to the chloride

concentration. Reference APHA 4500Cl-

AN274

sulfate by Aquakem DA: sulfate is precipitated in an acidic medium with barium chloride. The resulting turbidity is

measured photometrically at 405nm and compared with standard calibration solutions to determine the sulfate

concentration in the sample. Reference APHA 4500-SO42-. Internal reference AN275.

AN275

Free and Total Carbon Dioxide may be calculated using alkalinity forms only when the samples TDS is <500mg/L.

If TDS is >500mg/L free or total carbon dioxide cannot be reported . APHA4500CO2 D.

Calculation

Page 6 of 727-September-2017

Page 166: Hydrogeological Assessment II: Fractured Rock Aquifers

PE119413 R0

Samples analysed as received.

Solid samples expressed on a dry weight basis.

Where "Total" analyte groups are reported (for example, Total PAHs, Total OC Pesticides) the total will be calculated as the sum of the individual

analytes, with those analytes that are reported as <LOR being assumed to be zero. The summed (Total) limit of reporting is calcuated by summing

the individual analyte LORs and dividing by two. For example, where 16 individual analytes are being summed and each has an LOR of 0.1 mg/kg,

the "Totals" LOR will be 1.6 / 2 (0.8 mg/kg). Where only 2 analytes are being summed, the " Total" LOR will be the sum of those two LORs.

Some totals may not appear to add up because the total is rounded after adding up the raw values.

If reported, measurement uncertainty follow the ± sign after the analytical result and is expressed as the expanded uncertainty calculated using a

coverage factor of 2, providing a level of confidence of approximately 95%, unless stated otherwise in the comments section of this report.

Results reported for samples tested under test methods with codes starting with ARS -SOP, radionuclide or gross radioactivity concentrations are

expressed in becquerel (Bq) per unit of mass or volume or per wipe as stated on the report. Becquerel is the SI unit for activity and equals one

nuclear transformation per second.

Note that in terms of units of radioactivity:

a. 1 Bq is equivalent to 27 pCi

b. 37 MBq is equivalent to 1 mCi

For results reported for samples tested under test methods with codes starting with ARS -SOP, less than (<) values indicate the detection limit for

each radionuclide or parameter for the measurement system used. The respective detection limits have been calculated in accordance with ISO

11929.

The QC criteria are subject to internal review according to the SGS QAQC plan and may be provided on request or alternatively can be found here :

http://www.sgs.com.au/~/media/Local/Australia/Documents/Technical%20Documents/MP-AU-ENV-QU-022%20QA%20QC%20Plan.pdf

This document is issued by the Company under its General Conditions of Service accessible at www.sgs.com/en/Terms-and-Conditions.aspx.

Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any holder of this document is advised that information contained hereon reflects the Company 's findings at the time of its intervention only and

within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client only. Any unauthorized alteration, forgery or

falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law .

This report must not be reproduced, except in full.

IS

LNR

*

**

Insufficient sample for analysis.

Sample listed, but not received.

NATA accreditation does not cover the

performance of this service.

Indicative data, theoretical holding time exceeded.

FOOTNOTES

LOR

↑↓

QFH

QFL

-

NVL

Limit of Reporting

Raised or Lowered Limit of Reporting

QC result is above the upper tolerance

QC result is below the lower tolerance

The sample was not analysed for this analyte

Not Validated

Page 7 of 727-September-2017

Page 167: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

G1  

 

APPENDIX G 

 

Isotope Analysis

Page 168: Hydrogeological Assessment II: Fractured Rock Aquifers

To Kathy McDougall (Senior Hydrogeologist) Groundwater Resource Management

Date 27/07/2017

From Karina Meredith, Senior Research Scientist (ANSTO)

Subject The interpretation of 5 tritium samples for groundwater in Western Australia.

Introduction This memo was prepared by Dr Karina Meredith from the Australian Nuclear Science and Technology Organisation’s (ANSTO) Environment Theme, for Groundwater Resource Management (GRM). The memo outlines the groundwater dating methodology using tritium and provides comment on the groundwater residence time of five groundwater samples that were analysed at ANSTO on 04-July-2017. The major limitation of this assessment is that the interpretation was based entirely on five tritium (3H) samples with no other supporting hydrochemical or hydrogeological background information.

Groundwater residence time assessment using tritium Tritium (3H) is a short-lived isotope of hydrogen with a half-life of 12.43 years. It is directly incorporated into the water molecule and can therefore be used to date the water molecule. 3H is produced naturally by cosmic radiation, and up until the 1950s relatively consistent levels of 3H were present in rainfall and subsequently entered surface and groundwater systems. Since the early 1950s, additional 3H was introduced into the atmosphere as a result of open air thermonuclear tests (Fontes, 1980). At its maximum level in 1963, the contribution of anthropogenic 3H to precipitation reached 2-3 orders of magnitude above natural 3H (Fontes, 1980). By 1990, most of the artificial 3H had been washed from the atmosphere with global atmospheric levels returning to values close to natural background levels (Clark and Fritz, 1997). This is particularly the case for the Southern Hemisphere where 3H values in precipitation remain at least one order of magnitude lower than those in the Northern Hemisphere, and in Australia are approaching back ground (Tadros et al, 2014). Tritium can be used for determining whether ‘modern’ recharge exists in groundwater. Due to its short half-life and its natural background levels in the atmosphere, 3H can be used to date groundwaters back to ~60 years. A sample of groundwater will represent a composite of recharge events. Once this groundwater becomes isolated from active recharge, its 3H content will decrease by decay and the 3H concentration will be a function of its residence time in the recharge environment (Clark and Fritz, 1997). The presence of 3H in a groundwater sample can also be used to qualitatively date the water sample, i.e. a measurable 3H activity in a water sample can be equated to a component of modern recharge; therefore its presence in groundwater can provide evidence for recent recharge and conversely its absence implies no recent recharge.

Methodology For 3H analysis, water samples were distilled and electrolytically enriched prior to being analysed by liquid scintillation method. The 3H concentrations were expressed in tritium units (TU) with an uncertainty of ± 0.03 TU and lower limit of detection (LLD) of 0.05 TU. Tritium was measured by

Page 169: Hydrogeological Assessment II: Fractured Rock Aquifers

2

counting beta decay events in a liquid scintillation counter (LSC). A 10 ml sample aliquot was mixed with a scintillation compound that releases a photon when struck by a beta particle. Photomultiplier tubes in the counter convert the photons to electrical pulses that are counted over 51 cycles for 20 minutes (see results sheet for full methodology).

Results Of the 5 groundwater samples analysed for 3H in this project, only 1 sample (FRW1_Early) contained measurable 3H above the lower limit of detection 0.05 TU (Table 1). This sample was collected at the start of pumping. The final sample FRW1_Late was taken 48 hours after pumping the well and did not contain any measurable 3H. This result suggests that the groundwater from this well contained no modern water (i.e. contains water older than 60 years old). This seems likely when considering the groundwater was abstracted from a well with a slotted interval located 71.2 to 95.2m below ground level. Because the 3H concentration changes after pumping, this suggests the well is accessing older water. Possible reasons for this change in 3H could include: a) that the screen range in the well intercepts both younger and older groundwater but that older groundwater is drawn from higher permeability areas in the aquifer after pumping or b) the well construction has allowed some leakage from the surface or shallower aquifers that has mixed with the deeper groundwater in the vicinity of the screen. All other groundwaters sampled contain no measureable 3H.

Table 1. Tritium concentration at sampling date in tritium units (TU) for groundwaters sampled by GRM and analysed by ANSTOs tritium laboratory (refer to original report for details).

Client Identification Date Sample Collected

Tritium Ratio

Uncertainty1 LLD2

TU TU TU

FRW1 Early 4/11/2016 0.13 0.03 0.05 FRW1 Late 6/11/2016 0.01^ 0.03 0.05 BHW5 Early 9/12/2016 0.05^ 0.03 0.05 BHW5 Late 11/12/2016 0.02^ 0.03 0.05 YGWB3 Late 16/12/2016 0.02^ 0.03 0.05

1. Values reported are combined standard uncertainty, calculated to 1 sigma. A Coverage factor, k, of 2 may be used to calculate Expanded

Uncertainty to 95% confidence.

2. The lower limit of detection (LLD) corresponds to the fractional measurement standard uncertainty (σ(C)/C) of 0.5 [4].

^ This result is below the LLD and therefore has an unacceptable level of uncertainty

Conclusion The lack of 3H in groundwater implies that these groundwaters are not ‘modern’ (i.e. greater than 60 years old) and no recent groundwater recharge has occurred. These results also suggest that when the aquifer is pumped for up to 48 hours, older groundwater migrates into the well. This interpretation is based only on 3H analysis, therefore it is recommended that further hydrochemical and 14C dating is needed to confirm this assessment.

References Clark, I. and P. Fritz (1997). Environmental isotopes in hydrology, Lewis Publishers. pp328. Fontes, J. (1980). Environmental isotopes in hydrogeology. Handbook of Environmental Isotope Geochemistry, Elsevier. Tadros, C. V., Hughes, C. E., Crawford, J., Hollins, S. E., & Chisari, R. (2014). Tritium in Australian precipitation: A 50 year record. Journal of hydrology, 513, 262-273.

Page 170: Hydrogeological Assessment II: Fractured Rock Aquifers

 

 J1709R01    April 2018 

 

H1  

 

APPENDIX H 

 

Revised Pit Modelling Report 

Page 171: Hydrogeological Assessment II: Fractured Rock Aquifers

  

  

T: (+61 8) 9433 2222  F: (+61 8) 9433 2322 ABN: 97 107 493 292 A: 15 Harborne Street Wembley WA 6014 P: Po Box 442, Bayswater, WA 6933 

 

19 March 2018   

J1709L02 

Lara Jefferson 

Hastings Technology Metals Limited 

306 Murray Street 

Perth WA 6000 

Dear Lara, 

Revised Mine Dewatering Modelling 

Introduction 

Groundwater  Resource  Management  Pty  Ltd  (GRM)  developed  a  series  of  three  numerical groundwater  flow models  for  the Fraser’s, Bald Hill and Yangibana pits, as part of  the Stage  I DFS (GRM report J160014R01, dated February 2017).   

The Department of Water and Environment Regulation (DWER) has subsequently recommended the use  of  analytical  methods  to  determine  dewatering  rates  for  the  Stage  II  hydrogeological assessment,  rather than groundwater  flow modelling, due to  the  inherent  limitations of modelling fractured rock systems.   

However, given that the models were already developed, Hastings requested that GRM update the models  with  the  revised  mining  schedule,  despite  the  limitations  of  the  method,  to  provide  an indication of likely drawdown impacts associated with mine dewatering.    

The following summarises the revised modelling.   

Groundwater Modelling 

Two of  the  three previously  constructed  groundwater  flow models were  updated  to  simulate  the impacts upon the groundwater environment from mining below the water table at Fraser’s and Bald Hill.    The  Yangibana model was  not  updated,  as  the  deposit  has  been  excluded  from  the mining schedule.   

The models were constructed using the MODFLOW 3D finite‐difference code PMWIN pre‐processor.   

The numerical modelling was based upon a conceptual understanding of the groundwater system as provided  in  the  Stage  I  hydrogeological  report  (GRM,  2017),  developed  using  the  data  collected during  filed  investigations.   No  calibration data was available.   However,  sensitivity  analyses were run on the initial models to assess the implications of varying hydraulic properties. 

The numerical model setup and results are discussed below. 

Page 172: Hydrogeological Assessment II: Fractured Rock Aquifers

 

ATTN: Lara Jefferson J1709L02    March 2018 

2  

 

 

Model Mesh and Layers 

The models were  constructed  using  three  layers, with  Layer  1  (L1)  representing  the  hanging wall bedrock, L2 representing the permeable fractured ironstone, and L3 representing the intact footwall bedrock.    The  geometry  of  the  layers  reflected  the  conceptual  model  (GRM,  2017),  with  L2 outcropping  on  the  northern  / western  boundaries  of  the  proposed  pits  and  plunging  to  south  / south‐east.  The thickness of the L2 was set at a uniform 5 m for Fraser’s and 4 m for Bald Hill.     

Alluvium was not represented in the model as it is not known to extend below the water table in the immediate vicinity of the pits.   

The  model  limits  were  set  to  about  5  km  from  the  proposed  pits,  such  that  interference  from regional boundaries would not influence the simulated impacts from dewatering. 

The layer slices were constructed from: 

Fraser’s Model: 24,975 rectangular cells (225 columns and 111 rows), covering an area of approximately 115 km2.   The cell sizes range from 10 m by 10 m in the area of the pit to 500 m by 500 m near the model boundary. 

Bald Hill Model: 37,185 rectangular cells (185 columns and 201 rows), covering an area of approximately 120 km2.  The cell sizes ranged from 10 m by 10 m in the area of the pits, to 500 by 500 m near the model boundary. 

The  ambient  pre‐mining  water  level  for  each model  was  set  at  the  average  ambient  water  level recorded during  the field  investigations, namely; 309 mRL for  the Fraser’s model and 316 mRL for the Bald Hill model.  The lower boundary was set at about 10 m below the base of the proposed pits.   

Hydraulic Parameters 

Values for hydraulic conductivity and storage were assigned to each layer.  The baseline values used for horizontal hydraulic  conductivity were based upon  the average  results of  the hydraulic  testing analysis presented in the Stage I report (GRM 2017), whilst vertical hydraulic conductivity was set at 10% of the corresponding horizontal conductivity value.   

Values  for  aquifer  storage  were  based  upon  a  combination  of  the  test  data,  published  values (Kruseman and de Ridder 1994) and experience with other modelling studies.   

In addition to the baseline simulation, sensitivity analysis was carried out on the original model  to assess the impacts from variation in hydraulic parameters.  Details relating to the sensitivity analysis are provided in the Stage I report (GRM 2017). 

Page 173: Hydrogeological Assessment II: Fractured Rock Aquifers

 

ATTN: Lara Jefferson J1709L02    March 2018 

3  

 

 

Table 1:  Adopted Baseline Hydraulic Parameters  

Pit  Model Layer 

Baseline Model Parameters 

Kh (m/d)  Kv (m/d)  Sy  Ss 

Fraser’s 

L1  0.012 0.0012 0.01 0.0001 

L2  2.5 0.25 0.01 0.0001 

L3  0.001 0.0001 0.01 0.0001 

Bald Hill 

L1  0.03 0.003 0.01 0.0001 

L2  5 0.5 0.01 0.0001 

L3  0.001 0.0001 0.01 0.0001 

Note Kh = horizontal hydraulic conductivity, Kv = vertical hydraulic conductivity, Sy = specific yield, Ss = specific storage. 

Boundary Conditions and Recharge 

All lateral boundaries were designated as constant head boundaries, using the ambient groundwater levels  of  309 mRL  and  316 mRL  for  Fraser’s  and  Bald  Hill  respectively.    A  no  flow  boundary was adopted for the base of the models. 

Groundwater  recharge was not  included  in  the model  given  the  low hydraulic  conductivity of  the fresh bedrock and the short project life.  This is a conservative approach with respect to drawdown impacts, which will be reduced under recharge conditions. However, the model is not conservative with  respect  to  the  dewatering  rate,  which  may  show  periodic  increases  in  response  to  rainfall recharge.    Though,  these  increases  are  expected  to  be  short  lived  during  and  immediately  after rainfall events. 

Mine Dewatering 

The mine dewatering strategy adopted for the purpose of modelling comprised: 

Two dewatering bores installed into the higher permeability HU2 zone, at Fraser’s and Bald Hill (production bores FRW03 and BHW05). 

Sump pumping in both pits. 

Mine dewatering was simulated using a combination of MODFLOW’s well and drain packages. 

The MODFLOW well  package  applies  pumping  rates  to  the  layer model  cells  associated  with  the assigned production bore locations.  A maximum pumping rate of 6 L/s was applied to FRW03 and 8 L/s to BHW05.  For the Fraser’s model this rate was adjusted downward as drawdown was achieved to prevent the model cell drying out and to maintain sufficient drawdown ahead of mining.  At Bald Hill BHW05 is now within the revised pit footprint and so the production bore was switched off  in the model at the commencement of mining. 

The MODFLOW drain package  simulates dewatering by  sump pumping methods, by allowing  flow out of  the model domain based upon a drain head elevation and a  conductance  term.    The drain head  is  equivalent  to  the  elevation  of  the  pit  floor,  and  was  adjusted  at  each  stress  period  to simulate mining progress in the pits.  

Page 174: Hydrogeological Assessment II: Fractured Rock Aquifers

 

ATTN: Lara Jefferson J1709L02    March 2018 

4  

 

 

The drain head elevations used to simulate lowering of the pit floors were based on the revised pit schedules,  as  provided  by  Mr  Tarrant  Ellkington  (General  Manager,  Snowden)  by  email  on  24 November 2017.  The schedule comprised maximum pit depths at quarterly increments for the two pits.    The  schedule  indicates  that  Fraser’s will  be mined  in  year’s  2.5  to  4  and Bald Hill mined  in year’s 2 to 6.5.      

The conductance term describes the conductivity at this boundary (i.e. the inverse of the resistance to outflow from the model domain).  For the numerical models a high conductance value of 20 m2/d was adopted, allowing the water  levels  in  the model drain cells  to equilibrate with  the  fixed head specified for the drain, whilst maintaining sufficient resistance to assist in model convergence. 

A  summary of  the mining  schedule as provided by Snowden,  is provided  in Table 2.    The  final pit outline as provided by Snowden, is presented in Figure 1.     

Page 175: Hydrogeological Assessment II: Fractured Rock Aquifers

 

ATTN: Lara Jefferson J1709L02    March 2018 

5  

 

 

Table 2:  Revised Mining Schedule  

Quarter 

Fraser’s  Bald Hill 

FR1  FR2  BH1  BH2  BH3  BH4  BH5 

4  ‐  ‐  350 ‐ ‐ ‐ ‐ 

5  ‐  ‐  345 ‐ ‐ ‐ ‐ 

6  335  ‐  340 ‐ ‐ ‐ ‐ 

7  320  350 340 340 ‐ ‐ ‐ 

8  310  340 335 335 ‐ ‐ ‐ 

9  305  330 330 330 ‐ ‐ ‐ 

10  305  325 330 320 ‐ ‐ ‐ 

11  ‐  315 ‐ 305 365 ‐ ‐ 

12  ‐  305 ‐ 300 350 ‐ ‐ 

13  ‐  295 ‐ ‐ 340 ‐ ‐ 

14  ‐  285 ‐ ‐ 330 355 ‐ 

15  ‐  270 ‐ ‐ 320 345 ‐ 

16  ‐  230 ‐ ‐ 315 340 ‐ 

17  ‐  ‐  ‐ ‐ 310 330 ‐ 

18  ‐  ‐  ‐ ‐ ‐ 320 ‐ 

19  ‐  ‐  ‐ ‐ ‐ 310 ‐ 

20  ‐  ‐  ‐ ‐ ‐ 300 ‐ 

21  ‐  ‐  ‐ ‐ ‐ 285 ‐ 

22  ‐  ‐  ‐ ‐ ‐ 280 340 

23  ‐  ‐  ‐ ‐ ‐ 365 335 

24  ‐  ‐  ‐ ‐ ‐ 365 325 

25  ‐  ‐  ‐ ‐ ‐ 355 315 

26  ‐  ‐  ‐ ‐ ‐ 235 285 

 

Model Layer Type and Run Time 

An unconfined model layer type was used for L1, and confined/unconfined for L2 and L3.  The model layers were set to calculate transmissivity. 

The model simulations were run for the following periods: 

Fraser’s  model  was  run  for  4  years  representing  year’s  1  to  4,  and  comprising  4  stress periods of 365 days. 

Page 176: Hydrogeological Assessment II: Fractured Rock Aquifers

 

ATTN: Lara Jefferson J1709L02    March 2018 

6  

 

 

Bald Hill model was run for 6.5 years representing year’s 1 to 6.5 and comprising 6 stress periods of 365 days and one stress period of 182.5 days.  

Predicted Dewatering Requirements 

One model run for each of the two models was undertaken using the expected hydraulic parameter values  for each  layer.    Sensitivity analysis was not  repeated  for  the revised modelling, and  further details relating to the original sensitivity analysis is provided in the Stage I report (GRM 2017).    

The predicted dewatering requirements for the revised pit runs are presented in Table 3. 

The modelling results show the following: 

Prior  to  the  pits  extending  below  the  water  table  the  two  dewatering  bores  provide  a combined 14 L/s. 

The highest inflows are reported from the Bald Hill pit, as a result of the larger pit area.  

The  total  combined  predicted  dewatering  rates  range  from  5.9  L/s  in  year  5  (upon completion of the Fraser’s pit), to 23.6 L/s in Year 6. 

The modelling indicates that a combination of dewatering bores and sump pumping should be  a  suitable  strategy  to  achieve  sufficient  drawdown.    However  additional  ex‐pit dewatering  bores  may  need  to  be  considered  if  inflows  are  higher  than  anticipated  or difficult to manage, particularly at Bald Hill.  Additional dewatering bores would need to be located such that they intercept high yielding structural features which extend beyond the pit perimeter.      

It  is  important to note that the model does not allow for rainfall recharge, which is a conservative modelling  approach  with  regard  to  drawdown  impacts.  Increased  groundwater  inflows  following significant  rainfall  events  are  likely.    For  this  reason  it would be prudent  to allow contingency  for groundwater inflows of up to 50 L/sec following high rainfall events.  Additional contingency will also be necessary to account for surface water inflows (rainfall and runoff) following high rainfall events.   

Conversely,  recent  fractured  rock  investigations  within  the  Project  area  (GRM  report  J1709R01, 2018) has  indicated  limited  storage  in  the  fractured  rock aquifers.    This may  result  in  significantly lower  than  anticipated  inflows  to  the  pits,  particularly  towards  the  latter  stages  of  the  LoM,  as  a result of draining the fractures.     

 

Page 177: Hydrogeological Assessment II: Fractured Rock Aquifers

 

ATTN: Lara Jefferson J1709L02    March 2018 

7  

 

 

Table 3:  Predicted Dewatering Rates  

Year 

Fraser’s  Bald Hill 

Combined 

Total (L/s) Bore FRW03 

(L/s) 

Sump 

Pumping 

(L/s) 

Fraser’s 

Total (L/s) 

Bore BHW05 

(L/s) 

Sump 

Pumping 

(L/s) 

Bald Hill 

Total (L/s) 

1  6.0  ‐  6.0 8.0 ‐ 8.0  14.0

2  6.0  ‐  6.0 8.0 ‐ 8.0  14.0

3  6.0  ‐  6.3 8.0 ‐ 8.0  14.3

4  3.0  7.2  10.2 ‐ 5.0 5.0  15.2

5  ‐  ‐  ‐ 5.9 5.9  5.9

6  ‐  ‐  ‐ 23.6 23.6  23.6

7  ‐  ‐  ‐ 21.9 21.9  21.9

 

Predicted Groundwater Drawdown 

The predicted groundwater level drawdown for the baseline runs at the end of mining are presented as contour plots in Figure 1.  The plot shows the following: 

The asymmetrical drawdown reflects the geometry of the aquifer, with the steep hydraulic gradient  corresponding  to  the  ironstone  extending  above  the  water  table,  whilst  the drawdown propagates along strike and down‐dip of the ironstone aquifer. 

At the end of mining the predicted 5 m drawdown contour extends up to 1.5 km from the pit perimeter at Fraser’s and 1.8 km from the pit perimeter at Bald Hill. 

Steep  hydraulic  gradients  are  predicted  in  the  fresh  basement  (HU3)  beyond  the outcropping  ironstone,  with  the  5 m  contour  extending  only  about  500 m  from  the  pit perimeter. 

The  groundwater  drawdown  contours  suggest  that  other  groundwater  users  in  the  area are not expected  to be  impacted by dewatering  (Figure 1).    The nearest  identified other groundwater  user  (Fraser  Well)  is  located  3.9  km  from  the  predicted  5  m  drawdown contour.     

 

 

 

 

 

Page 178: Hydrogeological Assessment II: Fractured Rock Aquifers

 

ATTN: Lara Jefferson J1709L02    March 2018 

8  

 

 

Yours sincerely, 

 

Kathy McDougall   

PRINCIPAL HYDROGEOLOGIST   

 

 

Attachment: Figure 1 Model Simulated Drawdown Contours End of Mining   

Doc Ref: J1709L02

 

 

 

Page 179: Hydrogeological Assessment II: Fractured Rock Aquifers

5 m

5 m

10 m

10 m

15 m

BHW05

FRW03

FRASER WELL F1

424,000 425,000 426,000 427,000 428,000 429,000 430,000 431,000 432,000

Easting (MGA94 Zone 50)

7,348,000

7,349,000

7,350,000

7,351,000

7,352,000

7,353,000

7,354,000

7,355,000

7,356,000

7,357,000

7,358,000

7,359,000

7,360,000N

orth

ing

(MG

A94

Zon

e 50

)

LEGEND

Simulated Drawdown ContousEnd of Mining

Production Bore

Proposed Pits

Other Groundwater Users

5 m

5 m

5 m

BALD HILL

FRASER'S


Recommended