+ All Categories
Home > Documents > Hygroscopic Particle Lung Deposition (HPLD) Model A computer program to calculate the deposition of...

Hygroscopic Particle Lung Deposition (HPLD) Model A computer program to calculate the deposition of...

Date post: 04-Jan-2016
Category:
Upload: brenda-waters
View: 223 times
Download: 0 times
Share this document with a friend
64
Hygroscopic Particle Lung Deposition (HPLD) Model A computer program to calculate the deposition of hygroscopic aerosol particles in the human respiratory tract George A. Ferron Helmholtz Zentrum München Institute for Inhalation Biology Munich, 2008.11.24
Transcript

Hygroscopic Particle Lung Deposition (HPLD) ModelA computer program to calculate the deposition of hygroscopic aerosol particles in the human respiratory tract

George A. Ferron

Helmholtz Zentrum MünchenInstitute for Inhalation Biology

Munich, 2008.11.24

Hygroscopic particle lung deposition model: 2

hpldb06_use_20081124.ppt, page 2

HPLD model: content

- title 1

- content 2

- aim 3

- features 4

- locations to find the program 5

- online help 6

- support, help or questions 7

- program structure 8

- parameter definition 11

- some important parameters 12

- example, help 13

-

- default conditions 14

- input parameter description 15

- run of the program 40

- batch files 47

- online version 52

- installation of the program 53

- references 60

Hygroscopic particle lung deposition model: 3

hpldb06_use_20081124.ppt, page 3

HPLD model: aim of the program

A Hygroscopic Particle Lung deposition (HPLD) model has been developed to

estimate the deposition of hygroscopic and non-hygroscopic aerosol particles

in the human and rat airways during respiration.

The program have been described by Ferron et al. (1988, 1993).

The present version 6 also includes the rat airways (Schmid et al., 2008).

Hygroscopic particle lung deposition model: 4

hpldb06_use_20081124.ppt, page 4

HPLD model: features of the program

The model include

- the lung structure of an adult man with a mean lung volume of 3000 cm3

extended by a nose, mouth and pharynx,

- the increase of the humidity in the upper airways during respiration,

- the growth of a particle in humid air using its hygroscopic parameters,

- the deposition in the different lung generations.

The HPLD model described here has the version number 06 and is called “hpldb06”. It also includes the lung structure model of Yeh and Schum (1979) for a rat with a body weight of 330 g and is extended by a model of the nose and pharynx.

Hygroscopic particle lung deposition model: 5

hpldb06_use_20081124.ppt, page 5

HPLD model: locations to find the program

The model is installed:

- on a linux server “momo”, that can be run on a browser and the intranet of the Helmholtz Zentrum München (e. g. http://www.helmholtz-muenchen/ihb, members only/deposition model (in development) (For administration asked Erwin Karg).

- on a linux server “momo” using a personnel “linux” account. on a personal PC 50464 (building 35, room 1032) using linux as an operation system, user george (password “aero_sol”)(For administration asked Erwin Karg).

- on a personnel PC 50464 (building 35, room 1032) using “XP”. Login as george.ferron (gaf_010) and startet die Virtual Box (user george, password “aerosol”).

- on a personnel PC 50464 (building 35, room 1032) using “linux”. Login as george (gaf_010) or another licenced user and startet “hpldb06” in your own directory.

- on a PC operated by Winfried Möller (IHB, Gauting) using a personnel “XP” account.

Hygroscopic particle lung deposition model: 6

hpldb06_use_20081124.ppt, page 6

HPLD model: online help

A list of parameters is shown by printing the command in a screen window:

hpldb06

-

Hygroscopic particle lung deposition model: 7

hpldb06_use_20081124.ppt, page 7

HPLD model: support, help and questions

Support can be obtained by :

- Erwin Karg, Tel. +49 89 3187 2847 Email: [email protected]

- Otmar Schmid, Tel. +49 89 3187 2667 Email: [email protected]

- George A. Ferron, Email: [email protected]

Institute of Inhalation Biology, Helmholtz Zentrum München, Ingolstädter Landstraase.1, 85764 Oberschleißheim, Germany

-

Hygroscopic particle lung deposition model: 8

hpldb06_use_20081124.ppt, page 8

HPLD model: program structure, 1

The model consists of four separate programs written in C or Fortran languages. The program presently runs on a PC using linux as an operation system (presently OpenSUSE 10.3). Former version had run using several unix and linux versions.

The four names of the programs are:

- “hpldb06”. Here all parameters are defined,

- “blung06”. This program generates the lung structure and the temperature and relative humidity profile of the upper airways,

- “bgrow06”. This program calculated the growth of the particle as a function of time,

- “bdepos06”. this program calculated the deposition during inhalation, breath-holding and exhalation in the lung generations. It prints the results.

Hygroscopic particle lung deposition model: 9

hpldb06_use_20081124.ppt, page 9

hpldb06

blung06

bdepos06

bgrow06

hpld_out

ft3.datdata_lung06

datnam_00datnam_01

(datnam_02,etc.)data_grow06

name of the program / directory file generatedfunction of the program

definition of the parameters

lung structure, temperature and relative humidity profiles

growth of an aerosol particle during

respiration

lung deposition of an aerosol particle

HPLD model: program structure, 2program structure, directories and communication

bd06 data_depos06

Hygroscopic particle lung deposition model: 10

hpldb06_use_20081124.ppt, page 10

HPLD model: program structure, 4file properties

File name: Format: Function:

hpld_out Text file Parameter values

ft3.dat Fortran formatted Parameter values

datnam00, Fortran formatted Parameter values

datnam01 (, datnam02,...) Fortran formatted Growth data

data_lung06, data_lung06_reduced

Text file Lung structure data with and without parameter valuess

data_grow06, data_grow06_reduced

Text file Growth data with and without parameter values

data_depos06, data_depos06_reduced

Text file Deposition data with and without parameter valuess

Hygroscopic particle lung deposition model: 11

hpldb06_use_20081124.ppt, page 11

HPLD model: parameter definition

The data input occurs in the program “hpldb06” in C program style by printing a “-” followed by a letter characteristic for a parameter and parameter values if necessary, e. g.

-d diameter gsd

Warning: some parameters like –l and –m change default values (see description of the parameter, pages 15 to 39). Parameters are changed one after another. E. g. –m 1 –n 61 1 1 1 is correct, but –n 61 1 1 1 –m 1 is not, since -m 1 changes –n 61 1 1 1 to –n 65 1 1 1 .

Hygroscopic particle lung deposition model: 12

hpldb06_use_20081124.ppt, page 12

HPLD model: some important parameters

List of commands:

-d – diameter,-e – deposition equations,-g – growth of particle,-i – respiration conditions,-l – lung structure,-m – nose or mouth breathing,-n - temperature and RH (humidity) profile,-s - salt definition,-t - print output,

and others.

Hygroscopic particle lung deposition model: 13

hpldb06_use_20081124.ppt, page 13

HPLD model: example, help

For example the deposition of a monodisperse particle in the default lungstructure of a salt “3” with no grow and mouth breathing is

hpldb06 –d 1 1 –s 3 1 –g 1 –m 1 .

The result may depend on the order of the commands. In principle the parameters are introduced one after another and my change previous defined settings!

Help can be obtained by printing simply:

hpldb06,

then a list of commands and their parameters is displayed on the screen of the computer.

After a calculation the parameter settings can be checked by the list in hpld_out.

Hygroscopic particle lung deposition model: 14

hpldb06_use_20081124.ppt, page 14

HPLD model: default conditions

- Weibel lung structure (-l 2 1) for a total lung volume of 3000 cm3 including nose and pharynx,

- nose breathing ( -m 0),

- dry NaCl particle ( -s 0 1),

- growth ( -g 2),

- mean temperature and humidity profile for the nose ( -n 12 1 1 1 ),

- aerodynamic diameter (parameter –a is not set),

- deposition equations ( -e 12) according to Thomas (sedimentation), Gormley and Kennedy (diffusion), Yu and Diu (impaction in nose and mouth), Yu and Diu (impaction in bifurcations),

- a tidal volume of 750 cm3 and equal inhalation and exhalation times of 2.5 s ( -i 2.5 750),

- simple print output ( -t 0).

Hygroscopic particle lung deposition model: 15

hpldb06_use_20081124.ppt, page 15

HPLD model: input parameter -a: switch type of particle diameter

Parameter “ –a “.

This command switches the default aerodynamic diameter to mobility diameter.

Hygroscopic particle lung deposition model: 16

hpldb06_use_20081124.ppt, page 16

HPLD model: input parameter-c: correction of T and RH profiles

Parameter

Not yet used.

Hygroscopic particle lung deposition model: 17

hpldb06_use_20081124.ppt, page 17

HPLD model: input parameter -d: particle diameter, 1.

Input of diameter parameters: “ -d diameter gsd “, where

- diameter is the initial aerodynamic diameter of the particle in micrometer

(in combination with the switch –a the mobility diameter is used),

- gsd is the geometric standard deviation (gsd is 1 for monodisperse particles and > 1.0 for a polydisperse logarithmic normal particle distribution).

Hygroscopic particle lung deposition model: 18

hpldb06_use_20081124.ppt, page 18

HPLD model: input parameter -d: particle diameter, 2. extension

For polydisperse calculations 14 bins are used by default for the entire distribution. A higher precision is obtained using “ –dm “ or “ –de “ in

stead of “ –d “ for 30 and 62 bins, respectively.

Hygroscopic particle lung deposition model: 19

hpldb06_use_20081124.ppt, page 19

HPLD model: input parameter -e: deposition equations

Parameter “ –e ne “, where

Where ne is the number characterizing the deposition equations.

Default value is 12. The uses the sedimentation equations for a laminar flow for sedimentation (Thomas) and diffusion (Gormley and Kennedy) for a tube with a circular cross-section, empirical equation for impaction in the nose or mouth (Yu and Diu) and impaction in a bifurcations (Ferron 1988b).

Ne equal to 810 is used for the rat using the the same equations as ne is 12 but using the nasal deposition equation of

for the rat.

Hygroscopic particle lung deposition model: 20

hpldb06_use_20081124.ppt, page 20

HPLD model: input parameter -f: input size distribution

Parameter “ –f filename “, where

- filename is the name of the file with data on particle size distribution (not tested).

Hygroscopic particle lung deposition model: 21

hpldb06_use_20081124.ppt, page 21

HPLD model: input parameter -g: growth parameter

Parameters “ -g ngrow (gfrh rh rhop0) “, where

- ngrow - the growth parameter,

- gfrh - the aerodynamic diameter growth factor of the particle at a relative humidity rh,

- rh - the relative humidity

- rhop0 - particle density corresponding to gfrh and rh.

ngrow=1 - no growth,

ngrow=2 – growth of the particles using a T and RH profiles (default),

ngrow=3 – equilibrium particle size in alveolar region,

ngrow=4 – defined growth factor, rh, rhop0. Not yet used.

Hygroscopic particle lung deposition model: 22

hpldb06_use_20081124.ppt, page 22

HPLD model: input parameter -i: respiration parameters, 1.

Parameter for respiration conditions: “ –i tin vt “, where

- tin is the in- and exhalation time (s),

- vt is the tidal volume (cm³).

Default is tin=tex=2.5 s, vt=750 cm³.

Hygroscopic particle lung deposition model: 23

hpldb06_use_20081124.ppt, page 23

HPLD model: input parameter -i: respiration parameters, 2. extension

Parameters: “ –ie tin tp1 tex tp2 vtin vtex “, where

- tin is the inhalation time (s),

- tp1 is the breath-holding time (s),

- tex is the exhalation time (s),

- tp2 is the pause after exhalation (s),

- vtin is the tidal volume during inhalation (cm³),

- vtex is the tidal volume during exhalation (cm³).

Hygroscopic particle lung deposition model: 24

hpldb06_use_20081124.ppt, page 24

HPLD model: input parameter -j: input size distribution

Parameter

Not yet used.

Hygroscopic particle lung deposition model: 25

hpldb06_use_20081124.ppt, page 25

HPLD model: input parameter -l: lung structure model, 1. human models

The lung structure model is defined: “ –l lung flung “, where

- lung is the number for lung structure,lung= 1 - Weibel 4800cm3, lung= 2 – Weibel reduced to 3000 cm³ (default), lung=21 – Olson, lung=22 – Olson 3000 cm³, lung=31 – Hanson & Ampaya, lung=32 - Hanson & Ampaya reduced to 3000 cm³, lung=41 - Yeh & Schum, lung=42 - Yeh & Schum 3000 cm³, lung=43 - Yeh & Schum 3300 cm³, lung=45 – Finlay,

- flung – scaling factor for the lung volume (all dimensions are scaled by the factor f**(1/3).

As a default tidal volume is 750 cm3 and in- and exhalation times are 2.5 s.

Hygroscopic particle lung deposition model: 26

hpldb06_use_20081124.ppt, page 26

HPLD model: input parameter -l: lung structure model, 2. animal models

The lung structure model is defined: “ –l lung flung “, where

- lung is the number for lung structure,

- flung – scaling factor for the lung volume (all dimensions are scaled by the factor f**(1/3).

lung=51 – dog: Yeh & Schum (in development),lung=61 – rat: Yeh and Schum extended with a nose and pharynx, lung=62 – same as 61, but optimized for experimental data (Schmid et al.), lung=71 – hamster: Yeh & Schum (in development),lung=81 – mouse: Phalen (in development).

Hygroscopic particle lung deposition model: 27

hpldb06_use_20081124.ppt, page 27

HPLD model: input parameter -l: lung structure model, 3. extension

Additional letters are used to correct the lung model for the actual lung volume LV by a factor of flung replacing -l by -lx, where x is:

a changes the lung volume by a factor flung of 0.5,

b changes the flung by 0.5+VT/(2*0.5*LV),

c changes the flung by 0.4,

d changes the flung by 0.4+VT/(2*0.4*LV) (used in rats, Schmid et al., 2008),

g changes the flung by 1.0+VT/(2*LV) (used in man –lg 2 1 ),

The diameter and length of the different lung generations are multiplied by flung**(1/3).

Hygroscopic particle lung deposition model: 28

hpldb06_use_20081124.ppt, page 28

HPLD model: input parameter -m: mouth or nose respiration

Parameter: “ -m mouth “, where

The value of mouth switches for nose (0) or mouth (1) breathing or for a tracheothomy.

Nose breathing: mouth=0 (default), mean humidity profile for nose breathing is assumed: –m 0 -n 12 1 1 1),

Mouth breathing: mouth=1, mean humidity profile for mouth breathing is assumed: –m 1 -n 65 1 1 1),

(Tracheothomy: mouth=2, 3, 4,…, where the volume of the nose and pharynx are set equal to 0.5, 1.0, 1.5, .. times the volume of the trachea, respectively. Not yet used.)

Comment: to change the humidity (e. g. 13) use: -m 0 –n 13 1 1 1 .

Hygroscopic particle lung deposition model: 29

hpldb06_use_20081124.ppt, page 29

HPLD model: input parameter -n: T and RH profiles

Parameter: “ –n nt ftemp fconc flq “, where

nt – number of profile (61 – nose high approximation, 65 - nose mean approximation, 69 – nose low approximation, 11 - mouth high approximation, 12 – mouth mean approximation, 13 – mouth low approximation (see Ferron et al., 1988b, Fig. 1), 900,…,999 values for constant RH corresponding to 0.900,…,0.999, respectively),

ftemp – factor to multiply the temperature difference between Tin and T∞ with respect to T∞,

fconc – factor to multiply the water vapour difference between cin and c∞ with respect to c∞,

flq – factor to multiply the parameter L/Q, basic parameter for the profiles with lung depth.

Hygroscopic particle lung deposition model: 30

hpldb06_use_20081124.ppt, page 30

HPLD model: input parameter -o: output file name

Parameter “ –o filename “, where

- filename is the name of a file where deposition data is saved.

Not yet tested.

Hygroscopic particle lung deposition model: 31

hpldb06_use_20081124.ppt, page 31

HPLD model: input parameter -p: measured distribution of a nebulizer

Parameter “ –p n_jet t_jet fnumber “, where

Not yet used.

Hygroscopic particle lung deposition model: 32

hpldb06_use_20081124.ppt, page 32

HPLD model: input parameter -r: relative gravity

Parameter “ –r rel_g “, where

- rel_g is the relative multiplication factor of the standard gravity.

Hygroscopic particle lung deposition model: 33

hpldb06_use_20081124.ppt, page 33

HPLD model: input parameter -s: salt parameters, 1.

Parameters: “ -s nsalt fsalt ”, where

- nsalt is the salt number,

- fsalt is the salt mass fraction in particle or droplet.

Default values are “ 0 1“ then the salt is NaCl and the particle has a salt fraction of 1.0. This is a solid salt particle. A NaCl particle with a more realistic dissociation constant of 1.85 is defined by “ –s 6 1 “.

Hygroscopic particle lung deposition model: 34

hpldb06_use_20081124.ppt, page 34

HPLD model: input parameter -s: salt parameters , 2. salts

Parameters: “nsalt ”, where

- nsalt=3 is the salt CoCl2.6H2O, gfa=4.45

- nsalt=6 is the salt NaCl, gfa=6.20,

- nsalt=12 is the salt ZnSO4.7H2O, gfa=2.95,

- nsalt=21 is the drug histamine dihydrochloride, gfa=3.55,

- nsalt=24 is the drug acetylcysteine, gfa=2.80,

- nsalt=26 is the drug atropine sulphate, gfa=2.24.

The growth factor gfa is defined as the ratio of the diameter of the particle in equilibrium with the air in the alveoli and with dry air.

A list of salts can be obtained from the program “tdma –t 2 “.

Hygroscopic particle lung deposition model: 35

hpldb06_use_20081124.ppt, page 35

HPLD model: input parameter -s: salt parameters, 3. non-hygroscopic

Non-hygroscopic materials are defined by the numbers 501 to 550, where the number 5xy stands for a non-hygroscopic material with a density of x,y, e. g. the material 523 has a density of 2.3 g/cm3).

A number 5xy in between the numbers 551 to 590 stand for non-hygroscopic materials with density (5xy – 550)*0.5 + 5.0, e. g. the material 575 has a density of (575 – 550) * 0.5 + 5.0 = 17.5 g/cm3 and the material 590 has a density of (590 – 550) * 0.5 + 5.0 = 25 g/cm3 .

Hygroscopic particle lung deposition model: 36

hpldb06_use_20081124.ppt, page 36

HPLD model: input parameter -s: salt parameters, 4. extension

Parameter “ –se mol i j rho sol fsalt “, where

- mol is the molecular weight (g),

- i is the dissociation constant,

- j is the number of water molecules in a salt molecule (crystal water),

- rho is the density of the salt (g/cm³),

- sol the maximum solubility of gram salt per gram water,

- fsalt is the salt mass fraction in particle or droplet.

Hygroscopic particle lung deposition model: 37

hpldb06_use_20081124.ppt, page 37

HPLD model: input parameter -t: print parameters

Parameter “ –t ntest “ defines the extend of printed data.

ntest=0, print of E, B, A, T, B+A deposition (default).

ntest=1, print same information listed in four lines.

ntest=2, print deposition (column 2) and cumulative deposition (column 3) for each generation I (i=1,2 is E, i=3,…18 is TB and i=19,…26 is A),

ntest=3, print same information with all input parameters,

ntest=4, print same information with deposition for in- and exhalation,

ntest=5, print, not used.

ntest=6, print lots of data to debug the program with program stops,

ntest=7, print even more information.

Hygroscopic particle lung deposition model: 38

hpldb06_use_20081124.ppt, page 38

HPLD model: input parameter -u: nebulizer properties

Parameter “ –u qnin cwin cswn csn csalt tempn “, where

Not yet used.

Hygroscopic particle lung deposition model: 39

hpldb06_use_20081124.ppt, page 39

HPLD model: input parameter-v: mean alveolar diameter

Parameter “ –v n_alv d_alv_dif “ where

- d_alv_dif is the mean alveolar diameter,

- d_alv_dif applied from this lung generation.

Hygroscopic particle lung deposition model: 40

hpldb06_use_20081124.ppt, page 40

HPLD model: run of the program1. smallest command

As an example deposition is calculated for 1 m monodisperse, initially dry NaCl particle, particle growth, Weibel lung structure with a lung volume of 3000 cm3 and default respiration conditions

hpldb06 –d 1 1 ; bd06

Output on the screen is: 0.04333811 0.07729741 0.54998078 0.67061630 0.62727820 ….

| | | | |where | | | | | extrathoracic, | | | | tracheo bronchial, | | | alveolar, | | total, | sum of tracheo bronchial and alveolar deposition.The rest of the numbers are not of importance here.

.

Hygroscopic particle lung deposition model: 41

hpldb06_use_20081124.ppt, page 41

HPLD model: run of the program2. different particle sizes

For Weibel lung structure, nose breathing, standard respiration conditions, dry NaCl particle with aerodynamic diameter dx and geometric standard deviation gsd the command is

hpldb06 –d dx gsd ; bd06

If the salt number is 6 (NaCl) and no growth is assumed the command is

hpldb06 –d dx gsd –s 6 1 –g 1 ; bd06

Hygroscopic particle lung deposition model: 42

hpldb06_use_20081124.ppt, page 42

HPLD model: run of the program3. respiration conditions

For Weibel lung structure, mouth breathing with a tidal volume of 1000 cm3 and equal in- and exhalation times of 4 s, the command is

hpldb06 –d 1 1 –m 1 –i 4 1000 ; bd06

Hygroscopic particle lung deposition model: 43

hpldb06_use_20081124.ppt, page 43

HPLD model: run of the program4. human lung structure of Yeh and Schum

For Yeh and Schum human lung structure, mouth breathing with a tidal volume of 1000 cm3 and equal in- and exhalation times of 4 s, and a correction of the lung volume for a tidal volume VT, the command is

hpldb06 –d 1 1 –m 1 –lg 43 1 –i 4 1000 ; bd06

Hygroscopic particle lung deposition model: 44

hpldb06_use_20081124.ppt, page 44

HPLD model: run of the program 5. rat lung structure

For Yeh and Schum rat lung structure, nose breathing with a tidal volume of 2.1 cm3 and equal in- and exhalation times of 60/102/2 s (default for the rat), and a correction of the lung volume from TLC (total lung capacity) to actual mean lung volume (0.4*TLC+0.5*VT/TLC) and a tidal volume VT, and standard deposition equations in the airways except for the nose where an equation by is used. The command is

hpldb06 –d 1 1 –ld 62 1 –e 810 ; bd06

.

Hygroscopic particle lung deposition model: 45

hpldb06_use_20081124.ppt, page 45

HPLD model: run of the program6. calculations for the rat

Using Yeh and Schum rat lung structure, particle distribution with median aerodynamic diameter of 4.5 m and a geometric standard deviation of 2.1, nose breathing, a tidal volume VT of 1.5 cm3 and equal in- and exhalation times of 60/(2*200) s, and a correction of the lung volume for a tidal volume VT, the command is

hpldb06 –d 4.5 2.1 –ld 62 1 –i 0.15 1.5 -e 810 ; bd06

Hygroscopic particle lung deposition model: 46

hpldb06_use_20081124.ppt, page 46

HPLD model: run of the program7. redirecting output to a file

Using standard unix command the output is redirected at a file with name “file_name”

hpldb06 –d 4.5 2.1 –ld 62 1 –i 0.15 1.5 -e 810 ; bd06 > “file_name”

Hygroscopic particle lung deposition model: 47

hpldb06_use_20081124.ppt, page 47

HPLD model: batch file1. run a shell script “deposition_diameter”

The UNIX (LINUX) operating systems has an number of powerful and flexible tools to automate calculations or to manipulate them.

As an example (see next page) a calculation for different particle diameters can be made using a file deposition_diameter.

This file can be run with the command

sh deposition_diameter

and prints a liste of particle diameter (“echo”) and deposition values (hpldb06) on the screen. The list can redirected to a file with name NAME by

sh deposition_diameter > NAME

Hygroscopic particle lung deposition model: 48

hpldb06_use_20081124.ppt, page 48

HPLD model: batch file2. content of “deposition_diameter”

Content of the file “deposition_diameter “:

# /home/george/results/deposition_diameter## deposition_diameter, Ferron, 2008.11.05# deposition as a function of particle diameter#echo “d=0.1 ” ; hpldb06 –d 0.1 1 –s 6 1 –l 2 1 –e 2 ; bd06echo “d=0.2 ” ; hpldb06 –d 0.2 1 –s 6 1 –l 2 1 –e 2 ; bd06echo “d=0.5 ” ; hpldb06 –d 0.5 1 –s 6 1 –l 2 1 –e 2 ; bd06echo “d= 1 ” ; hpldb06 –d 1 1 –s 6 1 –l 2 1 –e 2 ; bd06echo “d= 3 ” ; hpldb06 –d 2 1 –s 6 1 –l 2 1 –e 2 ; bd06echo “d= 5 ” ; hpldb06 –d 5 1 –s 6 1 –l 2 1 –e 2 ; bd06echo “d=10 ” ; hpldb06 –d 10 1 –s 6 1 –l 2 1 –e 2 ; bd06

Hygroscopic particle lung deposition model: 49

hpldb06_use_20081124.ppt, page 49

HPLD model: batch file3. change of “deposition_diameter”

Content of the file “deposition_diameter “ can be changed using the line editor

“sed”.

An example of a change of the file “deposition_diameter “ from aerodynamic diameter to mobility diameter is

sed ‘s/-d/-a –d/’ deposition_diameter > deposition_diameter1

Hygroscopic particle lung deposition model: 50

hpldb06_use_20081124.ppt, page 50

HPLD model: batch file4. some other batch files

Batch files have been developed to calculate the deposition of particles from 0.001 to 50 m as a geometric series with step factor of 10**0.1 or 1.258925 and 10**0.05 or 1.122012, corresponding to 10 and 20 diameters per decade and 57 and 115 diameters in total, respectively, e. g.:

man06_d10_s6_g2_m1_i4_1000_l2_e2 or man06_d10_s6_g2_m1_i4_1000_l2_e2.txt,

and

man06_d20_s6_g2_m1_i4_1000_l2_e2 or man06_d20_s6_g2_m1_i4_1000_l2_e2.txt

or

rat06_d20_s510_g1_m0_i2.5_750_ld62_e810 or rat06_d20_s510_g1_m0_i2.5_750_ld62_e810.txt.

Hygroscopic particle lung deposition model: 51

hpldb06_use_20081124.ppt, page 51

HPLD model: batch file5. Salzburg

Calculations for the human deposition paper with Werner Hofmann and Renate Winkler-Heil batch files can be found in directories

/home/george/results/salzburg

on PC 50464.

Hygroscopic particle lung deposition model: 52

hpldb06_use_20081124.ppt, page 52

HPLD model: batch file6. rat deposition paper, non-hygroscopic

Calculations for the rat deposition paper 1 batch files (can be found in directories

/home/george/results/rat_lung06/data_rat06_810

on PC 50464.

Hygroscopic particle lung deposition model: 53

hpldb06_use_20081124.ppt, page 53

HPLD model: batch file7. rat deposition paper, hygroscopic

Calculations for the rat deposition paper 2 batch files can be found in directories

/home/george/results/rat_lung06/data2_rat

on PC 50464.

Hygroscopic particle lung deposition model: 54

hpldb06_use_20081124.ppt, page 54

HPLD model: online version

The online version is available in the intranet of the Helmholtz zentrum München.

Choose IHB home page (http://www.helmholtz-muenchen.de/ihb).

Choose “For members only”.

Choose “Hygroscopic particle deposition model”.

Then with an old version of the HPLD model calculations can be made using predefined values. No rat model is available.

Warning: this version is subject to reconstruction and may differ from the program described here!

Hygroscopic particle lung deposition model: 55

hpldb06_use_20081124.ppt, page 55

HPLD model: installation of hpldb06, 1

The program hpldb06 consists of a directory hpldb06 with subdirectories hpldb06, blung06, bgrow06 and bdepos06.

The directory hpldb06/hpldb06 contains the text of the program hpldb06.c.

The directory hpldb06/blung06 contains the text of the main program blung.f, the subroutine bls10.f, bls50.f, blscor.f, blscwt.f, blslng.f, blstst.f, blsend.f, blsave.f, blsinp.f and the makefile.

The directory hpldb06/bgrow06 contains the text of the main program bgrow.f, the subroutines bgsalt.f bgscwt.f bgsdae.f, bgsend.f, bgsgrw.f, bgsin.f, bgsinp.f, bgsitr.f, bgspar.f, bgsprt.f, bgsrho.f bgssrh.f, bgsstr.f and the makefile.

The directory hpldb06/bdepos06 contains the text of the main program bdepos.f, the subroutines barcs.f, bdsdae.f, bdsdep.f, bdsexh.f, bdsgrw.f, bdsind.f, bdsinh.f, bdsinp.f, bdspar.f, bdspar0.f, bdsprt.f, bdsstp.f, bdsstr.f, bdstot.f and the makefile.

Hygroscopic particle lung deposition model: 56

hpldb06_use_20081124.ppt, page 56

HPLD model: installation of hpldb06, 2

The program hpldb06 is written in a directory hpldb06 with subdirectories hpldb06, blung06, bgrow06 and bdepos06.

The directory hpldb06 is copied to a directory on a linux PC. As a default this directoty is /home/george/prog. A directory /home/george/bin/ should exist, since here the executables are saved. Further the program /home/george/bin/c) should exists (see compilation of hpldb06). It is advised to define the directory /home/george/bin in the directories to be looked for programs (include the directory /home/george/bin in $PATH).

If an other directory as /home/george/prog is used, the path in the makefile in each subdirectory (hpldb06/blung06/makefile, hpldb06/bgrow06/makefile, hpldb06/bdepos06/makefile) have to be corrected accordingly.

Hygroscopic particle lung deposition model: 57

hpldb06_use_20081124.ppt, page 57

HPLD model: installation of hpldb06, 3compilation of hpldb06

The program hpldb06 is written in C and translated with the command

c hpldb06

where “c” is a batch file in the directory /home/george/bin

and has the command line

cc –g –o /home/george/bin/$1 $1.o –lm .

Here the parameter $1 is interpreted by the linux bash shell as the name after “c “.

Hygroscopic particle lung deposition model: 58

hpldb06_use_20081124.ppt, page 58

HPLD model: installation of hpldb06, 4compilation of blung06

The programs blung06, bgrow06, bdepos06 are written in Fortran and are compiled with their own “makefile”.

The command lines in the “makefile” for blung06 in its home directory are:

/home/george/bin/blung06: blung.o bls10.o bls50.o blscor.o blscwt.o blslng.o blstst.o blsend.o blsave.o blsinp.o

g77 *.o -o /home/george/bin/blung06

.f.o: blung.f bls10.f bls50.f blscor.f blscwt.f blslng.f blstst.f blsend.f blsave.f blsinp.f

g77 -c $<

The „makefile“ is executed in the home directory of the blung06“ „/home/george/prog/hpldb06/blung06“ using the command „make“.

Hygroscopic particle lung deposition model: 59

hpldb06_use_20081124.ppt, page 59

HPLD model: installation of hpldb06, 5compilation of bgrow06

The program “bgrow06” is in the directory “/home/george/prog/hpldb06/bgrow06”.

This directory contains the files „bgrow.f“ and the subroutines „bgsalt.f bgscwt.f bgsdae.f bgsend.f bgsgrw.f bgsin.f bgsinp.f bgsitr.f bgspar.f bgsprt.f bgsrho.f bgssrh.f bgsstr.f“.

Compilation commands for “bgrow06” are:

/home/george/bin/bgrow07: bgrow.o bgsalt.o bgscwt.o bgsdae.o bgsend.o bgsgrw.o bgsin.o bgsinp.o bgsitr.o bgspar.o bgsprt.o bgsrho.o bgssrh.o bgsstr.o

g77 *.o -o /home/george/bin/bgrow07

.f.o: bgrow.f bgsalt.f bgscwt.f bgsdae.f bgsend.f bgsgrw.f bgsin.f bgsinp.f bgsitr.f bgspar.f bgsprt.f bgsrho.f bgssrh.f bgsstr.f

g77 -c $<

Hygroscopic particle lung deposition model: 60

hpldb06_use_20081124.ppt, page 60

HPLD model: installation of hpldb06, 6 compilation of bdepos06

The program “bgrow06” is in the directory “/home/george/prog/hpldb06/bdepos06”.

This directory contains the file „bdepos.f“ and the subroutines „barcs.f bdsdae.f bdsdep.f bdsexh.f bdsgrw.f bdsind.f bdsinh.f bdsinp.f bdspar.f bdspar0.f bdsprt.f bdsstp.f bdsstr.f bdstot.f“.

Compilation commands for “bgrow06” are:

/home/george/bin/bdepos07: bdepos.o barcs.o bdsdae.o bdsdep.o bdsexh.o bdsgrw.o bdsind.o bdsinh.o bdsinp.o bdspar.o bdspar0.o bdsprt.o bdsstp.o bdsstr.o bdstot.o

g77 *.o -o /home/george/bin/bdepos07

.f.o: bdepos.f barcs.f bdsdae.f bdsdep.f bdsexh.f bdsgrw.f bdsind.f bdsinh.f bdsinp.f bdspar.f bdspar0.f bdsprt.f bdsstp.f bdsstr.f bdstot.f

g77 -c $<

Hygroscopic particle lung deposition model: 61

hpldb06_use_20081124.ppt, page 61

HPLD model: installation of hpldb06, 7 bd06

The script bd06 is in the directory /home/george/bin6 and starts the programs blung06, bgrow06 and bdepos06. It contains the commands:

/home/george/bin/blung06

/home/george/bin/bgrow06

/home/george/bin/bdepos06

Hygroscopic particle lung deposition model: 62

hpldb06_use_20081124.ppt, page 62

HPLD model: references, 1

Details of the model have been published in:

- Ferron, G. A. (1977). The size of soluble aerosol particles as a function of the humidity of the air. Application to the human respiratory tract. J. Aerosol Sci. 8:251-267.

- Ferron, G. A., Haider, B., Kreyling, W. G. (1985a). A method for the approximation of the relative humidity in the upper human airways. Bull. Math. Biol. 47:565-589.

- Ferron, G. A., Hornik, S., Kreyling, W. G., Haider, B. (1985b). Comparison of experimental and calculated data for the total and regional deposition in the human lung. J. Aerosol Sci. 16:133-143.

- Ferron, G. A., Haider, B., Kreyling, W. G. (1988a). Inhalation of salt aerosol particles I. Estimation of the temperature and relative humidity in the upper human airways. J. Aerosol Sci. 19:343-363

- Ferron, G. A., Kreyling, W. G., Haider, B. (1988b). Inhalation of salt aerosol particles II. Growth and deposition in the human respiratory tract. J. Aerosol Sci. 19:611-631

- Ferron, G. A., Oberdörster, G., Henneberg, R. (1989). Estimation of the deposition of aerosolized drugs in the human respiratory tract due to hygroscopic growth. J. Aerosol Med. 2:271-284.

- Ferron, G. A., Soderholm, S. C. (1990). Estimation of the times for evaporation of pure water droplets and the stabilization times of salt solution particles. J. Aerosol Sci. 21:415-429.

- Ferron, G. A., Soderholm, S. C. (1990). Estimation of the times for evaporation of pure water droplets and the stabilization times of salt solution particles. J. Aerosol Sci. 21:415-429.

-Ferron, G. A., Karg, E., Peter, J. E. (1993). Estimation of the deposition of polydisperse hygroscopic aerosls in the human respiratory tract. J. Aerosol Sci. JAS 24:655-670.

-Schmid, O., Karg, E, Takenaka, S., Schulz, H., Ferron, G. A. (2008).

Hygroscopic particle lung deposition model: 63

hpldb06_use_20081124.ppt, page 63

HPLD model: references, 2

Finlay, W. R. (2000). Amer. J. Respir. Crit. Care 161:91-97.

Gormley, P. G., Kennedy, M. (1949). Diffusion from a stream flowing through a cylindrical tube. Proc. Roy. Irish Acad. 52A:163-169.

Hansen, J. E., Ampaya, E. P., Bryan, G. H., Navin, J. J. (1975). J. Appl. Physiol. 38:983-989.

Olson, D. E., Dart, G. A., Filley, G. F. (1970). J. Appl. Physiol. 28: 482-494.

Schreider, J. P., Raabe., O. G. (1981). Anatomy of the nasal-pharyngeal airway of experimental animals. Anat. Rec. . 200:195-205.

Thomas, J. W. (1958). Gravity settling of particles in a horizontal tube. J. Air Pollut. Contr. Ass. 8:32-33.

Weibel, E. R. (1963), Morphometry of the human lung. Springer, Berlin.

Yeh, H. C., Schum, G. M., Duggan, M. T. (1979). Anatomic models of the tracheobronchial and pulmonary regions of the rat. Anat. Rec. 195:483-492.

Yeh, H. C., Schum, G. M. (1980). Models of human lung airway and their application to inhaled particle deposition. Bull. Math. Biol. 42:461-480.

Yeh, H. C., J. R. Harkema. (1993). Gross morphometry of airways. In Toxicology of the Lung 2nd Edition, D. E. Gardner, ed. Raven Press, New York, 55-79.

Yu, C. P., Diu, C. K., Soong, T. T. (1981). Am. Ind. Hyg. Ass. J. 42:726.

Zhang, L., Yu, C. P. (1993). Empirical equations for nasal deposition of inhaled particles in small laboratory animals and humans. Aerosol Sci. Technol. 19:51-56.

Zhang, L., Asgharian, B., . Anjilvel, S. (1997). Inertial deposition of particles in the human upper airway bifurcations. Aerosol Sci. Technol. 26:97-110.

Hygroscopic particle lung deposition model: 64

hpldb06_use_20081124.ppt, page 64

HPLD model: run of the program calculations for Patricia

For the Yeh et al. (1979) rat lung structure, particle distribution with median aerodynamic diameter of 4.40 (4.905) m and a geometric standard deviation of 2.25 (2.07), nose breathing, a tidal volume of 1.5 cm3 and equal in- and exhalation times of 60/(2*200)=0.15 s, and a correction of the lung volume for a tidal volume VT, the command is

hpldb06 –d 4.40 2.25 –ld 62 1 –i 0.15 1.5 -e 810 –t 3 ; bd06

hpldb06 –d 4.905 2.07 –ld 62 1 –i 0.15 1.5 -e 810 –t 3 ; bd06

Alternatively:

hpldb06 –d 4.40 2.25 –ld 62 1 –i 0.15 1.5 -e 810 ; bd06 cp data_depos06 “data_patricia_d4.4”

hpldb06 –d 4.905 2.07 –ld 62 1 –i 0.15 1.5 -e 810 –t 3 ; bd06 cp data_depos06 “data_patricia_d4.9”


Recommended