+ All Categories
Home > Education > IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Date post: 11-May-2015
Category:
Upload: lawrence-kok
View: 1,035 times
Download: 5 times
Share this document with a friend
Description:
IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.
Popular Tags:
47
http://lawrencekok.blogs pot.com Prepared by Lawrence Kok Tutorial on Mass Spectrometry, Isotopes Identification and Option A for SL/HL.
Transcript
Page 1: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

http://lawrencekok.blogspot.com

Prepared by Lawrence Kok

Tutorial on Mass Spectrometry, Isotopes Identification and Option A for SL/HL.

Page 2: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Relative Atomic Mass Isotopes are present

Weighted average mass- due to presence of isotopes

Relative Isotopic Mass, (Ar) of an element:•Relative isotopic mass = Average mass of one atom of element

1/12 x mass of one carbon-12• Relative isotopic mass, carbon = 12.01

RAM = 12.01Relative Abundance 98.9% 1.07%

13

Why RAM is not a whole number?

Relative Isotopic Mass:= (Mass 12C x % Abundance) + (Mass 13C x % Abundance) = (12 x 98.9/100) + (13 x 1.07/100) = 12.01

12

Page 3: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

http://www.tutorvista.com/content/science/science-i/atoms-molecules/atom.php

Relative Atomic Mass Isotopes are present

Weighted average mass- due to presence of isotopes

Relative Isotopic Mass, (Ar) of an element:•Relative isotopic mass = Average mass of one atom of element

1/12 x mass of one carbon-12• Relative isotopic mass, carbon = 12.01

Video on Isotopes

RAM = 12.01Relative Abundance 98.9% 1.07%

13

Why RAM is not a whole number?

Relative Isotopic Mass:= (Mass 12C x % Abundance) + (Mass 13C x % Abundance) = (12 x 98.9/100) + (13 x 1.07/100) = 12.01

Video on weighted average Weighted average calculation

Video on Isotopes

RAM calculation

12

Page 4: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mg - 3 Isotopes

24 Mg – (100/127.2) x 100% - 78.6%25 Mg – (12.8/127.2) x 100% - 10.0%26 Mg – (14.4/127.2) x 100% - 11.3%

Relative Isotopic Mass:= (Mass 24Mg x % Abundance) + (Mass 25Mg x % Abundance) + (Mass 26Mg x % Abundance)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Relative Abundance % Abundance

Convert relative abundance to % abundance

Relative Isotopic Mass

Page 5: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mg - 3 Isotopes

24 Mg – (100/127.2) x 100% - 78.6%25 Mg – (12.8/127.2) x 100% - 10.0%26 Mg – (14.4/127.2) x 100% - 11.3%

Relative Isotopic Mass:= (Mass 24Mg x % Abundance) + (Mass 25Mg x % Abundance) + (Mass 26Mg x % Abundance)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Relative Abundance % Abundance

Pb - 4 Isotopes

204Pb – (0.2/10) x 100% - 2%206Pb – (2.4/10) x 100% - 24%207Pb – (2.2/10) x 100% - 22%208Pb – (5.2/10) x 100% - 52% Relative Isotopic Mass

= (Mass 204Pb x % Abundance) + (Mass 206Pb x % Abundance) + (Mass 207Pb x % Abundance) + (Mass 208Pb x % Abundance)= (204 x 2/100) + (206 x 24/100) + (207 x 22/100) + (208 x 52/100) = 207.20

Convert relative abundance to % abundance

Convert relative abundance to % abundance

Relative Abundance % Abundance

Relative Isotopic Mass

Page 6: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Isotopes

Stable Isotopes Unstable Isotopes

Unstable Isotopes – emits radiation

RADIOISOTOPES

Emit radiation form unstable isotope

Page 7: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Radioactive isotopes

Half-life

Uranium 238 4.5 x 109

Carbon-14 5.7 x 103

Radium-226 1.6 x 103

Strontium-90 28 years

Iodine-131 8.1 days

Bismuth-214 19.7 minutes

Polonium-214 1.5 x 10-4

Isotopes

Stable Isotopes Unstable Isotopes

Unstable Isotopes – emits radiation

RADIOISOTOPES

Radioisotopes •Half-life – time taken for conc/amt isotope to fall to half of its original value. •Half life decay – always constant

Shorter half-life More unstable, decay fast

Long half-life More stable, decay slowly

www.sciencelearn.org.nz

Emit radiation form unstable isotope

Half-life

Page 8: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Radioactive isotopes

Half-life

Uranium 238 4.5 x 109

Carbon-14 5.7 x 103

Radium-226 1.6 x 103

Strontium-90 28 years

Iodine-131 8.1 days

Bismuth-214 19.7 minutes

Polonium-214 1.5 x 10-4

Isotopes

Stable Isotopes Unstable Isotopes

Unstable Isotopes – emits radiation

RADIOISOTOPES

Simulation isotope 12C, 13C, 14C

Radioisotopes •Half-life – time taken for conc/amt isotope to fall to half of its original value. •Half life decay – always constant

Shorter half-life More unstable, decay fast

Long half-life More stable, decay slowly

www.sciencelearn.org.nz

Emit radiation form unstable isotope

Simulation isotope 1H, 2H, 3H

Video on Half life

Simulation half life C-14/uranuim

Half-life

Page 9: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -14

Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Page 10: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -14

Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Simulation C-14 (Half life)At 100% (Starting)

Simulation C-14 (Half life)At 50% (Starting)

Click to view simulation

How Radiocarbon dating works?

Page 11: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -14

Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Video on C-14 Carbon Dating Video on C-14 Carbon Dating/Fossil Video on C-14 Half life Carbon Dating

Simulation C-14 (Half life)At 100% (Starting)

Simulation C-14 (Half life)At 50% (Starting)

Video on Radiocarbon dating

Click to view simulation

How Radiocarbon dating works?

Page 12: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Carbon – 3 Isotopes Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

Carbon -12 Carbon -14Carbon -13

Abundance – 99% (Stable) Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive)

Page 13: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Carbon – 3 Isotopes Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

ConclusionRatio C14/C12 is constant is organism alive

Ratio C14/C12 drop organism die

Uses•Age dead organic material/fossil contain Carbon element•Max age limit is 60,000 years old.

Carbon -12 Carbon -14Carbon -13

Abundance – 99% (Stable) Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

Page 14: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Carbon – 3 Isotopes Radiocarbon/carbon dating

• Half life C-14 = 5730 years• Beta (β/electron ) decay

ConclusionRatio C14/C12 is constant is organism alive

Ratio C14/C12 drop organism die

Uses•Age dead organic material/fossil contain Carbon element•Max age limit is 60,000 years old.

Carbon -12 Carbon -14Carbon -13

Abundance – 99% (Stable) Abundance – 1% (Stable) Abundance – trace amt (Unstable , radioactive)

How is form?• C-14 produce in stratosphere when….. neutron hit a nitrogen atom to form C-14•C-14 to N-14 by converting neutron proton (proton stay in nucleus), electron emit as β radiation • emit as β ray.

(proton in nucleus – increase proton number)

emit as β ray.

•Ratio C14/C12- constant if alive – TAKE in C14 (C12 constant)•Ratio C14/C12- drop if dead - NOT taking C14. (C12 constant)

How it is form?

Page 15: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Uses mass spectrometer

Relative atomic mass of an element

Relative Molecular mass of a molecule

CO2

Page 16: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Uses mass spectrometer

Presence of isotopes and its abundance

Relative atomic mass of an element

Relative Molecular mass of a molecule

CO2

Page 17: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Uses mass spectrometer

Presence of isotopes and its abundance

Relative atomic mass of an element

Relative Molecular mass of a molecule

Structure of organic compound

Distinguish between structural isomers

CH3CH2CH2OH OH |CH3CHCH3

CH3 |CH3C-CH3

| CH3

CO2

structural formula

Organic structure determination

Page 18: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Parts of Mass Spectrometer

Sample injection

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Page 19: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Parts of Mass Spectrometer

Sample injection

Vaporization Chamber • Sample heat to vapour state

Ionization Chamber • Molecule bombard with electrons form positive ions

Accelerator Chamber• M+ ions accelerated by Electric field

Deflector • M+ ions deflected by magnetic field

Detector • Convert abundance of M+

ions to electrical current.• M+ ions neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

2

1

4

5

Page 20: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Parts of Mass Spectrometer

Sample injection

Vaporization Chamber • Sample heat to vapour state

Ionization Chamber • Molecule bombard with electrons form positive ions

Accelerator Chamber• M+ ions accelerated by Electric field

Deflector • M+ ions deflected by magnetic field

Detector • Convert abundance of M+

ions to electrical current.• M+ ions neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Sample X bombarded by electron • Form positive M+ ion• Accelerated (Electric Field)• Deflected (Magnetic Field) and Detected X + e- → X+ + 2e-

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

2

1

3 4

Click here notes from chemguide Detail notes from chem msu

5

Page 21: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Parts of Mass Spectrometer

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Click here for simulation

Page 22: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Parts of Mass Spectrometer

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Click here for simulation VaporizationInjection/ vaporization of sampleliquid state gaseous

Ionization•Form radical cations, M+

Acceleration• M+ ions accelerated by Electric field

Deflection• M+ ion deflected by magnetic field

2

3 4

15 Detector

• Convert abundance of M+ ions to electrical current.• M+ ion neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Page 23: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mass Spectrometer

Parts of Mass Spectrometer

Vaporization

Ionization

Accelerator

Deflector

Detector

321 54

Click here for simulation VaporizationInjection/ vaporization of sampleliquid state gaseous

Ionization•Form radical cations, M+

Acceleration• M+ ions accelerated by Electric field

Deflection• M+ ion deflected by magnetic field

Deflection depend: •mass/charge (m/z) ratio: (m/z) ratio HIGH↑ - Deflection LOW↓

Deflection depend:• mass/charge (m/z) ratio: (m/z) ratio LOW↓- Deflection HIGH ↑

37CI+

35CI+

35CI2+

2

3 4

15 Detector

• Convert abundance of M+ ions to electrical current.• M+ ion neutralize by electrons (more e needed - higher current – higher intensity of peak)• Intensity of peak show -relative abundance of ions

Page 24: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Excellent Online Spectra Database. Click here to view

Mass Spectra Online Database

1 Search methane molecule, CH4

Mass/charge m/z

Relative abundance

Isotopic peak M+ + 1

Molecular ion peak, M+

2 Fragmentation pattern CH4

3 Mass Spectrum CH4

Page 25: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Excellent Online Spectra Database. Click here to view

Mass Spectra Online Database

1 Search methane molecule, CH4

Video on mass spectrometer

Mass/charge m/z

Relative abundance

Isotopic peak M+ + 1

Molecular ion peak, M+

2 Fragmentation pattern CH4

3 Mass Spectrum CH4

Video Ionization/fragmentation Video how MS works Video Mass spectrometer Video how MS works

Page 26: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mg - 3 Isotopes

26 Mg - 11.3% - m/z highest – deflect LEAST25 Mg - 10.0% 24 Mg – 78.6% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (24Mg x % Ab) + (25Mg x % Ab) + (26Mg x % Ab)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOST Deflect LEAST

Page 27: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Mg - 3 Isotopes

26 Mg - 11.3% - m/z highest – deflect LEAST25 Mg - 10.0% 24 Mg – 78.6% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (24Mg x % Ab) + (25Mg x % Ab) + (26Mg x % Ab)= (24 x 78.6/100) + (25 x 10.0/100) + (26 x 11.3/100) = 24.30

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOST Deflect LEAST

Pb - 4 Isotopes

208Pb – 52% - m/z highest – deflect LEAST207Pb - 22% 206Pb - 24% 204Pb – 2% - m/z lowest – deflect MOST

Relative Isotopic Mass= (204Pb x % Ab) + (206Pb x % Ab) + (207Pb x % Ab) + (208Pb x % Ab)= (204 x 2/100) + (206 x 24/100) + (207 x 22/100) + (208 x 52/100) = 207.20

Deflect MOST Deflect LEAST

Page 28: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CI - 2 Isotopes

37 CI – 24.5% - m/z highest – deflect LEAST 35 CI – 75.5% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (35CI x % Ab) + (37CI x % Ab)= (35 x 75.5/100) + (37 x 24.5/100) = 35.5

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

35CI 37CI

35CI 37CI

Page 29: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CI - 2 Isotopes

37 CI – 24.5% - m/z highest – deflect LEAST 35 CI – 75.5% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (35CI x % Ab) + (37CI x % Ab)= (35 x 75.5/100) + (37 x 24.5/100) = 35.5

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

Br - 2 Isotopes

81Br – 49.3% - m/z highest – deflect LEAST79Br – 50.6% - m/z lowest – deflect MOST

Deflect MOSTDeflect LEAST

35CI 37CI

35CI 37CI

Relative Isotopic Mass:= (79Br x % Ab) + (81Br x % Ab)= (79 x 50.6/100) + (81 x 49.3/100) = 79.9

79Br 81Br

79Br 81Br

Page 30: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

H - 3 Isotopes

3H – trace amt 2H – 0.015% - m/z highest – deflect LEAST 1H – 99.9% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (1H x % Ab) + (2H x % Ab)= (1 x 99.9/100) + (2 x 0.015/100) = 1.007

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

1H 2H

1H 2H

3H

Page 31: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

H - 3 Isotopes

3H – trace amt 2H – 0.015% - m/z highest – deflect LEAST 1H – 99.9% - m/z lowest – deflect MOST

Relative Isotopic Mass:= (1H x % Ab) + (2H x % Ab)= (1 x 99.9/100) + (2 x 0.015/100) = 1.007

Using Mass spectrometry to determine Relative Isotopic Mass

Deflect MOSTDeflect LEAST

C - 3 Isotopes

14C- trace amt13C – 1.1% - m/z highest – deflect LEAST12C – 98.9% - m/z lowest – deflect MOST

Deflect MOSTDeflect LEAST

1H 2H

1H 2H

Relative Isotopic Mass:= (12C x % Ab) + (813Cx % Ab)= (12 x 98.9/100) + (13 x 1.1/100) = 12.01

12C 13C

12C 13C

3H

14C

Page 32: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Ionization and Fragmentation Process- CH3CH2CH2CH3

Ionization Process - CH3CH2CH2CH3

• Bombarded by electron form cation• Molecular ion, M+ = 58• (CH3CH2CH2CH3)

+ = 58

H H | |CH3CH2CH2 C:H + e → CH3CH2CH2

C+.H + 2e | | H H

Ionization M+, m/z = 58

CH3CH2CH2CH3 + e → CH3CH2CH2CH3

+ + 2e

m/z = 58

Page 33: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Ionization forming M+

CH3CH2CH2 : CH3 + e → CH3CH2CH2+.CH3 + 2e

• Fragmentation of M+ producing 43CH3CH2CH2

+·CH3 → CH3CH2CH2+ + ·CH3

• Fragmentation of M+ producing 15CH3CH2CH2

+·CH3 → CH3CH2CH2· + +CH3

Ionization and Fragmentation Process- CH3CH2CH2CH3

Ionization Process - CH3CH2CH2CH3

• Bombarded by electron form cation• Molecular ion, M+ = 58• (CH3CH2CH2CH3)

+ = 58

Fragmentation Process CH3CH2CH2CH3 • Molecular ion, M+ undergo fragmentation • Cation and Radical form• Cation - Detected• Radical –Not detected (No charged)

H H | |CH3CH2CH2 C:H + e → CH3CH2CH2

C+.H + 2e | | H H

Ionization forming M+

CH3CH2:CH2CH3 + e → CH3CH2+·CH2CH3

+ 2e

• Fragmentation of M+ producing 29CH3CH2

+·CH2CH3 → CH3CH2+

+ .CH2CH3

Ionization M+, m/z = 58

CH3CH2CH2CH3 + e → CH3CH2CH2CH3

+ + 2e

Ionization and Fragmentation of M+

• Form - m/z = 58, 43 and 15

m/z = 58

m/z = 43

m/z = 15

Ionization and Fragmentation of M+

• Form- m/z = 58 and 29

m/z = 58

m/z = 58

m/z = 29

Page 34: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Ionization forming M+

CH3CH2CH2 : CH3 + e → CH3CH2CH2+.CH3 + 2e

• Fragmentation of M+ producing 43CH3CH2CH2

+·CH3 → CH3CH2CH2+ + ·CH3

• Fragmentation of M+ producing 15CH3CH2CH2

+·CH3 → CH3CH2CH2· + +CH3

Ionization and Fragmentation Process- CH3CH2CH2CH3

Ionization Process - CH3CH2CH2CH3

• Bombarded by electron form cation• Molecular ion, M+ = 58• (CH3CH2CH2CH3)

+ = 58

Fragmentation Process CH3CH2CH2CH3 • Molecular ion, M+ undergo fragmentation • Cation and Radical form• Cation - Detected• Radical –Not detected (No charged)

H H | |CH3CH2CH2 C:H + e → CH3CH2CH2

C+.H + 2e | | H H

Ionization forming M+

CH3CH2:CH2CH3 + e → CH3CH2+·CH2CH3

+ 2e

• Fragmentation of M+ producing 29CH3CH2

+·CH2CH3 → CH3CH2+

+ .CH2CH3

Ionization M+, m/z = 58

CH3CH2CH2CH3 + e → CH3CH2CH2CH3

+ + 2e

Ionization and Fragmentation of M+

• Form - m/z = 58, 43 and 15

m/z = 58

m/z = 43

m/z = 15

Ionization and Fragmentation of M+

• Form- m/z = 58 and 29

m/z = 58

m/z = 58

m/z = 29

Ionization and Fragmentation

Unpair electronPositively charged

Will MOVE (ACCELARATED) NOT move

Page 35: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CH3CH2CH2CH3

CH3CH2CH2CH3+- 58 - m/z highest –deflect

LEAST CH3CH2CH2

+ – 43 CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2CH3

Deflect MOST Deflect LEAST

CH3CH2CH2CH3+

CH3CH2CH2+

Fragmentation

ionization

CH3+

CH3+

CH3CH2+

CH3CH2CH2CH3

+

Page 36: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CH3CH2CH2CH3

CH3CH2CH2CH3+- 58 - m/z highest –deflect

LEAST CH3CH2CH2

+ – 43 CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2CH3

Deflect MOST Deflect LEAST

CH3CH2CH2CH3+

CH3CH2CH2+

Fragmentation

ionization

CH3+

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of CH3CH2CH2CH3 CH3CH2CH2CH3 + e → CH3CH2CH2CH

3+ + 2e → 58

or CH3CH2:CH2CH3 + e → CH3CH2

+·CH2CH3 + 2e → 58

Mass spectrum CH3CH2CH2CH3 IonizationCH3CH2CH2CH3

CH3CH2+

CH3CH2CH2CH3

+

Fragmentation of M+

CH3CH2CH2+·CH3 → CH3CH2CH2

+ - 43

CH3CH2+·CH2CH3 → CH3CH2

+ – 29 CH3CH2CH2

+·CH3 → +CH3 - 15

CH3CH2CH2CH3+- 58 - m/z highest –deflect

LEAST CH3CH2CH2

+ – 43 CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Page 37: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CH3CH2CH2OH

CH3CH2CH2OH+- 60 - m/z highest –deflect LEAST CH2CH2OH+ – 45CH2OH+ - 31CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2OH

Deflect MOST Deflect LEAST

CH3CH2CH2OH+

Fragmentation

ionization

CH3 +

CH3+

CH3CH2+

CH3CH2CH2OH+

CH2CH2OH+ CH2OH+

15 60

Page 38: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CH3CH2CH2OH

CH3CH2CH2OH+- 60 - m/z highest –deflect LEAST CH2CH2OH+ – 45CH2OH+ - 31CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for CH3CH2CH2OH

Deflect MOST Deflect LEAST

CH3CH2CH2OH+

Fragmentation

ionization

CH3 +

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of CH3CH2CH2OHCH3CH2CH2OH + e → CH3CH2CH2OH+ + 2e → 60 orCH3CH2CH2OH + e → CH3CH2

+. CH2OH + 2e → 60

Mass spectrum CH3CH2CH2CH3 IonizationCH3CH2CH2OH

CH3CH2+

CH3CH2CH2OH+

Fragmentation of M+

CH3+.CH2CH2OH→ +CH2CH2OH

- 45

CH3CH2+·CH2OH→ +CH2OH

– 31 CH3CH2

+·CH2OH→ CH3CH2+

– 29

CH3+.CH2CH2OH→ +CH3

- 15

CH2CH2OH+ CH2OH+

15 60

CH3CH2CH2OH+- 60 - m/z highest – deflect LEAST CH2CH2OH+ – 45CH2OH+ - 31CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

15 60

Page 39: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CH3CH(CH3)CH2CH3+- 72 - m/z highest –

deflect LEAST CH3CH(CH3)CH2

+ – 57CH3CH(CH3)+ - 43CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern CH3CH(CH3)CH2CH3

Deflect MOST Deflect LEAST

CH3CH(CH3)CH2CH3+

Fragmentation

Ionization

CH3+

CH3+

CH3CH(CH3)+

15

CH3CH(CH3)CH2+

CH3CH(CH3)CH2CH3+

CH3CH2+

CH3CH(CH3)CH2CH3+

Page 40: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CH3CH(CH3)CH2CH3+- 72 - m/z highest –

deflect LEAST CH3CH(CH3)CH2

+ – 57CH3CH(CH3)+ - 43CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern CH3CH(CH3)CH2CH3

Deflect MOST Deflect LEAST

CH3CH(CH3)CH2CH3+

Fragmentation

Ionization

CH3+

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of CH3CH(CH3)CH2CH3 CH3CH(CH3)CH2CH3 + e → CH3CH(CH3)CH2CH3

+ + 2e → 72 orCH3CH(CH3)CH2CH3 + e → CH3CH(CH3)CH2

+.CH3+ 2e → 72 orCH3CH(CH3)CH2CH3 + e → CH3CH(CH3)+.CH2CH3 + 2e → 72

Mass spectrum CH3CH(CH3)CH2CH3 IonizationCH3CH(CH3)CH2CH3

Fragmentation of M+

CH3CH(CH3)CH2+ -

57CH3CH(CH3)+ – 43 CH3CH2

+

– 29CH3

+ - 15

CH3CH(CH3)+

15

CH3CH(CH3)CH2+

CH3CH(CH3)CH2CH3+

CH3CH2+

CH3CH(CH3)CH2CH3+

CH3CH(CH3)CH2CH3+- 72 - m/z highest –

deflect LEAST CH3CH(CH3)CH2

+ – 57CH3CH(CH3)+ - 43CH3CH2

+ – 29 CH3

+ –15 - m/z lowest– deflect MOST

Page 41: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

(C(CH3)4)+ - 72 - m/z highest –

deflect LEAST (C(CH3)3)

+ – 57(C(CH3)2)

+ - 42(C(CH3))

+ – 27CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern C(CH3)4

Deflect MOST Deflect LEAST

(C(CH3)4)+

Fragmentation

Ionization

CH3+

CH3+

(C(CH3)3)+

(C(CH3)4)

(C(CH3)2)+

(C(CH3))+

(C(CH3)4)+

Page 42: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

(C(CH3)4)+ - 72 - m/z highest –

deflect LEAST (C(CH3)3)

+ – 57(C(CH3)2)

+ - 42(C(CH3))

+ – 27CH3

+ –15 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern C(CH3)4

Deflect MOST Deflect LEAST

(C(CH3)4)+

Fragmentation

Ionization

CH3+

CH3+

Ionization and Fragmentation Process

Fragmentation

Ionization of C(CH3)4

C(CH3)4 + e → (C(CH3)4)+ + 2e

→ 72

Mass spectrum C(CH3)4 IonizationC(CH3)4

(C(CH3)3)+

(C(CH3)4)

(C(CH3)2)+

(C(CH3))+

(C(CH3)4)+ - 72 - m/z highest –

deflect LEAST (C(CH3)3)

+ – 57(C(CH3)2)

+ - 42(C(CH3))

+ – 27CH3

+ –15 - m/z lowest– deflect MOST

Fragmentation of M+

(C(CH3)3)+ – 57

(C(CH3)2)+ - 42

(C(CH3))+ – 27

CH3+ –15

(C(CH3)4)+

Page 43: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CI2molecule

37CI-37CI - 74 - m/z highest – deflect LEAST 35CI-37CI –72 35CI-35CI –70 37CI –37 35CI –35 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for molecule CI2

Deflect MOST Deflect LEAST

35CI-35CI+

35CI+

35CI-37CI+

37CI-37CI+

Fragmentation

form atoms

Ionization

37CI+

35CI+

37CI-37CI+

Page 44: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

CI2molecule

37CI-37CI - 74 - m/z highest – deflect LEAST 35CI-37CI –72 35CI-35CI –70 37CI –37 35CI –35 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for molecule CI2

Deflect MOST Deflect LEAST

35CI-35CI+

35CI+

35CI-37CI+

37CI-37CI+

Fragmentation

form atoms

Ionization

37CI+

35CI+

37CI-37CI+

Ionization and Fragmentation Process

Fragmentation

Fragmentation of CI2+ into CI+

CI+.CI → [35CI+ + 35CI·] + 2e –35

CI+.CI → [37CI+ + 37CI·] + 2e –37

Ionization of CI2 to CI2+

CI:CI + e- →[35CI+.35CI] + 2e – 70CI:CI + e- →[35CI+.37CI] + 2e – 72CI:CI + e- →[37CI+.37CI] + 2e – 74

m/z = 37

m/z = 35

Ratio (35CI : 37CI) - 3:1

Mass spectrum CI2 / CI atoms

Ratio (35CI35CI: 35CI37CI: 37CI37CI) - 9:6:1

IonizationCI2 molecule

37CI-37CI - 74 - m/z highest – deflect LEAST 35CI-37CI –72 35CI-35CI –70 37CI –37 35CI –35 - m/z lowest– deflect MOST

Page 45: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Br2molecule

81Br-81Br - 162 - m/z highest – deflect LEAST 79Br-81Br –160 79Br-79Br –158 81Br –81 79Br –79 - m/z lowest– deflect MOST

Deflect MOST Deflect LEAST

79Br-79Br+

79Br+

79Br-81Br+

81Br-81Br+

Fragmentation

form atoms

Ionization

81Br+

79Br+

81Br-81Br+

Mass spectrometry - Ionization/ Fragmentation pattern for molecule Br2

Page 46: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Br2molecule

81Br-81Br - 162 - m/z highest – deflect LEAST 79Br-81Br –160 79Br-79Br –158 81Br –81 79Br –79 - m/z lowest– deflect MOST

Deflect MOST Deflect LEAST

79Br-79Br+

79Br+

79Br-81Br+

81Br-81Br+

Fragmentation

form atoms

Ionization

81Br+

79Br+

81Br-81Br+

Ionization and Fragmentation Process

Fragmentation

Fragmentation of Br2+

to Br+

Br+.Br → [81Br+ + 81Br·] – 81

Br+.Br →[79Br+ + 79Br·] – 79

Ionization of Br2 to Br2

+

Br:Br + e- →[81Br+.81Br] + 2e – 162Br:Br + e- →[79Br+.81Br] + 2e – 160Br:Br + e- →[79Br+.79Br] + 2e– 158

m/z = 79

m/z = 81

Ratio (79Br : 81Br) - 1:1

Mass spectrum Br2 / Br atoms

Ratio (79Br79Br: 79Br81Br: 81Br81Br) – 1:2:1

IonizationBr2 molecule

81Br-81Br - 162 - m/z highest – deflect LEAST 79Br-81Br –160 79Br-79Br –158 81Br – 81 79Br – 79 - m/z lowest– deflect MOST

Mass spectrometry - Ionization/ Fragmentation pattern for molecule Br2

Page 47: IB Chemistry on Mass Spectrometry and Isotopes for Option A SL/HL.

Acknowledgements

Thanks to source of pictures and video used in this presentationhttp://serc.carleton.edu/research_education/geochemsheets/techniques/gassourcemassspec.htmlhttp://www.mhhe.com/physsci/chemistry/carey/student/olc/ch13ms.htmlhttp://science.howstuffworks.com/mass-spectrometry3.htm

Thanks to Creative Commons for excellent contribution on licenseshttp://creativecommons.org/licenses/

Prepared by Lawrence Kok

Check out more video tutorials from my site and hope you enjoy this tutorialhttp://lawrencekok.blogspot.com


Recommended