+ All Categories
Home > Documents > ICON The new global nonhydrostatic model of DWD and MPI-M

ICON The new global nonhydrostatic model of DWD and MPI-M

Date post: 24-Feb-2016
Category:
Upload: jeneil
View: 114 times
Download: 0 times
Share this document with a friend
Description:
Daniel Reinert 1 , Günther Zängl 1 , and the ICON-team 1,2 1 Deutscher Wetterdienst / 2 Max-Planck-Institute for Meteorology 13 th EMS Annual Meeting 09 – 13 September 2013, Reading, United Kingdom. ICON The new global nonhydrostatic model of DWD and MPI-M. - PowerPoint PPT Presentation
Popular Tags:
20
ICON The new global nonhydrostatic model of DWD and MPI-M Daniel Reinert 1 , Günther Zängl 1 , and the ICON-team 1,2 1 Deutscher Wetterdienst / 2 Max-Planck-Institute for Meteorology 13 th EMS Annual Meeting 09 – 13 September 2013, Reading, United Kingdom
Transcript
Page 1: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

ICON The new global nonhydrostatic model of DWD and

MPI-M

Daniel Reinert1, Günther Zängl1, and the ICON-team1,2

1Deutscher Wetterdienst / 2Max-Planck-Institute for Meteorology

13th EMS Annual Meeting09 – 13 September 2013, Reading, United Kingdom

Page 2: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

ICON – ICOsahedral Nonhydrostatic Model

Daniel Reinert – 12.09.2013 2

Joint development project of DWD and Max-Planck-Institute for Meteorology for building a next-generation global NWP and climate modelling system

Atmosphere and ocean model

Outline

I. Project goalsII. Horizontal grid structure and accompanying problemsIII. ICON NWP physics suiteIV. Selected resultsV. Roadmap and Summary

DWDMPI

Page 3: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

I. Primary development goals

Daniel Reinert – 12.09.2013 3

At DWD: • Replace current global model GME • Replace regional model COSMO-EU by a high-

resolution window over Europe.

At MPI-M: • Use ICON as dynamical core of an Earth System

Model (MPI-ESM2) Horizontal grid with nest over Europe

Improved conservation properties (at least mass) and consistent tracer transport (tracer air-mass consistency)

Applicability on a wide range of scales from 100 km to 1 km

Scalability and efficiency on massively parallel computer architectures with O(104 +) cores

Local refinement/nesting capability

Page 4: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

II. ICON’s unstructured grid

Primal cells: triangles uses icosahedron for macro triangulation

C-type staggering:

local subdomains (“nests”)

4Daniel Reinert – 12.09.2013

local domain(s)

global domain

velocity at edge midpoints mass at cell circumcenter

Triangular C-Grid

Page 5: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Equations (dry adiabatic) and solver

Fully compressible nonhydrostatic vector invariant form, shallow atm.

5Daniel Reinert – 12.09.2013

Solver: Finite volume/finite difference discretization (mostly 2nd order) Two-time level predictor-corrector time integration Vertically implicit (vertical sound-wave propagation) Fully explicit time integration in the horizontal (at sound wave time step; not split

explicit!) Mass conserving

Page 6: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Checkerboard noise on triangular C-Grid

Main problem with triangular C-grid: suffers from spurious computational mode (e.g. Danilov (2010)), triggered by the discretized divergence operator (Wan (2013))

6Daniel Reinert – 12.09.2013

Divergence operator: applies the Gauss theorem

Truncation error (Wan (2013)):

Only 1st order accurate on triangular C-grid Error changes sign from upward- to downward

pointing triangle checkerboard

Example for synthetic velocity field (Wan, 2013)

Page 7: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Controlling the checkerboard noise

Daniel Reinert – 12.09.2013 7

Goal: Eliminate 1st order error Basic idea: Divergence averaging

I: Compute standard 1st order divII: Compute divergence estimate

based on immediate neighbors (2nd order bilinear interpolation)

III Averaging:

2nd order accurate for isosceles triangles

Page 8: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Example: Baroclinic wave

8Daniel Reinert – 12.09.2013

Jablonowski-Williamson (2006) baroclinic wave test case

PS T

Page 9: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Example: Baroclinic wave

9Daniel Reinert – 12.09.2013

Standard divergence operator Divergence averaging

Jablonowski-Williamson (2006) baroclinic wave test case

divdiv

“checkerboard” noise

PS T

Page 10: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Daniel Reinert – 12.09.2013 10

III. ICON NWP-physics

Process Author Scheme Origin

Radiation Mlawer et al. (1997)Barker et al. (2002) RRTM ECHAM6

Non-orographic gravity wave drag

Scinocca (2003)Orr, Bechthold et al. (2010) wave dissipation at critical level IFS

Cloud cover Köhler et al. (new development) diagnostic (later prognostic) PDF ICON

Microphysics Doms and Schättler (2004)Seifert (2010)

prognostic: water vapour, cloud water, cloud ice, rain, snow COSMO

Saturation adjustment Blahak (2010) isochoric adjustment COSMO

Convection Tiedtke (1989)Bechthold et al. (2008) mass-flux shallow and deep IFS

Sub-grid scale orographic drag Lott and Miller (1997) blocking, GWD IFS

Turbulent transfer / diffusion Raschendorfer (2001) prognostic TKE COSMO

Soil/surfaceHeise and Schrodin (2002)Mironov and Ritter (2004)Mironov (2008)

TERRA (tiled + multi-layer snow)SEAICE FLAKE(fresh water lake scheme)

GME/COSMO

Page 11: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

every 30min

Reduced grid for radiation

Daniel Reinert – 12.09.2013 11

upscaling

downscaling

Rad

iativ

e tr

ansf

er c

ompu

tatio

ns

Hierarchical structure of the triangular mesh is very attractive for calculating physical processes (e.g. radiative transfer) with different spatial resolution compared to dynamics.

Radiation step

Empi

rical

co

rrec

tions

Page 12: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Proof of concept

Daniel Reinert – 12.09.2013 12

net surface shortwave flux (reduced – full grid) average over 30 x 48h forecast runs in June 2012

Reduced radiation grid currently generates positive bias in

Avg: 1.57

Page 13: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Flat-MPI performance

13Daniel Reinert – 12.09.2013

Test setup: ICON RAPS 2.0, IBM Power 720/10/5 km, 8h forecast, reduced radiation grid

(S. Körner, DWD, 03/2013)

Recall goal: scalability up to O(104+) cores

40961024 1024 4096

time

(s)

MPI tasks

Page 14: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

IV. Selected results of NWP test suite

Real-case 7-day forecasts with interpolated IFS analysis data WMO standard verification against IFS analysis on 1.5° lat/lon grid. Comparison against GME reference experiment with interpolated IFS analysis data.

Daniel Reinert – 12.09.2013 14

Basic requirement for operational use of ICONICON must outperform GME in terms of forecast quality/scores

ICON40L90 GME40L60

hor. resolution 40 km 40 km

vertical levels 90 60

top height 75 km 36 km

analysis data IFS IFS

Page 15: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Verification: Surface Pressure, January 2012

Daniel Reinert – 12.09.2013 15

ICONGMEagainst IFS

Region: Northern hemisphere (NH)

SH: 21%

Verification: G. Zängl, U. Damrath, 08/2013 (DWD)

Page 16: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Verification: Geopot 500 hPa, January 2012

Daniel Reinert – 12.09.2013 16

ICONGMEagainst IFS

Region: Northern hemisphere (NH)

SH: 9.4%

Verification: G. Zängl, U. Damrath, 08/2013 (DWD)

Page 17: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Verification: Rh 700 hPa, January 2012

Daniel Reinert – 12.09.2013 17

ICONGMEagainst IFS

Region: Tropics (Tr)

Verification: G. Zängl, U. Damrath, 08/2013 (DWD)

ICON shows strong positive moisture bias in the tropics

Page 18: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

V. Roadmap towards operational application

18Daniel Reinert – 12.09.2013

Page 19: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Summary

Verification results are mostly exceeding those of GME, but there are still some weaknesses/biases e.g. moisture field

Technical parts scale on massively parallel systems (I/O still needs performance improvements)

Optimization of forecast quality still ongoing

Tests with own 3D-Var data assimilation have started recently.

19Daniel Reinert – 12.09.2013

ICON is entering the home stretch for becoming operational

Page 20: ICON  The new global  nonhydrostatic  model of DWD and MPI-M

Thank you for your attention !!


Recommended