+ All Categories
Home > Documents > Identification of Space Shuttle Main Engine Dynamics · THE SPACE SHUTTLE MAIN ENGINE ... flows...

Identification of Space Shuttle Main Engine Dynamics · THE SPACE SHUTTLE MAIN ENGINE ... flows...

Date post: 18-Apr-2018
Category:
Upload: vannhi
View: 219 times
Download: 1 times
Share this document with a friend
15
0 NASA Technical Memorandum 10 1982 - Identification of Space Shuttle Main Engine Dynamics Ahmet Duyar National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Ten-Huei Guo Sverdrup Technology, Inc. NASA Lewis Research Center Group Cleveland, Ohio and Walter C. Merrill National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio Prepared for the 1989 American Control Conference I QH -4 49 Y nw c cosponsored by the AIAA, ASME, IEEE, AIChE, AISE, ISA, and SCS Pittsburgh, Pennsylvania, June 21-23, 1989 . https://ntrs.nasa.gov/search.jsp?R=19890010828 2018-06-05T13:49:23+00:00Z
Transcript

0

NASA Technical Memorandum 10 1982

- Identification of Space Shuttle Main Engine Dynamics

Ahmet Duyar National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

Ten-Huei Guo Sverdrup Technology, Inc. NASA Lewis Research Center Group Cleveland, Ohio

and

Walter C. Merrill National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio

Prepared for the 1989 American Control Conference

I

Q H - 4 49 Y n w

c cosponsored by the AIAA, ASME, IEEE, AIChE, AISE, ISA, and SCS Pittsburgh, Pennsylvania, June 21-23, 1989

.

https://ntrs.nasa.gov/search.jsp?R=19890010828 2018-06-05T13:49:23+00:00Z

IDENTIFICATION OF SPACE SHUTTLE MAIN ENGINE DYNAMICS

ORIGINAL PAGE IS OF POOR QUALKY

ABSTRACT

Ahmet Duyar ' N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n

L e w i s Research C e n t e r C l e v e l a n d , O h i o 44135

Ten-Huei Guo S v e r d r u p Techno logy I n c .

NASA L e w i s Research C e n t e r Group C l e v e l a n d , O h i o 44135

W a l t e r C. M e r r i l l N a t i o n a l A e r o n a u t i c s and Space A d m i n i s t r a t i o n

L e w i s Research C e n t e r C l e v e l a n d , O h i o 44135

0 Sys tem i d e n t i f i c a t i o n t e c h n i q u e s a r e u s e d t o g r e p r e s e n t t h e dynamic b e h a v i o r o f t h e Space Shu t - A t l e M a i n E n g i n e . The t r a n s f e r f u n c t i o n m a t r i c e s

o f t h e l i n e a r i z e d m o d e l s o f b o t h t h e c l o s e d l o o p and t h e open l o o p s y s t e m a r e o b t a i n e d b y u s i n g t h e r e c u r s i v e maximum l i k e l i h o o d me thod .

a

A,B,C

a

b

D

e

f

H . H i j

MR

n

N

P

S

T

t

t C

u . x . y

Z

-

a t A t

NOMENCLATURE

s t a t e space m a t r i c e s

d e n o m i n a t o r p o l y n o m i a l o f t h e t r a n s f e r f u n c t i o n m a t r i x

n u m e r a t o r p o l y n o m i a l o f t h e t r a n s f e r f u n c t i o n m a t r i x

s i g n a l d u r a t i o n , sec

e q u a t i o n e r r o r

f r e q u e n c y , r a d / s e c

s y s t e m t r a n s f e r f u n c t i o n m a t r i x and i t s i , j t h e l e m e n t

o x y g e n t o f u e l m i x t u r e r a t i o o f t h e m a i n c o m b u s t i o n chamber

d i s c r e t e t i m e i n t e g e r

number o f samp les

p r e s s u r e , p s i

speed , r p m

t e m p e r a t u r e , O R

t i m e , sec

c l o c k t i m e , sec

i n p u t . s t a t e and o u t p u t v e c t o r s

Z t r a n s f o r m v a r i a b l e

S umme I' Fac u M e c h a n i c a l Eng a n t i c U n i v e r s i

t y F e l l o w i n 1988; p r e s e n t l y n e e r i n g D e p t . , F l o r i d a y , Boca R a t a n , F l o r i d a 33432.

Greek Symbols

6u d e v i a t i o n o f i n p u t f rom n o m i n a l

6x d e v i a t i o n s o f s t a t e from n o m i n a l

6 Y d e v i a t i o n s o f o u t p u t f r o m n o m i n a l

e v a l v e a c t u a t o r o u t p u t r o t a r y m o t i o n ,

S u b s c r i p t s

d i m e n s i o n l e s s

ccv C

FPOV

HPFT

HPOT

max

m i n

MFV

MOV

OPOV

R

c o o l a n t c o n t r o l v

chamber

f u e l p r e b u r n e r ox

h i g h p r e s s u r e f u e

1 ve

d i z e r v a

t u r b i n e

v e

h i g h p r e s s u r e o x i d i z e r t u r b i n e

maximum

min imum

m a i n f u e l v a l v e

m a i n o x i d i z e r v a l v e

o x i d i z e r p r e b u r n e r o x i d i z e r v a l v e

r e q u e s t

INTRODUCTION

A c c u r a t e r e p r e s e n t a t i o n o f t h e dynamic b e h a v i o r o f t h e Space S h u t t l e M a i n E n g i n e (SSME) i s r e q u i r e d f o r a v a r i e t y o f d i a g n o s t i c and con- t r o l d e s i g n a n d e v a l u a t i o n p u r p o s e s . A c o m p l e t e , n o n l i n e a r dynamic s i m u l a t i o n has been d e v e l o p e d ( R o c k e t d y n e D i v i s i o n o f R o c k w e l l I n t e r n a t i o n a l C o r p o r a t i o n , 1 9 8 1 ) . However , i t s s i z e and com- p l e x i t y make i t v e r y d i f f i c u l t t o use f o r d e s i g n p u r p o s e s . T h i s p a p e r d e s c r i b e s t h e i d e n t i f i c a - t i o n of l i n e a r i z e d dynamic m o d e l s o f t h e SSME f r o m t h e n o n l i n e a r dynamic s i m u l a t i o n . The i d e n - t i f i e d l i n e a r i z e d mode ls a r e v a l i d i n l i m i t e d r e s p o n s e r e g i o n s a b o u t t h e o p e r a t i n g p o i n t c o r - r e s p o n d i n g to t h e 100 p e r c e n t power l e v e l . They a r e s u i t a b l e f o r t h e p u r p o s e o f c o n t r o l sys tem d e s i g n and d e v e l o p m e n t .

1

I n i t i a l l y a b r i e f d e s c r i p t i o n o f t h e SSME i i g i v e n . T h i s i s f o l l o w e d b y a d e s c r i p t i o n o f t h e i d e n t i f i c a t i o n p r o c e s s and t h e model u s e d . F i n a l l y . some r e s u l t s o b t a i n e d f rom t h e i d e n t i - f i e d mode ls a r e compared w i t h t h e r e s u l t s o b t a i n e d f r o m t h e n o n l i n e a r s i m u l a t i o n f o r t h e same i n o u t .

THE SPACE SHUTTLE MAIN ENGINE

D i f f e r e n t a s p e c t s o f t h e SSME as w e l l as it? p r i n c i p l e o f o p e r a t i o n a r e d e s c r i b e d i n t h e l i t e r a t u r e ( L a n d a u e r , 1988; K l a t t e t a l . , 1 9 8 2 ) . A b r i e f d e s c r i p t i o n o f t h e m a i n e n g i n e i s g j v e n b e l o w b y f o l l o w i n g them.

The space s h u t t l e o r b i t e r m a i n p r o p u l s i o n s y s t e m i s composed o f t h r e e space s h u t t l e m a i n e n g i n e s . The e n g i n e s u s e l i q u i d oxygen and l i q - u i d h y d r o g e n p r o p e l l a n t s t h a t a r e c a r r i e d i n a n e x t e r n a l t a n k a t t a c h e d t o t h e o r b i t e r . These e l e m e n t s and t h e tvo s t r a p - o n s o l i d p r o p e l l a n t r o c k e t m o t o r s a r e assemb led i n t h e v e r t i c a l p o s i - t i o n . ( S o l i d r o c k e t b o o s t e r s and t h e SSMEs pro- v i d e t h e t h r u s t for t h e f i r s t p o r t i o n o f t h e f l i g h t u n t i l t h e s o l i d p r o p e l l a n t m o t o r s b u r n o u t and a r e s e p a r a t e d . ) The SSME's c o n t i n u e t o b u r n u n t i l t h e v e h i c l e i s n e a r t h e d e s i r e d o r b i t a l v e l o c i t y . F o l l o w i n g SSME shu tdown , t h e e x t e r n a l t a n k i s s e p a r a t e d and f i n a l o r b i t i n s e r t i o n i s a c c o m p l i s h e d b y t h e o r b i t a l m a n e u v e r i n g sys tem. A f t e r c o m p l e t i n g o r b i t a l o p e r a t i o n s , t h e o r b i t e r r e e n t e r s t h e a tmosphere a n d g l i d e s t o a l a n d i n g .

The e n g i n e s o p e r a t e f o r a t o t a l o f 480 sec from l a u n c h . Each p r o d u c e s a sea l e v e l t h r u s t of 375 000 l b and a vacuum t h r u s t of 470 000 l b . To u n d e r s t a n d t h e o v e r a l l f low o f f u e l and ox i - d i z e r t o p r o d u c e t h e t h r u s t , a s c h e m a t i c d i a g r a m of t h e p r o p e l l a n t f l o w s a n d t h e c o n t r o l v a l v e s i s shown i n F i g . 1 .

P r e s s u r i z e d f u e l , p r o v i d e d b y t h e f u e l t a n k f lows t h r o u g h t h e low p r e s s u r e f u e l pump and t h e h i g h p r e s s u r e f u e l pump, i s f e d t o t h e r e g e n e r a - t i v e c o o l i n g and t h e p r e b u r n e r s . A p r e s s u r i z e d o x i d i z e r t a n k p r o v i d e s t h e o x i d i z e r . I t f l o w s t h r o u g h t h e low p r e s s u r e o x i d i z e r pump, t o t h e h i g h p r e s s u r e o x i d i z e r pump where t h e o u t p u t f low s p l i t s a s shown i n F i g . 1 .

The two h i g h p r e s s u r e t u r b i n e s a r e d r i v e n b y a f u e l t u r b i n e p r e b u r n e r and a n o x i d i z e r t u r - b i n e p r e b u r n e r , each o f w h i c h p r o d u c e s h o t g a s . The low p r e s s u r e t u r b i n e s a r e d r i v e n from t h e h i g h p r e s s u r e pump f l o w s . The f u e l f r o m t h e h i g h p r e s s u r e f u e l pump (HPFP) goes t h r o u g h t h e m a i n f u e l v a l v e (MFV). A f t e r t h e MFV. t h e f low d i v i d e s i n t o f i x e d n o z z l e c o o l i n g f low, m a i n chamber c o o l i n g f low, and c o o l a n t c o n t r o l v a l v e (CCV) f low. The r e l a t i v e p r o p o r t i o n s o f t h e s e t h r e e f l o w s i s d e t e r m i n e d b y t h e CCV. H e a t i s a b s o r b e d f r o m t h e c o m b u s t i o n chamber n o z z l e and t h e f u e l f l o w s t o t h e p r e b u r n e r s where c o m b u s t i o n and p r e s s u r e i s c o n t r o l l e d b y t h e f u e l p r e b u r n e r o x i d i z e r v a l v e (FPOV) a n d t h e o x i d i z e r p r e b u r n e r o x i d i z e r v a l v e (OPOV). I n t h e f i x e d n o z z l e c o o l - i n g , t h e c o o l a n t c o n t r o l v a l v e d e t e r m i n e s t h e p e r c e n t a g e o f t h e f u e l u s e d for c o o l i n g t h e com- b u s t i o n chamber b y e s t a b l i s h i n g a bypass f low d i r e c t f r o m i n l e t to d i s c h a r g e .

The h i g h - p r e s s u r e f u e l r i c h h o t gas f r o m t h e p r e b u r n e r s goes t h r o u g h t h e two h i g h - p r e s s u r e t u r b i n e s and r e t u r n s t h r o u g h t h e hot gas m a n i - f o l d s to t h e f u e l i n j e c t o r ( F I ) of t h e c o m b u s t i o n chamber . M a i n chamber c o o l i n g f u e l f low powers

2

t h e Icw p r e s s u r e f u e l t u r b i n e (LPFT) and r e t u r n s d i r e c t l y t o t h e f u e l i n j e c t o r o f t h e m a i n ccmbus- t i o n chamber .

pump (HPOP) s o l i t s i n t o t h r e e p a t h s . F l o w f r cm t h e f i r s t p a t h d r i v e s t h e l o w - p r e s s u r e o x i d i z e r t u r b i n e (LPOT) . The s u t p u t flcw from t h e LPCT merges w i t h t h e o u t p u t o f t h e low p r e s s u r e oAi - d i z e r pump (LPOP) . The second f low goes t h r o u g h t h e m a i n o x i d i z e r v a l v e (MOV) t o t h e o x i d i z e r i n j e c t o r (01) i n t h e c o m b u s t i o n chamber . The t h i r d f l ow e n t e r s t h e p r e b u r n e r Q x i d i z e r pump (PEOP) and i s d i v i d e d be tween t h e p r e b u r n e r s a; d e t e r m i n e d b y t h e FPOV and t h e OPOV. T h i s com- p l e t e s :he f i O # g a t h s fo r t u r b i n e d r i v e and c o n t r o l .

C x i d i z e r from t h e h i g h p r e s s u r e o x i d i z e r

THE CONTROL SYSTEM OF THE SSHE

The e x i s t i n g c o n t r o l s y s t e m of t h e SSME u t i - l i z e s f i v e v a l v e s FPOV. OPOV, MFV. MOV, and CCY t o c o n t r o l t h e m i x t u r e r a t i o and t h e m a i n chamoer p r e s s u r e w h i c h i s c o r r e l a t e d w i t h t h e t h r u s t . Open and c l o s e d l o o p c o n t r o l of t h e s e v a l v e s a r e u s e d t o a c c o m p l i s h t h e SSME m i s s i o n . A t y p i c a l SSME m i s s i o n i s shown i n F i g . 2 .

A l l t h e v a l v e s a r e i n i t i a l l y s c h e d u l e d t o fo l l ow t h e s t a r t sequence as i n d i c a t e d i n F i g . 3 . D u r i n g t h e m a i n s t a g e , t h e t h r u s t and t h e m i x t u r e r a t i o a r e c o n t r o l l e d b y a d j u s t i n g t h e OPOV and FPOV v a l v e s . T h i s a d j u s t m e n t i s based on t h r u s t and m i x t u r e r a t i o r e q u e s t , t h r o u g h a c l o s e d loop p r o p o r t i o n a l p l u s i n t e g r a l f e e d b a c k c o n t r o l . A c o n c e p t u a l b l o c k d i a g r a m of t h e c o n t r o l s y s t e m d u r i n g t h e m a i n s t a g e of o p e r a t i o n i s shown i n F i g . 4 .

f o l l o w i n g i n p u t s and o u t p u t s a r e u s e d . The c l o s e d l o o p s y s t e m i n p u t s a r e t h e m i x t u r e r a t i o r e q u e s t , MRR, and t h e chamber p r e s s u r e r e q u e s t , PCR, w h i c h i s p r o p o r t i o n a l t o t h e t h r u s t . The open l o o p s y s t e m i n p u t s a r e t h e a n g u l a r d i s p l a c e - ments o f t h e v a l v e a c t u a t o r s f o r each o f t h e

The o u t p u t s a r e t h e chamber p r e s s u r e ( P c ) , HPFT p r e s s u r e (PHPFT) . HPOT p r e s s u r e (PHPOT) , HPFT t e m p e r a t u r e ( T H P F T ) , HPOT t e m p e r a t u r e ( T H P O T ) , m i x t u r e r a t i o ( M R ) , HPFT speed ( S H P F T ) . and HPOT speed ( S H P O T ) . I n t h i s s t u d y a l l p a r a m e t e r s a r e n o r m a l i z e d and e x p r e s s e d as t h e f r a c t i o n a l d e v i a - t i o n s from t h e n o m i n a l o p e r a t i n g c o n d i t i o n .

F o r t h e p u r p o s e o f mode l i d e n t i f i c a t i o n t h e

f i v e v a l v e s , e o p o v , eFPOV, eccv, 8MOV. 8MFV.

SYSTEM IDENTIFICATION

I d e n t i f i c a t i o n may b e d e f i n e d as t h e d e t e r - m i n a t i o n of t h e m a t h e m a t i c a l model o f a p r o c e s s among a c l a s s of m a t h e m a t i c a l mode ls based o n t h e measurements of i n p u t and o u t p u t d a t a of t h e p r o c e s s . Hence, t h e s t e p s i n i d e n t i f i c a t i o n con- s i s t o f : d e t e r m i n i n g a p r i o r i know ledge , s e l e c - t i o n of a d r i v i n g s i g n a l t h a t c o n t a i n s enough s p e c t r a l components t o e x c i t e a l l modes o f t h e sys tem, s e l e c t i o n of a m o d e l , and p a r a m e t e r e s t i - m a t i o n . These s t e p s a r e f o l l o w e d i n t h e i d e n t i - f i c a t i o n of SSME dynamics and a r e o u t l i n e d b e l o w .

A P r i o r i Know ledge

The r e s p o n s e s of b o t h t h e c l o s e d and t h e open l o o p s y s t e m for t e s t i n p u t s i g n a l s a r e exam- i n e d t o o b t a i n p r e l i m i n a r y i n f o r m a t i o n a b o u t t h e t y p e s o f n o n l i n e a r i t i e s and t h e b a n d w i d t h o f

ORlGlNAL PAGE IS

OF QUALrrV

ORIGINAL PAGE IS OF POOR QUALITY

t h e s e sys tems. The r e s p o n s e s o f t h e c l o s e d l o o p s y s t e m and some o f t h e s e l e c t e d o u t p u t s o f t h e open l o o p sys tem as w e l l as t h e t e s t i n p u t s i g - n a l s a r e shown i n F i g s . 5 t o 7 .

The c l o s e d l o o p r e s p o n s e , as shown i n F i g . 5 , i n d i c a t e s e x i s t e n c e o f b o t h t h e s t i c t i o n and b a c k l a s h t y p e o f n o n l i n e a r i t i e s and a s m a l l s y s t e m b a n d w i d t h o f a p p r o x i m a t e l y 5 Hz. The b a c k l a j h n o n l i n e a r i t y i s more o b v i o u s f r o m t h e r e s p o n s e o f t h e open l o o p sys tem, s i n c e t h e o u t - p u t s c a n n o t r e t u r n to t h e i r i n i t i a l v a l u e s when t h e s t e p i n p u t i s removed , as shown i n F i g . 6 . F i g u r e 7 i n d i c a t e s t h a t CCV, MOV. and MFV v a l v e a c t u a t o r a n g u l a r d i s p l a c e m e n t s a r e e s s e n t i a l l y deco i iD led f rom t h e o u t p u t s . T h e r e f o r e a t t h i s n o m i n a l o p e r a t i n g c o n d i t i o n o n l y t h e a c t u a t o r a n g u l a r d i s p l a c e m e n t s o f t h e v a l v e s FPOV and OPOV a r e used as t h e i n p u t s o f t h e open l o o p s y s t e m .

S e l e c t i o n o f a D r i v i n g S i q n a l

I n t h i s s t u d y , a pseudo random b i n a r y sequence (PRES) i s s e l e c t e d as t h e i n p u t p e r - t u r b a t i o n s i g n a l o f t h e s y s t e m because of i t s c o n v e n i e n c e and i t s s u i t a b i l i t y fo r s i m i l a r a p p l i c a t i o n s ( C o t t i n g t o n and Pease, 1978, Sudhakar e t a l . , 1 9 8 8 ) . A PRES i s a w i d e b a n d , l o n g - d u r a t i o n s i g n a l w h i c h possesses one o f two v a l u e s . The s i g n a l s w i t c h e s from one v a l u e t o a n o t h e r a t t i m e i n t e r v a l s d e t e r m i n e d b y a c l o c k . A PRES i s e a s i l y g e n e r a t e d u s i n g s h i f t r e g i s t e r s or a compu te r p r o g r a m , and c a n be made s m a l l enough a m p l i t u d e so as n o t t o s i g n i f i c a n t l y a l t e r t h e o p e r a t i n g c o n d i t i o n o f t h e e n g i n e and yet s t i l l y i e l d u s e f u l i n f o r m a t i o n f o r i d e n t i f i - c a t i o n . The a m p l i t u d e o f t h e PRES s i g n a l used i n t h i s work i s 2 p e r c e n t o f t h e n o m i n a l o p e r a t - i n g p o i n t m a g n i t u d e o f t h e chosen i n p u t .

The c l o c k t i m e , t c , i s chosen to be i n t h e r a n g e o f s y s t e m t i m e c o n s t a n t s as f o l l o w s . The minimum and t h e maximum o b s e r v e d f r e q u e n c i e s , f m i n and fmax. a r e e s t i m a t e d by e x a m i n i n g t h e r e s p o n s e o f b o t h t h e c l o s e d l o o p and t h e open l o o p s y s t e m f r o m F i g s . 5 and 6. Then t h e c l o c k t i m e , t c . and t h e number o f samples needed a r e d e t e r m i n e d b y u s i n g t h e e s t i m a t e d v a l u e s o f t h e minimum and t h e maximum f r e q u e n c i e s u s i n g t h e e q u a t i o n s b e l o w :

1 t = - 2fmax

1 D = - f m i n

D N = - t c

( 1 )

( 3 )

where D i s t h e s i g n a l d u r a t i o n and N i s t h e number o f s a m p l e s . F o r t h e i d e n t i f i c a t i o n o f t h e open l o o p s y s t e m , a c l o c k t i m e o f 0.04 sec and 511 samples a r e u s e d . T h i s c o r r e s p o n d s t o a maximum f r e q u e n c y o f 7 8 . 5 r a d / s e c ( 1 2 . 5 H z ) , a minimum f r e q u e n c y o f 0 . 3 1 r a d l s e c (0.05 Hz) and a s i g n a l d u r a t i o n o f 2 0 . 4 4 s e c . A s t e p i n p u t i s u s e d as t h e d r i v i n g s i g n a l f o r t h e c l o s e d l o o p s y s t e m s i n c e i t s r e s p o n s e i s v e r y s l o w , as shown i n F i g . 5 .

S e l e c t i o n of a M a t h e m a t i c a l Model

A s m e n t i o n e d e a r l i e r , F i g s . 5 and 6 i n d i c a t e t h e e x i s t e n c e o f s i g n i f i c a n t b a c k l a s h and s t i c - t i o n n o n l i n e a r i t i e s a s s o c i a t e d w i t h t h e v a l v e d y n a m i c s . I t i s assumed t h a t t h e s e two n o n l i n - e a r i t i e s can be i s o l a t e d f r o m t h e r e s t o f t h e s y s t e m as shown i n F i g . 8 . Here, t h e cpen l o o p s y s t e m i n c l u d e s a c t u a t o r dynamics , t h e n o n l i n e a r e l e m e n t w h i c h c o n t a i n s v a l v e s t i c t i o n and v a l v e l i n k a g e b a c k l a s h , and t h e e n g i n e sys tem w h i c h i n c l u d e s a l l o t h e r n o n l i n e a r i t i e s and t h e e n g i n e d y n a m i c s . To s i m p l i f y t h e a n a l y s i s , t h e b a c k l a s h and s t i c t i o n were removed f r o m t h e s i m u l a t i o n . A l l subsequen t r e s u l t s a r e o b t a i n e d ' w i t h the;e two n o n l i n e a r i t i e s removed. Now t h e open l o o p sys tem, w i t h o u t t h e b a c k l a s h and t h e s t i c t i o n . was l i n e a r i z e d and i d e n t i f i e d . The b a c k l a s h and t h e s t i c t i o n n o n l i n e a r i t i e s can l a t e r be added t o t h e i d e n t i f i e d s y s t e m . I n p r a c t i c e v a l u e s for b a c k l a s h and s t i c t i o n w o u l d be d e t e r m i n e d f r o m m a n u f a c t u r e r ' s s p e c i f i c a t i o n s or bench t e s t i n g o f t h e i n d i v i d u a l componen ts .

The open l o o p dynamics o f t h e SSME can be d e s c r i b e d b y t h e n o n l i n e a r e q u a t i o n s :

x ( t ) = f [ x ( t ) , u ( t ) l ( 4 )

y ( t ) = g C x ( t ) l ( 5 )

where x , u , and y a r e t h e s t a t e , t h e c o n t r o l , and t h e o u t p u t v e c t o r s . L i n e a r i z i n g t h e s e equa- t i o n s a b o u t a n o m i n a l o p e r a t i n g c o n d i t i o n and d i s c r e t i z i n g y i e l d s :

( 6 )

6 y ( n ) = CCx(n) ( 7 )

where 6 x . 6 u , and 6y a r e t h e d e v i a t i o n s o f t h e s t a t e , t h e i n p u t and t h e o u t p u t v e c t o r s , r e s p e c - t i v e l y , a b o u t t h e n o m i n a l o p e r a t i n g c o n d i t i o n . T a k i n g t h e z - t r a n s f o r m o f Eqs. ( 6 ) and ( 7 ) . t h e l i n e a r s y s t e m model r e l a t i n g t h e i n p u t v e c t o r 6u and t h e o u t p u t v e c t o r 6 y can be o b t a i n e d a s :

6 x ( n + 1 ) = A 6 x ( n ) + 8 6 u ( n )

6y(z) = H ( z ) G u ( z ) ( 8 ) where

( 9 )

H e r e , C i i s t h e ith row of t h e C m a t r i x and B j i s t h e jth co lumn of t h e 8 m a t r i x . A p a r a m e t e r e s t i m a t i o n a l g o r i t h m can be used t o o b t a i n t h e p a r a m e t e r s of each o f t h e e l e m e n t s o f t h e t r a n s f e r f u n c t i o n m a t r i x , H i j ( Z ) .

P a r a m e t e r E s t i m a t i o n A l q o r i t h m

The r e c u r s i v e maximum l i k e l i h o o d (RML) a l g o - r i t h m ( E y k h o f f , 1981) i s used t o e s t i m a t e t h e p a r a m e t e r v a l u e s . I t computes t h e c o e f f i c i e n t s o f t h e t r a n s f e r f u n c t i o n be tween an i n p u t and an o u t p u t . T h a t i s . i f 6 ~ 1 ( n ) and 6 y i ( n ) a r e t h e i n p u t and o u t p u t o f a l i n e a r t i m e i n v a r i a n t s y s - t e m , H 1 1 ( z ) , t h e n t h e RML a l g o r i t h m d e t e r m i n e s H l l ( z ) from t h e d a t a 6 u i ( n ) and 6 y i ( n ) f o r some r a n g e o f t i m e n . H l l ( z ) i s f o u n d b y m i n i m i z i n g t h e t o t a l e n e r g y o f t h e so c a l l e d e q u a t i o n e r r o r :

3

( 1 1 )

G e n e r a l l y . t h e RML a l g o r i t h m needs f e w e r d a t a samples or p a r a m e t e r e s t i m a t i o n t h a n o t h e r app roaches and can a c c o u n t for t h e p r e s e n c e of c e r t a i n type ; o f n o i s e . I t can be m o d i f i e d t o t r a c k s l o w l y t i m e v a r y i n g p a r a m e t e r s and can be e r t e n d e d t o t h e a n a l y s i s o f m u l t i - i n p u t m u l t i - 9utou.t sys:ems (Eykhof f , 1981, L j u n g and S o d e r j t o r m . 1 9 8 5 ) .

a rnooel when i t s o r d e r i s known. However , t h e d e t e r m i n a t i o n of t h e o r d e r o f a model i s s t i l l a n 3 p e i 3 r a b l e m ( L j u n g and S o d e r s t o r m , 1 9 8 5 ) . The method emp loyed h e r e i s based o n t h e " P a r s i m o n y p r i n c i p l e . " I n t h i s me thod p a r a m e t e r s a r e e s t i - n a t e d f o r mode ls o f i n c r e a s i n g o r d e r s . The e s t i - mate o f t h e f i n a l e r r o r norm i s computed f o r each , and t h e o r d e r f o r w h i c h t h e d e c r e a s e i n e r r o r i s n o l o n g e r a p p r e c i a b l e i s a d o p t e d (Box and J e n k i n s , 1 9 7 0 ) . Thus , from t h e e r r o r p l o t , r h i c h p l o t s e r r o r v e r s u s o r d e r o f t h e mode l , t h e op t imum o r d e r i s chosen as t h e o n e c o r r e s p o n d i n g to t h e " k n e e ' o f t h e e r r o r p l o t . A t y p i c a l error p l o t i s shown i n F i g . 9 .

P R B S - i n p u t p e r t u r b a t i o n s i s used t o d e t e r m i n e t h e t r a n s f e r f u n c t i o n m a t r i x o f t h e l i n e a r i z e d model by u t i l i z i n g t h e RML a l g o r i t h m . Each t r a n s f e r - f u n c t i o n m a t r i x e l e m e n t i s d e t e r m i n e d b y u t i l i z - i n g t h e r e s p o n s e of t h e s y s t e m to s m a l l p e r t u r b a - - t i o n s a b o u t a n o m i n a l o p e r a t i n g p o i n t as f o l l o w s . The j t h e l e m e n t o f t h e i n p u t v e c t o r i s p e r - t u r b e d a n d a p p l i e d t o t h e s y s t e m w i t h o t h e r e l e - ments o f t h e i n p u t v e c t o r s e t a t t h e i r n o m i n a l v a l d e s t o o b t a i n t h e p e r t u r b e d o u t p u t s . By sub- t r a c t i n g t h e n o m i n a l v a l u e s f r o m t h e p e r t u r b e d , v a l u e s , t h e d i f f e r e n t i a l i n p u t d u j ( n ) , and t h e c o r r e s p o n d i n g o u t p u t s 6 y i ( n ) , f o r i = 1 , 2 , 3, _ . . a r e o b t a i n e d . T h i s p r o c e d u r e i s r e p e a t e d f o r a l l t h e i n p u t s .

a b l e i n a s o f t w a r e package c a l l e d C t r l - C (Sys tems Contro l T e c h n o l o g y , 1 9 8 6 ) , and i s u t i l i z e d t o e s t i m a t e t h e p a r a m e t e r s o f t h e m o d e l . S i n c e t h e n o n l i n e a r s i m u l a t i o n i s u s e d as t h e unknown sys - tem, t h e s y s t e m i s assumed t o be n o i s e l e s s . Under t h i s c o n d i t i o n t h e RML method s i m p l i f i e s t o t h e r e c u r s i v e l e a s t sciuares me thod .

The RML n e t h o d e s t i m a t e s t h e p a r a m e t e r s of

The o u t p u t o f t h e n o n l i n e a r s i m u l a t i o n f o r

The RML a l g o r i t h m o u t l i n e d b e f o r e i s a v a i l -

RESULTS

The p r o c e d u r e o u t l i n e d e a r l i e r i s used t o i d e n t i f y b o t h t h e c l o s e d l o o p and t h e open l o o p sys tem. The r e s p o n s e s o f t h e i d e n t i f i e d model a r e compared w i t h t h e r e s p o n s e s o b t a i n e d from t h e n o n l i n e a r s i m u l a t i o n for t h e same i n p u t and o b s e r v e d t o b e i n good ag reemen t as shown i n F i g s . 10 and 1 1 . The p a r a m e t e r s o f t h e e l e m e n t s o f t h e t r a n s f e r f u n c t i o n m a t r i x a r e g i v e n i n T a b l e 1 .

The r e s p o n s e s of t h e open l o o p s y s t e m a r e a l s o compared w i t h t h e r e s p o n s e s o b t a i n e d from t h e n o n l i n e a r s i m u l a t i o n . A t y p i c a l r e s u l t i s shown i n F i g . 12 . I n g e n e r a l , i t i s o b s e r v e d t h a t t h e g a i n s fo r p o s i t i v e and n e g a t i v e p e r t u r - b a t i o n s i g n a l s a r e s i g n i f i c a n t l y d i f f e r e n t . I n o r d e r t o compensate for t h i s phenomenon, a sys - tem g a i n w i t h d i f f e r e n t v a l u e s f o r p o s i t i v e and

n e g a t i v e p e r t u r b a t i o n s i s added t o t h e l i n e a r i z e d m o d e l . I n f a c t i t i s t h i s r a t i o o f t h e magn i - t u d e s o f t h e p o s i t i v e and n e g a t i v e v a l u e s w h i c h mus t be i d e n t i f i e d . T h i s r a t i o i s e q u a l to t h e r a t i o o f t h e m a g n i t u d e s o f t h e p o s i t i v p and nega- t i v e s t e a d y s t a t e v a l u e s of t h e Ou tpu t ; o b t a i n e d f rom t h e n o n l i n e a r s i m u l a t i o n . One model t h a t i n c l u d e s t h i s v a r i a b l e sys tem g a i n can be e x p r e s s e d m a t h e m a t i c a l l y a s :

a 6 ~ ( K ) 6 u ( k ) 2 0

( 2 - a ) < u ( k ) 6 u ( k ) 5 0

The i d e n t i f i c a t i o n p r o c e d u r e i s c a r r i e d o u t

& u ' ( k ) = ( 1 3

w i t h t h i s m o d i f i e d PRES and a p i e c e w i s e l i n e a r model i s o b t a i n e d . Compar i son o f t h e r e s p o n s e s o f t h i s model w i t h t h e r e s p o n s e s o f t h e n o n l i n - e a r s i m u l a t i o n showed e x c e l l e n t ag reemen t as shown i n F i g s . 13 t o 1 6 . The p a r a m e t e r s o f t h e c o e f f i c i e n t s o f t h e t r a n s f e r f u n c t i o n m a t r i i as w e l l as t h e v a l u e s o f a a r e g i v e n i n T a b l e 2 . The p r o p o s e d model b l o c k d i a g r a m s t r u c t u r e i s g i v e n i n F i g . 1 7 .

CONCLUSiON

Sys tem i d e n t i f i c a t i o n t e c h n i q u e s a r e used t o r e p r e s e n t t h e dynamic b e h a v i o r o f t h e S S M E . The c o m p a r i s o n o f t h e r e s p o n s e s o f t h e n o n l i n e a r s i m u l a t i o n w i t h t h e r e s p o n s e s of t h e i d e n t i f i e d mode l i n d i c a t e s v e r y good ag reemen t . The i d e n t i - f i e d model can b e used f o r c o n t r o l d e s i g n p u r p o s e s .

l i n k a g e b a c k l a s h and v a l v e s t i c t i o n n o n l i n e a r i - t i e s . These n o n l i n e a r i t i e s s h o u l d be added t o t h e i d e n t i f i e d mode l and t h e v a l i d i t y o f t h e model s h o u l d be checked b y c o m p a r i n g i t w i t h t h e f u l l n o n l i n e a r s i m u l a t i o n .

The i d e n t i f i e d model i s v a l i d for a l i m i t e d r e s p o n s e r e g i o n a b o u t t h e 100 p e r c e n t power l e v e l o p e r a t i n g c o n d i t i o n . T h i s s t u d y w i l l be e x t e n d e d so as t o o b t a i n mode ls a t o t h e r o p e r a t i n g c o n d i - t i o n s . Then t h e s e p o i n t mode ls can b e l i n k e d t o c o v e r t h e f u l l r a n g e o f o p e r a t i o n o f t h e SSME.

The i d e n t i f i e d mode l does n o t i n c l u d e v a l v e

REFERENCES

Box. G . E . P . and J e n k i n s , G . M . , 1970, Time S e r i e s A n a l y s i s : F o r e c a s t i n g and C o n t r o l , Ho lden- Day, San F r a n c i s c o .

C o t t i n g t o n , R . V . and Pease, C . B . , 1979, "Dynamic Response T e s t i n g o f Gas T u r b i n e s , " J o u r n a l o f E n g i n e e r i n q f o r Power , Vol. 101, DD. 95-100. . .

E y k h o f f , P i e t e r . 1974, Sys tem I d e n t i i i c a - t i o n : P a r a m e t e r and S t a t e E s t i m a t i o n , John W i l e y and Sons, New Y o r k .

K l a t t , F.P. and Whee lock . V . J . , 1982, "The Reusab le Space S h u t t l e M a i n E n g i n e P r e p a r e s for Long L i f e , " Shu t t 1 e P r o p u l s i o n S y s tems ; P r o c e e d i n g s o f t h e W i n t e r Annua l M e e t i n g , J.W. R o b i n s o n , e d . , ASME, N . Y . p p . 33-44.

t i o n of t h e Space S h u t t l e M a i n E n g i n e o n t h e SIM- STAR M u l t i p r o c e s s o r , " Ae rospace S i m u l a t i o n 111; P r o c . o f t h e SCS M u l t i c o n f e r e n c e , Monte Ung, e d . . S o c i e t y fo r Computer S i m u l a t i o n , p p . 286-298.

L a n d a u e r , J. P a u l , 1988, "Rea l Time S i m u l a -

4 Of?IGINAL PAGE IS OF POOR QUALm

ORIGINAL PAGE IS OF POOR QUALtTY

Input

Sudhakar, R.. Duyar, A. and Ahmadvand. H . , 1988, "System Identification of Gas Turbines," Submitted to ASME Winter Annual Meeting, Chicago.

System Control Technology, 1986. Control-C

Ljung, Lennart and Soderstorm, Torsten, 1983. Theory and Practice of Recursive Identifi- cation, MIT Press, Cambridge, Mass.

"Engine Balance and Dynamic Model 0' Report FSCM No. 02602. Spec. No. RLOOOOI. Users Guide.

"SSME Engine, Redline and Control Overview," Reoort 8D 88-62.

Rockwell International Corporation, 1981, I1 1 i noi s .

Rockwell International Corporation, 1988,

PCR MRR

output

a

dl a2 a 3 b l b 2 b 3

P c PHPFT PHPOT THPFT THPOT MR SHPFT SHPOT

0 . 8 7 0 . 8 9 0 . 8 9 0.85 0 . 9 4 0 . 9 - . 6 7 6 - . 7 0 8 -.la? - . a 2 1 - . 4 5 7 - . 5 2 6 - . 9 9 8 -.501

.0151 . 0 4 , 2 5 2 - .023 0

0.88 0 . 8 8

. 0 3 7 3 .0602 , 0 9 8 5 . 1 6

. 0 5 1 7 , 1 0 9 3 .5358 - . 1 1 7 2 . 9 1 1 ,0555 .0092 , 2 1 6 4 0 .Ole3 .0151 . 0 4 4 8 0 0 0

0 . 0 9 2 5 - . 5 3 3 - . 0 0 4 0 0 0 , 4 9 4 7 , 4 6 2 7 , 0 0 8 6 , 9 1 4 - . 4 2 9 , 4 9 7 5 , 1 4 1 6 , 4 6 9 8

0

- . I 3 4 - ,008

, 2 1 2 ' I o 2 1 - . 1 1 3 .053 I

- . 2 2 3 0

,017

- . 2 7 6 0

PHPFT

0 . 8 2 1 7 - 1 . 0 4 3

a2 - . 0 6 2 a 3 . 2 1 1

b 2 b 3

b l . 3 4 1 9 -.I81 1 -.08

1 I I

0 . 8 7 0 7 - . 6 0 4

1 . 5 0 2 - 1 . 2 2 3

0 . 9 6 8 1 0 . 9 8 8 2 0 . 8 9 6

- . 0 4 6 1 - . 0 0 7 1 -.028 - . 2 7 2 - . 2 3 7 - . 3 9 3

%POT

N I A 0

i

5

FIGURE 1. - PROPELLANT FLOW AND CONTROL VALVES (ROCKWELL, 1983).

1 100

80

75

r 1 W

1

3 65

-MAX-0 THROTTLE

60 0 50 100 150 200 250 300 350 400 450 500 550

TIME, SEC

FIGURE 2. - TYPICAL 104% SSRE MISSION (ROCKWELL INTER- NATIONAL CORP., 1988).

6

ORIGINAL PAGE IS OF POOR QtlAL97Y

V S T A R T ENABLE COMMAND (ENGINE READY SELF MONITOR)

i

VPRE-CHILL BLEED VALVES CLOSED

V E N G I N E START COMMAND I l V M A l N FUEL VALVE STARTS RAMP TO FULL OPEN

I

I V Q X I D I Z E R PREBURNER OXIDIZER VALVE STARTS TO OPEN

i V M A l N OXIDIZER VALVE STARTS OPEN AT 60%

V F U E L PREBURNER OXIDIZER VALVE STARTS TO OPEN

0- - - - - - - - - SCHEDULE PREBURNER I I VALVES FOR PRIMING I

V SCHEDULE CHAMBER COOLANT VALVE

THRUST LOOP CLOSED THRUST TO 100% POWER LEVEL

v RAMP MAIN OXIDIZER VALVE FULL OPEN

MIXTURE RATIO LOOP CLOSEDV

V MAINSTAGE I

-2 -1 0 1 2 3 4 5 TIME FROM ENGINE START COMMAND. SEC

FIGURE 3. - SSME START SEQUENCE (ROCKWELL INTERNATIONAL CORP.. 1988).

C W N D CHAMBER PRESSURE (P, REF)

ENGINE COMPARE PREBURNER OXIDIZER

FLOWRATE

OX I D I ZER

OX I D I ZER THRUST CONTROL

CHAMBER PRESSURE MEASURED

COEmAND MIXTURE

1 MIXTURE RATIO CONTROL COMPARE

MIXTURE RATIO I- r1 PREBURNER ~F!F:NE

FLOWRATE OXIDIZER VALVE

CALCULATED

1 MIXTURE RATIO = CONSTANT X CHAMBER PRESSURE FUEL FLOWRATE

FIGURE 4. - SSME PERFORMANCE CONTROL (ROCKWELL INTERNATIONAL CORP.. 1988).

7

1.012-

1.010.

l'Oo8- 1 ,006

1.004

MRR (INPUT) ----- Pc (OUTPUT) . -7 MR (OUTPUT)

i-- 1 I

i I i,

I c' '-

0 2 4 6 8 10 12 TIME, SEC

( b ) CHAMBER PRESSURE REQUEST INPUT.

.995

I FIGURE 5. - SSME CLOSED LOOP RESPONSE.

1.002 - I- L-.

\

8

l.0OOr I- = c n

.998

-----,, -* ----- -* 0'

I \--.--#

PI

P 1.03

eFpov (INPUT) ----- Pc (OUTPUT) ----- ----- MR (OUTPUT) SHpFT (OUTPUT)

--- - I ---

S H ~ O T (OUTPUT),

1.005 r

0

E .990 N I 4 ,985

.980

.975

ORIGINAL PAGE I§ OF POOR QUALITY

i --- MR (OUTPUT) S"pFT (OUTPUT) - --- SHpOT (OUTPUT) ,

I

I - I

- L-,,,,,

I I

eMFv (INPUT) ----- Pc (OUTPUT) MR (OUTPUT)

SHpOT (OUTPUT)

----- --- S H ~ F T (OUTPUT) --- -

.985

.980

1.005

1.000

.995

,990

I

-

.-----* I I

eccv (INPUT) i

i

----- - Pc (OUTPUT) MR (OUTPUT)

SHpOT (OUTPUT)

----- I

I --- sHpFT ( o u T P u r ) I - --- -

.975 ( a ) MAIN FUEL VALVE MOTION INPUT.

1.005 - 1 .ooo

eopov . *

* ACTUATOR DYNAMICS 'FPOv

VARIABLE LINKAGE BACKLASH

AND STICTION

,980 .g851 I975 -

0 2 4 6 8 10 12 14 16 TIME, SEC

(c ) CHAMBER COOLANT VALVE MOTION INPUT.

FIGURE 7. - SSME OPEN LOOP RESPONSE.

l - k :;;; FIGURE 8. - OPEN LOOP SYSTEM WITH ISOLATED VALVE LINKAGE BACKLASH AND VALVE STICTION.

9

r 1.015

‘20 r O CL 1 0 r z CL W

9 0 9 0 9 O Q 0 9 0 2 4 6 8 10

TRANSFER FUNCTION ORDER

FIGURE 9. - ERROR PLOT. INPUT = eopov; OUTPUT = pC.

n TIME, SEC

.998

NONLINEAR SIMULATION LINEAR MODEL

- - - - - -

.988 4 5 6 7 8

TIME, SEC

( b ) STEP RESPONSE.

FIGURE 10. - COMPARISON OF THE RESPONSES OF THE LINEAR MODEL WITH THE NONLINEAR SIMULATION (CLOSED LOOP). INPUT = PCR; OUTPUT = Pc.

10

1.015 r

1.010 -

1.005 -

+ + ,985 + 0 2 4 6 8 10 12 14 16 18 20 iz n W N

g 1.002 ii z

1.000

.998

.996

.994

.992

.990

,988

TIME. SEC

( a ) MULTIPULSE RESPONSE.

NONLINEAR SIMULATION LINEAR MODEL

----- - I-

- 1

5 6 7 8 TIME. SEC

(b ) STEP RESPONSE,

FIGURE 11. - COMPARISON OF THE RESPONSES OF THE LINEAR MODEL WITH THE NONLINEAR SIMULATION (CLOSED LOOP). INPUT = MRR: OUTPUT = MR.

NONLINEAR

.990 ' -

,985 I I I I I I I I I 0 2 4 6 8 10 12 14 16 18 20

T I E , SEC

FIGURE 12. - COMPARISON OF THE RESPONSES OF THE LINEAR MODEL WITH THE NONLINEAR SIMULATION (OPEN LOOP). INPUT = eopov: OUTPUT = sHpFT.

1.03 NONLINEAR

SIMULATION

1.01

0

w -4

'i (a, CtIAhBER PRESSURE OUTPUl

-

T I E , SEC

(b ) HIGH PRESSURE OXIDIZER TURBINE PRESSURE OUTPUT.

FIGURE 1 3 . - COMPARISON OF THE RESPONSES OF THE IDEN- T I F I E D MODEL WITH THE NONLINEAR SIMULATION (OPEN LOOP). ( a ) INPUT = eopov: OUTPUT = pC. ( b ) INPUT = eopov: OUTPUT = pHpOT.

11

NONLINEAR ----- I ----- 1.06 SIMULATION

n ( a ) HIGH PRESSURE OXIDIZER TURBINE

'-k TEMPERATURE.

W N -

I I I ' I I 0 2 4 6 8 10 12 14 16 18 20

TIME. SEC

( b ) HIGH PRESSURE OXIDIZER TURBINE SPEED.

FIGURE 14. - COMPARISON OF THE RESPONSES OF THE IDENTIFIED MODEL WITH THE NONLINEAR SIMULATION

THOpT.

(OPEN LOOP). ( a ) INPUT = eopov; OUTPUT =

( b ) INPUT = Bopov; OUTPUT = SHpOT.

1.015

1.010

1.005

1.000

.995

.990

.985 c L a

g .980 n

$ 1.05

si! 1.04

W N -

1.03

1.02

1.01

1 .oo .99

.98

.97

.96

.95

- ----- NONLINEAR -----. SIMULATION -

- MODEL -

-

( a ) HIGH PRESSURE FUEL TURBINE PRESSURE.

c I

I

0 2 4 6 8 10 12 14 16 18 20 T I E . SEC

(b ) HIGH PRESSURE FUEL TURBINE TEMPERATURE.

FIGURE 15. - COMPARISON OF THE RESPONSES OF THE IDENTIFIED MODEL WITH THE NONLINEAR SIMULATION

PHpFT.

(OPEN LOOP). ( a ) INPUT = eFpov: OUTPUT =

( b ) INPUT = BFpov: OUTPUT = THpFT.

1 2

1.03 r Y t

1.02 -

1.01

1-00 c L

- ORIGINAL PAGE IS OF POOR QUALmY

.99 - NONLINEAR -----

SIMULATION .98 - - MODEL

n w N -

i I I

1 . 0 1 5 c*

P 1.010

1.005

. 9 7 ( a ) MIXTURE RATIO.

\ I I I I I I I I I

fl

U -

. . _ _ _

1 .OOo

.995

.990

. 9 8 5 0 2 4 6 8 10 12 14 16 18 20

H 6U*

BACKLASH AND

STICTION

TIME. SEC

(b) HIGH PRESSURE FUEL TURBINE SPEED.

FIGURE 1 6 . - COMPARISON OF THE RESPONSES OF THE IDENTIFIED MODEL WITH THE NONLINEAR SIMULATION

( b ) INPUT = BFPOV: OUTPUT = SHpFT. (OPEN LOOP). ( a ) INPUT = eFpoV; OUTPUT = MR.

FIGURE 17. - PROPOSED SSME SYSTEM DYNAMICS MODEL AT 100% RATED POWER. .

1 3

National 4eronautics and Space Adminisfration

1. Report No.

NASA TM-I01982

Report Documentation Page 2. Government Accession No.

17 Key Words (Suggested by Author(s))

SSME Identification Rocket Dynamics

7. Author@)

Ahmet Duyar, Ten-Huei Guo, and Walter C . Merrill

18. Distribution Statement

Unclassified - Unlimited Subject Category 20

9 Performing Organization Name and Address

National Aeronautics and Space Administration Lewis Research Center Cleveland, Ohio 4413.5-3191

19. Security Classif. (of this report) 20. Security Classif. (of this page)

Unclassified Unclassified

2. Sponsoring Agency Name and Address

National Aeronautics and Space Administration Washington, D.C. 20546-0001

21. No of pages 22. Price'

14 A03

3. Recipient's Catalog No.

5. Report Date

6. Performing Organization Code

8. Performing Organization Report No.

E-4680

0. Work Unit No.

582-01-11

1. Contract or Grant No.

3. Type of Report and Period Covered

Technical Memorandum

4. Sponsoring Agency Code

5. Supplementary Notes

Prepared for the 1989 American Control Conference cosponsored by the AIAA, ASME, IEEE, AIChE, AISE, ISA, and SCS, Pittsburgh, Pennsylvania, June 21-23, 1989. Ahmet Duyar, Summer Faculty Fellow in 1988; presently at Mechanical Engineering Dept., Florida Atlantic University, Boca Raton, Florida 33432; Ten-Huei, Sverdrup Technology, Inc., NASA Lewis Research Center Group, Cleveland, Ohio 44135; Walter C. Menill, NASA Lewis Research Center.

16. Abstract

System identification techniques are used to represent the dynamic behavior of the Space Shuttle Main Engine. The transfer function matrices of the linearized models of both the closed loop and the open loop system are obtained by using the recursive maximum likelihood method.

NASA FORM 1626 E T 86 *For Sale by the National Technical Information Service, Springfield, Virginia 221 61


Recommended