+ All Categories
Home > Documents > Importance of DSC Rapid Cooling for the Analysis of Plastic ...

Importance of DSC Rapid Cooling for the Analysis of Plastic ...

Date post: 12-Jan-2017
Category:
Upload: dotu
View: 216 times
Download: 2 times
Share this document with a friend
5
Introduction Differential scanning calorimetry (DSC) is widely used to characterize the thermophysical properties of polymers. DSC can measure important thermoplastic properties including: • Melting temperature • Heat of melting • Percent crystallinity • Tg or softening Crystallization Presence of recyclates/regrinds Nucleating agents Plasticizers Polymer blends (presence, composition and compatibility) Most DSC experiments on polymers are conducted by heating from ambient conditions to above the melting temperature. But, for some thermoplastics, which do exhibit differences during processing, standard heating DSC may not show any significant differences. A more sensitive test, for detecting subtle, but important differences between different batches of a given thermoplastic, is the DSC isothermal crystallization test. During the manufacture of plastic products, such as bottles, fibers, films, containers, housings, pipes and trays, the thermoplastic is melted, cooled, thermoformed and crystallized. The complete Thermal Analysis APPLICATION NOTE Importance of DSC Rapid Cooling for the Analysis of Plastic Microwave Food Trays DSC 8500
Transcript

Introduction

Differential scanning calorimetry (DSC) is widely used to characterize the thermophysical properties of polymers. DSC can measure important thermoplastic properties including:

• Meltingtemperature

• Heatofmelting

• Percentcrystallinity

• Tgorsoftening

• Crystallization

• Presenceofrecyclates/regrinds

• Nucleatingagents

• Plasticizers

• Polymerblends(presence,compositionandcompatibility)

MostDSCexperimentsonpolymersareconductedbyheatingfromambientconditionstoabovethemeltingtemperature.But,forsomethermoplastics,whichdoexhibitdifferencesduringprocessing,standardheatingDSCmaynotshowanysignificantdifferences.Amoresensitivetest,fordetectingsubtle,butimportantdifferencesbetweendifferentbatchesofagiven thermoplastic,istheDSCisothermalcrystallizationtest.

Duringthemanufactureofplasticproducts,suchasbottles,fibers,films,containers,housings,pipesandtrays,thethermoplasticismelted,cooled,thermoformedandcrystallized.Thecomplete

Thermal Analysis

a p p l i c a t i o n n o t e

Importance of DSC Rapid Cooling for the Analysis of Plastic Microwave Food Trays

DSC 8500

2

DSCcoolingexperimentsareimportantfortheassessmentof the effects of these nucleating agents on the crystallization propertiesofthePETresin.StandardDSCmaynotrevealobviousdifferencesbetweentwodifferentnucleatedresins,whereasthesedifferenceswillbecomeevidentduringDSCcoolingexperiments.Forthehighlynucleatedandfastcrys-tallizingPETmicrowavefoodtrays,thePowerCompensatedDSCisnecessaryforthebestin-depthstudyoftherapidcrystallization of the resin.

Experimental

TheheatflowpropertiesoftwodifferentPETmicrowavefoodtrays(Tray1andTray2)werestudied,alongwiththenon-nucleatedPETprecursorresin.Theexperimentconditionspresentedinthetablewereusedtostudythecooling propertiesofthePETresins.

TheoutstandingrapidresponseofthePowerCompensatedDSCmaybeseeninFigure1.Thisplotshowstheheating andcoolingperformanceofthePowerCompensatedDSCatheatingandcoolingratesof400and200˚C/minbetween200and0˚C.TheDSCwasequippedwiththerefrigerated coolingsystem,IntracoolerIIandaheliumpurgewasapplied.Theactualsampletemperature(red)andprogramtemperature(blue)aredisplayedasafunctionoftime.Thesampletemperaturetrackstheprogramtemperatureverywellevenattheballisticcoolingrateof400˚C/minandtheuseofarefrigeratedcoolingsystem,ratherthanliquidnitrogen.NootherDSCinstrumentcanmatchthislevelofperformance.

Experimental Conditions

Instrument Pyris 1 DSC

Cooling system Intracooler II

Sample pan Crimped aluminum standard pan

Sample mass Approximately 10 mg

Purge gas Helium

Cooling rate (isothermal 500 ˚C/min from 300 ˚C crystallization studies)

Cooling rates for cool-reheat 400, 300, 100 and 50 ˚C/min experiments between 300 and 0 ˚C

Heating rate for heating 20 ˚C/min experiments

studyofthebehaviorofplastics,whicharemelt-processed,requireshavingaDSCinstrumentthatiscapableofrapidcoolingtosimulateandfullyexplorethepropertiesofthesematerials.

Tostudythemelt-crystallizationpropertiesofpolymers, severalinformativeDSCtestscanbeconducted:

• Isothermalcrystallization(atasingleormultipletemperatures)

• Cooling(atdifferentratesfromveryfasttonormal)

• Reheatingaftercooling(atdifferentrates)

ThesuccessfulmeasurementoftheseparticulartestsrequiresaDSCinstrumentwithaveryfastresponsetime.Thisisbecausemanythermoplasticscancrystallizerapidlywhencoolingfromthemelt.ItisimportantthattheDSCbeabletocoolandequilibrateasfastaspossibleinordertodetectthecompletecrystallizationexothermicpeak.TheDSCwiththefastestresponsetimeisthePyris™PowerCompensatedDSCfromPerkinElmer.

Power Compensated DSC

ThePyrisDiamondDSCfromPerkinElmerusesthePowerCompensatedapproach.ThisDSCusestwoindependentlycontrolled,lowmass(1g)sampleandreferencefurnaces.ThelowmassofthePowerCompensatedfurnacesyieldsaDSC with low thermal inertia and the fastest response time ofanyDSCinstrumentavailable.

ThePowerCompensatedDSCallowssamplestobelinearlyheatedand/orcooledatratesasfastas500˚C/min.Thisisimportant when measuring isothermal crystallization times andbehaviorsofpolymers.

Incontrast,heatfluxDSCinstrumentsemployalargemassfurnace.SomeDSCdevicesuseasilverblockwithamassof100gormore.ThisprovidesamuchhigherthermalinertiaandaslowerinherentDSCresponsetime.TheheatfluxDSCinstrumentscannotachievetheveryfastcoolingandheatingprovidedbythePowerCompensatedDSC.

Need for Fast Cooling for Microwave Food Trays

ThethermophysicalpropertiesofplasticmicrowavefoodtrayswerestudiedusingPowerCompensatedDSC.Themicrowavefoodtraysmustbecapableofwithstandinglargeandrapidextremesintemperatures.Thetraysaregenerally thermoformedfrompolyethyleneterephthalate(PET)sincethispolymerissemicrystallineandexhibitsthedesiredend-usepropertiessuchasstability,easeofprocessingandimpactresistance.However,tofurtherenhancethethermalstabilityofthePETpolymerforuseasmicrowavefoodtrays,thecrystallinityofthepolymerisincreasedbyaddingnucleatingagents.TheseagentsinduceahigherlevelofcrystallizationofthePETresinduringcoolingfromthemelt.Higher concentrationsofagivennucleatingagentwillresultina higherlevelofcrystallinityoftheplasticduringprocessing.

3

Whenthecooledfoodtrayisreheated,thecoldcrystallizationexothermicpeakoccursatamuchlowertemperature (134˚C)andismuchsmallerthanthatofthePETchip.Thesemajordifferencesarereflectiveofthechanges causedbythepresenceofthenucleatingagents.

Forqualityassurancepurposes,themanufacturersoftheplasticmicrowavefoodtraysliketoinduceamorewell-defined cold crystallization peak for the nucleating resin. Thisprovidesasensitiveindicatorastotheeffectivenessofthenucleatingagentsbasedonthepeakshape,magnitudeandtemperature.However,thisrequiresballisticallycooling thePETresinfromthemelttodevelopanamorphousmaterial. DisplayedinFigure4aretheDSCresultsobtainedonthefoodtrayPETresinwhencooledattheveryfastrateof400˚C/min.Itmaybeseenthatawell-definedcoldcrystallizationpeakisobservedat131˚C.ThisispossibleonlywiththecoolingcapabilityprovidedbythePowerCompensatedDSCforsuchheavilynucleatedpolymers.

Results

DisplayedinFigure2aretheDSCresultsobtainedonthePETprecursorpolymerbeforethenucleatingagentsareadded.Theplotshowsthefirstandsecondheatingresults.ThePETresinwasrapidlycooledatarateof200˚C/minbetweenthefirstandsecondheats.Duringthefirstheating,nocrystallizationexothermicpeakisobservedreflectingthefactthatthepolymerhasahighlevelofcrystallinityinitsasreceivedstate.Theresinundergoesmeltingat261˚Cwithaheatofmeltingof66.7J/g.

WhenthePETsampleisrapidlycooleddowntoroom temperatureandthenreheated,awell-definedcoldcrystal-lizationpeakisobtainedat173˚C,whichistypicalforthispolymer.Theheatofcrystallizationisfoundtobe30.1J/g.Duringthesecondheatingsegment,thePETundergoesmeltingat257˚Cwithaheatofmeltingof33.0J/g.Thenet heatofcrystallization(melting–coldcrystallization)is2.9J/g,whichisreflectiveofanearlyamorphouspolymer.This demonstratestheabilityofthePowerCompensatedDSCto yield an amorphous polymer directly in the DSC with the applicationofafastcoolingrate.Incomparison,manyheatfluxDSCinstrumentsrequirethatthesamplebephysicallyremovedfromthehotcellinordertogenerateanamor-phousstatebymanualquenchcooling.

TomakethePETresinsuitableforthemanufactureofthemicrowavefoodtrays,nucleatingagentsareaddedtothepolymer.Thepresenceofthesenucleatingadditivesdrasti-cally changes the morphology of the polymer allowing it to crystallizemuchmorerapidly.DisplayedinFigure3aretheDSCresultsobtainedfromthePETsampleextractedfromamicrowavefoodtray(Tray1).Thesamplewasheatedthrough its melt temperature and then cooled at a rate of 200˚C/minbacktoroomtemperature.

Figure 1. Fast heating and cooling performance of the Power Compensated DSC.

Figure 2. DSC results for PET chip (before additives) showing as received resin and resin after being melted and cooled at 200 ˚C/min.

Figure 3. DSC heating results for PET microwave tray resin after cooling from the melt at 200 ˚C/min.

ThisdemonstratesthegreatimportanceoftheneedfortheveryfastcoolingtogetacompletepictureofthecrystallizablenatureofthisPETresinmaterial.

Additional supplementary characterization information can beobtainedbyperformingisothermalcrystallizationmeasure-mentsonthenucleatedPETresins.Withthistest,asampleof polymer is heated up through its melt and held under isothermalconditionsforseveralminutestodestroytheexistingcrystallinestructure.Thesampleisthenballisticallycooledtoatemperaturebelowthemeltingtemperaturetoallow the polymer to crystallize under tightly controlled condi-tions.DSCmonitorstheresultingcrystallizationexothermicpeak as a function of time.

Theisothermalcrystallizationtestprovidesvaluableinformationon polymers including:

• Averagemolecularweight

• Molecularweightdistribution

• Presenceofrecyclates/regrinds

• Plasticizers

• Nucleatingagents,pigmentsorotheradditives

• Copolymers

• Injectionmoldinglubricantsorflowenhancers

Becauseofitsveryfastresponsetimeandabilitytocoolquickly,thePowerCompensatedisideallysuitedforthemeasurement of the isothermal crystallization of polymers.

DisplayedinFigure7aretheisothermalcrystallizationresultsgeneratedforTray1.Thesamplewascooledfrom300˚Cto the target isothermal temperatures at a cooling rate of 500˚C/min.Thecrystallizationbehaviorwasmonitoredattemperaturesof230,225,220,215and210˚C.Atthetemperatureof210˚C,theresinreacheditsmaximumrateofcrystallizationinabout30seconds.ThisdemonstratestheultrafastresponsivenessofthePowerCompensatedDSC.

Incontrast,mostheatfluxDSCunitscanheatatamaximum rateofonly100˚C/min.Thisisnotfastenoughtoavoidcrystallization for fast crystallizing polymers such as nylon ornucleatedPET.ShowninFigure5aretheDSCresultsgeneratedforthePETtrayresinwhencooledfromthemeltatarateof100˚C/min.Thecoldcrystallizationpeakisjustbarelyobserved,astheseresultsdemonstrate.MuchvaluablecharacterizationinformationontheeffectsofthenucleatingagentsislostwhenrequiredtousetheslowerheatingratesnecessitatedwithheatfluxDSC.ThePyrisPowerCompensatedDSCprovidestheabilitytocooloveranextremelywiderangeofratesforthemostcomprehensivecharacterization information.

TheeffectsoftheappliedcoolingrateforthePETtrayresinsmaybeseeninFigure6.Thisshowsadirectoverlayoftheheatingcurvesobtainedaftercoolingfromthemeltat400,200,100and50˚C/min.DuetotheheavynucleationofthePETresin,thereisamajorchangeintheresultswhenthecoolingisslowedfromtheveryfast400˚C/minto200˚C/min.

4

Figure 4. DSC results for PET tray resin after cooling at 400 ˚C/min.

Figure 6. Overlay of DSC results on PET tray after cooling at rates of 400, 200, 100 and 50 ˚C/min.

Figure 5. DSC results for PET tray resin after cooling at 100 ˚C/min.

ThesedifferenceswouldnotbeapparentwithstandardheatingDSC,butareverynoticeablewiththeDSCisothermal crystallizationmeasurements.ThemeasurementoftheveryfastcrystallizationresponsesofthesenucleatedresinsrequiresaDSCwithanultra-fastresponsetime,andthisisthePowerCompensatedDSC.

Summary

Mostplasticprocessesrequirethatthepolymerbemeltedandcooledduringthethermoformingstage.Themostcomprehensivecharacterizationofplasticsundergoingmeltprocessingnecessitatesthatthematerialbestudiedunderbothheatingandcoolingconditions.Thecoolinganalysisallows the effects of nucleating and plasticizing agents to bemorefullyquantified.OftentimesthermoplasticsmaynotexhibitanysignificantdifferencesbystandardheatingDSC.However,whencoolingstudiesareperformed,signifi-cantdifferences,duetothepresenceofnucleatingagentsorflowenhancers,maybecomeapparent.SuchDSCdataisextremelyvaluableforqualityassuranceorforprocesscontrolpurposes.ThesuccessfulperformanceofcoolingstudiesrequiresaDSCwithafastresponsetimesothatthesamplecanbeanalyzedatballisticcoolingrates.TheDSCinstrumentwiththefastestresponsetimeandtheabilitytoheatandcoolballistically(upto500˚C/min)istheDiamondPowerCompensatedDSCfromPerkinElmer.

AnotherPETmicrowavetray(Tray2)wasanalyzedusingthe DSC isothermal crystallization test and these results are displayedinFigure8.ThisresinwasclearlydifferentinitsresultingcrystallizationbehaviorascomparedtotheTray1sample in that it took longer for it to crystallize under identical conditions.ThisindicatesthattheTray1resinwasmoreheavilyloadedwithnucleatingagentsascomparedtoTray2.

ThedifferencesbetweenthecrystallizationbehaviorsoftheTray1andTray2PETresinsismoreevidentinanoverlay(Figure9)oftheisothermalcrystallizationbehaviorsat220˚C.Tray1clearlycrystallizesmorerapidlyascomparedtoTray2.

Figure 7. Isothermal crystallization results for PET Tray 1.

Figure 8. Isothermal crystallization results for PET Tray 2.

Figure 9. Overlay of DSC isothermal crystallization results at 220 ˚C for PET microwave trays 1 and 2.

For a complete listing of our global offices, visit www.perkinelmer.com/ContactUs

Copyright ©2011, PerkinElmer, Inc. All rights reserved. PerkinElmer® is a registered trademark of PerkinElmer, Inc. All other trademarks are the property of their respective owners. 010009_01

PerkinElmer, Inc. 940 Winter Street Waltham, MA 02451 USA P: (800) 762-4000 or (+1) 203-925-4602www.perkinelmer.com


Recommended