+ All Categories
Home > Science > Improving estimates of GHG emission factors from livestock production systems on smallholder farms

Improving estimates of GHG emission factors from livestock production systems on smallholder farms

Date post: 20-Aug-2015
Category:
Upload: ilri
View: 23,743 times
Download: 0 times
Share this document with a friend
1
Improving es-mates of GHG emission factors from livestock produc-on systems on smallholder farms David Pelster, Klaus Bu1erbachBahl, Mariana Rufino, John Goopy and Todd Rosenstock Lack of data on GHG emissions from African agriculture suggests inaccuracies in na6onal inventories In subSaharan Africa, agriculture is es6mated to account for over 60% of GHG emissions, primarily due to land use change and enteric methane produc6on in ruminants; and over 80% of agriculture (both area and produc6on) is smallholder systems No empirical studies on enteric CH4 emissions and very few studies on GHG emissions from soils in these systems Current na6onal SSA inventories therefore are based on IPCC 6er 1 methodology; Using emission factors from OECD states with large industrial farming systems that likely do not represent smallholder systems where manure applica6ons, not synthe6c fer6lizers are dominant source of nutrients, and where ruminant fodder is generally proteinpoor and food availability is oRen limited (The only available study [S. Africa] es6mated that the Tier 1 emission factors for ruminant CH 4 produc6on is about 50% of actual emissions) Pictures Can increase intensity of management (greater use of fer6lizers) without increasing soil GHG emissions Suggests that increased nutrient inputs that increase agriculture / livestock produc6on could be considered mi6ga6on as it also can decrease emissions per unit Development of emission factors for using Tier II methodology to calculate na6onal GHG inventories Determine feed strategies for increasing animal produc6on while reducing CH 4 emission intensi6es David Pelster or Klaus Bu[erbachBahl [email protected] ; k.bu[[email protected] ● P.O. Box 3070900100 Nairobi Kenya ● +254 20 422 3513 h[p://aghealth.wordpress.com ● www.ilri.org Acknowledgements: The CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and the Interna6onal Livestock Research Ins6tute (ILRI) This document is licensed for use under a Crea6ve Commons A[ribu6on –Non commercialShare Alike 3.0 Unported License September 2014 September 2014 1. Soil GHG emissions from mixed smallholder farms did not vary by management (“intensive” vs extensive) however differences between land classes were noted 2. Soil cumula6ve emissions tended to be much lower than previous studies in OECD states 3. S6ll require measurements of enteric CH 4 produc6on Introduc6on Materials and methods Results Research into use Landscape analysis and targe-ng Landscape implementa-on Mul-dimensional evalua-on of mi-ga-on op-ons Scalable and social acceptable mi-ga-on op-ons Systemlevel es-ma-on of mi-ga-on poten-al Setup of stateoftheart laboratory facili-es Training of laboratory and field staff Phase III: Development of systems level mi-ga-on op-ons Phase I: Targe-ng, priority seFng and infrastructure Phase II: Data acquisi-on Capacity building Phase IV: Implementa-on with development partners Produc-vity assessment GHG measurements Profitability evalua-on Social acceptability assessment Joint scien-fic & stakeholder evalua-on UPCOMING Stra6fied into 5 land classes (based on remote sensing); 3 field types (based on farm management); and 3 broad vegeta6on classes Sampled 1x per week for one year at 60 farms in western Kenya using sta6c chambers (3 reps) Analyzed soils once for total C/N content, BD and texture and 4 6mes for soil IN concentra6on Classify livestock produc6on systems and determine herd numbers within each class Plan to use enclosed respira6on chambers for measuring ruminant CH 4 produc6on Soil GHG emissions over 6me: a) mg CCO 2 m 2 hr 1 ; b) μg CCH 4 m 2 hr 1 ; c) μg NN 2 O m 2 hr 1 ; d) Soil moisture content; e) soil IN (NH 4 + NO 3 ) concentra6ons Note: Do[ed ver6cal lines indicate plan6ng, while dashed lines indicate harves6ng Landclass: 1 = lowland subsistence farming; 2 = cash crops; 3 = highland subsistence farming; 4 = highland mixed farming; 5 = grasslands / pasture Cumula6ve soil GHG emissions over 6me for the 5 different land classes. Bars indicate 1 SEM Cumula6ve CCO 2 emissions (g C m 2 yr 1 ) Cumula6ve CCH 4 emissions (mg C m 2 yr 1 ) Cumula6ve NN 2 O emissions (mg N m 2 yr 1 )
Transcript
Page 1: Improving estimates of GHG emission factors from livestock production systems on smallholder farms

Improving  es-mates  of  GHG  emission  factors  from  livestock  produc-on  systems  on  smallholder  farms  David  Pelster,  Klaus  Bu1erbach-­‐Bahl,  Mariana  Rufino,  John  Goopy  and  Todd  Rosenstock  

Lack  of  data  on  GHG  emissions  from  African  agriculture  suggests  inaccuracies  in  na6onal  inventories  •  In  sub-­‐Saharan  Africa,  agriculture  is  es6mated  to  account  for  over  60%  of  GHG  emissions,  primarily  due  to  land  use  change  and  enteric  methane  produc6on  in  

ruminants;  and  over  80%  of  agriculture  (both  area  and  produc6on)  is  smallholder  systems    •  No  empirical  studies  on  enteric  CH4  emissions  and  very  few  studies  on  GHG  emissions  from  soils  in  these  systems  

•  Current  na6onal  SSA  inventories  therefore  are  based  on  IPCC  6er  1  methodology;  •  Using  emission  factors  from  OECD  states  with  large  industrial  farming  systems  that  likely  do  not  represent  smallholder  systems  where  manure  

applica6ons,  not  synthe6c  fer6lizers  are  dominant  source  of  nutrients,  and  where  ruminant  fodder  is  generally  protein-­‐poor  and  food  availability  is  oRen  limited  (The  only  available  study  [S.  Africa]  es6mated  that  the  Tier  1  emission  factors  for  ruminant  CH4  produc6on  is  about  50%  of  actual  emissions)  

Pictures  

•  Can  increase  intensity  of  management  (greater  use  of  fer6lizers)  without  increasing  soil  GHG  emissions  •  Suggests  that  increased  nutrient  inputs  that  increase  agriculture  /  livestock  produc6on  could  be  considered        mi6ga6on  as  it  also  can  decrease  emissions  per  unit  

•  Development  of  emission  factors  for  using  Tier  II  methodology  to  calculate  na6onal  GHG  inventories    •  Determine  feed  strategies  for  increasing  animal  produc6on  while  reducing  CH4  emission  intensi6es  

David  Pelster  or  Klaus  Bu[erbach-­‐Bahl  [email protected]  ;  k.bu[erbach-­‐[email protected]    ●  P.O.  Box  30709-­‐00100  Nairobi    Kenya    ●    +254  20  422  3513    h[p://aghealth.wordpress.com  ●      www.ilri.org          Acknowledgements:  The  CGIAR  Research  Program  on  Climate  Change,  Agriculture  and  Food  Security  (CCAFS)  and  the  Interna6onal  Livestock  Research  Ins6tute  (ILRI)  

This  document  is  licensed  for  use  under  a  Crea6ve  Commons  A[ribu6on  –Non  commercial-­‐Share  Alike  3.0  Unported  License                                                                                                                        September  2014  

September  2014  

1.  Soil  GHG  emissions  from  mixed  smallholder  farms  did  not  vary  by  management  (“intensive”  vs  extensive)  however  differences  between  land  classes  were  noted  

2.  Soil  cumula6ve  emissions  tended  to  be  much  lower  than  previous  studies  in  OECD  states  

3.  S6ll  require  measurements  of  enteric  CH4  produc6on  

Introduc6on  

Materials  and  methods  

Results  

Research  into  use  

Landscape  analysis  and  targe-ng  

Landscape  implementa-on  

Mul--­‐dimensional  evalua-on  of  mi-ga-on  op-ons  

Scalable  and  social  acceptable    mi-ga-on  op-ons  

System-­‐level  es-ma-on  of  mi-ga-on  poten-al    

Set-­‐up  of  state-­‐of-­‐the-­‐art  laboratory  facili-es  

Training  of  laboratory  and  field  staff  

Phase  III:  Development  of  systems-­‐level  mi-ga-on  op-ons  

Phase  I:    Targe-ng,  priority  seFng  and  infrastructure  

Phase  II:    Data  acquisi-on  

Capacity  building  

Phase  IV:  Implementa-on  with  development  partners  

Produc-vity  assessment  

GHG  measurements   Profitability  evalua-on  

Social  acceptability  assessment  

Joint  scien-fic  &  stakeholder  evalua-on  

UPCOMING  

•  Stra6fied  into  5  land  classes  (based  on  remote  sensing);  3  field  types  (based  on  farm  management);  and  3  broad  vegeta6on  classes  

•  Sampled  1x  per  week  for  one  year  at  60  farms  in  western  Kenya  using  sta6c  chambers  (3  reps)  

•  Analyzed  soils  once  for  total  C/N  content,  BD  and  texture  and  4  6mes  for  soil  IN  concentra6on  

•  Classify  livestock  produc6on  systems  and  determine  herd  numbers  within  each  class  

•  Plan  to  use  enclosed  respira6on  chambers  for  measuring  ruminant  CH4  produc6on  

Soil  GHG  emissions  over  6me:  a)  mg  C-­‐CO2  m-­‐2  hr-­‐1;  b)  μg  C-­‐CH4  m-­‐2  hr-­‐1;  c)  μg  N-­‐N2O  m-­‐2  hr-­‐1;  d)  Soil  moisture  content;  e)  soil  IN  (NH4  +  NO3)  concentra6ons  

Note:  Do[ed  ver6cal  lines  indicate  plan6ng,  while  dashed  lines  indicate  harves6ng  

Landclass:  1  =  lowland  subsistence  farming;  2  =  cash  crops;  3  =  highland  subsistence  farming;  4  =  highland  mixed  farming;  5  =  grasslands  /  pasture  

Cumula6ve  soil  GHG  emissions  over  6me  for  the  5  different  land  classes.  Bars  indicate  1  SEM  

Cumula6

ve  C-­‐CO2  e

missions  (g  C  m

-­‐2  yr-­‐1)    

Cumula6

ve  C-­‐CH 4  emissions  (m

g  C  m

-­‐2  yr-­‐1)    

Cumula6

ve  N-­‐N

2O  emissions  (m

g  N  m

-­‐2  yr-­‐1)    

Recommended