+ All Categories
Home > Documents > IN SITU SOIL PROPERTIES FOR SEISMIC SITE RESPONSE · 2019. 11. 20. · dynamic analyses of...

IN SITU SOIL PROPERTIES FOR SEISMIC SITE RESPONSE · 2019. 11. 20. · dynamic analyses of...

Date post: 18-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
73
IN SITU SOIL PROPERTIES FOR SEISMIC SITE RESPONSE Takaji Kokusho Professor, Dr. of Eng., Registered Eng. Chuo University, Tokyo
Transcript
  • IN SITU SOIL PROPERTIES FOR SEISMIC SITE RESPONSE

    Takaji KokushoProfessor, Dr. of Eng., Registered Eng.

    Chuo University, Tokyo

  • Major References for presentation(1/2):

    Aoyagi, T. (2000): Inversion analysis for soil properties based on vertical array record using the extended Bayesian method, Master’s thesis, Graduate school of Chuo University.

    Fukushima, Y. and Midorikawa, S.(1994): Evaluation of site amplification factors based on average characteristics of frequency dependent Q-1 of sedimentary strata, J. Struct. Constr. Eng. Architectural Institute of Japan, No.460, 37-46, 1994.

    Iwasaki, and Tatsuoka, F. (1978): Shear moduli of sands under cyclic torsional shear loading, Soils and Foundations, Vol.18, No.1, 39-56.

    Kokusho, T. (1980): Cyclic triaxial test of dynamic soil properties for wide strain range. Soils and Foundations: Vol.20, No.2, 45-60.

    Kokusho, T. (1982): Dynamic soil properties and nonlinear seismic response of ground, PhD Dissertation presented to Tokyo University (in Japanese)

    Kokusho,T., Yoshida,Y. and Esashi,Y. (1982): Dynamic soil properties of soft clay for wide strainrange. Soils and Foundations: Vol.22, No.4, 1-18.

    Kokusho,T. and Tanaka,Y. (1994): Dynamic properties of gravel layers investigated by in-situ freezing sampling. Geotechnical Special Publication No44 -Ground Failures under Seismic Conditions, ASCE Convention (Atlanta), 121-140.

  • Major References for presentation(2/2):

    Kokusho, T. Sato, K. and Matsumoto, M. (1996): Nonlinear dynamic soil properties back-calculated from strong motions during Hyogoken-Nambu Earthquake. Proc. 11th World Conference on Earthquake Engineering, Acapulco, CD publication.

    Kokusho, T. & Matsumoto, M. (1998): Nonlinearity in site amplification and soil properties during the 1995 Hyogoken-Nambu earthquake. Special Issue on Geotechnical Aspects of the January 17, 1995Hyogoken-Nambu Earthquake, No.2; Soils and Foundations: 1-10.

    Kokusho, T. and Aoyagi, T. (2001): Insitu nonlinear soil properties back-calculated from vertical array records of 1995 Kobe earthquake, Proc. International Conference on In Situ Measurement of Soil Properties and Case Histories, Indonesian Geotechnical Society, Bali, 473-480.

    Kokusho, T. and Mantani, (2002):. Seismic amplification evaluation in a very deep down hole array site, 12th European Conference on Earthquake Engineering, Paper Reference 797.Nuclear Power Engineering Corporation(2001): Study of Evaluation Methods for Seismic Wave Propagation Characteristics, Report of Siting Reliability Studies relating to seismic design for nuclear power plants (in Japanese).

    Seed, H. B., Wong, R. T., Idriss, I. M. and Tokimatsu, K. (1986): Moduli and damping factors for dynamic analyses of cohesionless soils, Journal of Geotechnical Engineering, Vol.112, No.11, 1016-1032.

    Suetomi, I. (1997): A Program manual for optimization of soil structure by Bayes Method. Central Research Institute of Sato Kogyo Com. Ltd, (in Japanese).

  • UNSOLVED PROBLEMS FOR SEISMIC SITE RESPONSE

    1. In situ modulus degradation compared with laboratory tests.

    2. In situ damping compared with laboratory tests.

    3. Combination of strain-dependency effect and pore pressure-buildup effect on degradation for larger strains.

    4. Amplification in vertical motions and related soil properties.

    5. Amplification in deep ground and related soil properties; Effect of confining stress-dependency and frequency dependency of damping.

  • Topics of the presentation:

    Seismic site amplification during strong earthquakes based on vertical

    array recordsBack-calculated in situ soil properties

    versus lab dataSoil properties for deep soil response

  • Locations of 4 vertical array sites around Kobe City

  • 0 500 1000 1500 2000 2500

    0

    20

    40

    60

    80

    100

    Vp-initialVs-initialN-value

    Vp, Vs by PS-logging (m/s)

    0 50 100 150 200 2SPT N-value

    Dep

    th (m

    )

    WLGL-0m

    GL-16.4m

    GL-32.4m

    GL-83.4m

    PI

    GL-4.0S/G

    CHS

    G/S

    G

    CH

    G

    Seismograph

    0 1000 2000 3000 4000

    0

    20

    40

    60

    80

    100

    Vp-initialVs-initialN-value

    Vp, Vs by PS-logging (m/s)

    Dep

    th (m

    )

    0 100 200 300 40SPT N-value

    C

    SF

    G

    M

    SM WL

    SF

    SF

    M/G

    M

    Rock

    KNK

    GL-2.0

    GL-0m

    GL-25m

    GL-100m

    Seimograph

    0 1000 2000 3000

    0

    20

    40

    60

    80

    100

    Vp-initialVs-initialN-value

    Vp, Vs by PS-logging (m/s)

    Dep

    th (m

    )

    0 50 100 150 200 250 300 3SPT N-value

    SM

    M

    G

    GS

    CH

    G

    M

    TKSWL

    GL-2.5G

    GL-0m

    GL-25m

    GL-100m

    Seismogragh

    0 500 1000 1500 2000 2500 3000 3500

    0

    20

    40

    60

    80

    100

    Vp-initialVs-initialN-value

    Vp, Vs by PS-logging (m/s)

    Dep

    th (m

    )

    SPT N-value

    SMMGSC

    G

    CHSFCH

    CH

    CH

    CH

    WL

    SGK

    GL-2.0

    0 50 100 150 200 250 300 35GL-0m

    GL-25m

    GL-97m

    Seimograph

    Soil profiles, Vp, Vs, SPT-N & Seismometer installation levels in 4 vertical array sites

  • -100

    -80

    -60

    -40

    -20

    0

    0 100 200 300 400 500 600 700 800 900 1000

    A cceleration(gal)

    EW (PI) N S U D EW (K N K ) N S U D EW (TK S) N S U D EW (SG K ) N S U DD

    epth(m

    )

    Max. Acc. in 4 vertical array sites during Kobe EQ

  • Vs-ratio (base to surface) versus amplification ratio of maximum acceleration

    0 2 4 6 8 10 120

    2

    4

    6

    8

    10

    12

    本震直後の余震

    )(

    Shima(1978)

    1.0

    0.33

    PI MS PI AS(前震) PI AS(余震) KNK MS KNK AS SGK MS SGK AS TKS MS TKS AS

    Surface Acc/Base Acc

    Vs ratio: Base/Surface

    F.SA.S

    AS immediatelyafter MS

  • Max. Base Acc. versus Acc. amplification (Surf./Base)

    1 10 100 10000

    2

    4

    6

    8

    10

    本震直後の余震

    )(

    PI M S PI A S(前震) PI A S(余震) K N K M S K N K A S TK S M S TK S A S SG K M S SG K A S

    Surface Acc/Base Acc

    B ase A cc (gal)

    F.SA.SAS immediately

    after MS

  • 0.01 0.1 1 10 1000

    2

    4

    6

    8

    10

    PI M S PI A S(前震) PI A S(余震) K N K M S K N K A S TK S M S TK S A S SG K M S SG K A S 回帰直線

    Surface Vel/Base Vel

    B ase V el (kine)

    Max. Base Vel. versus Max. Vel. Amplification (Surf./Base)

  • 0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    10( After Shock : before Main Shock

    PI EW-direction GL-0m/GL-83.4m

    Average

    94 06281308

    94 07281001

    94 10241151

    94 11092026

    94 11100038

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    10( After Shock : before Main Shock

    PI NS-direction GL-0m/GL-83.4m

    Average

    94 06281308 94 07281001

    94 10241151

    94 11092026 94 11100038

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    2

    4

    6

    8

    10

    12( After Shock : before Main Shock

    PI UD-direction GL-0m/GL-83.4m

    Average

    94 06281308

    94 07281001 94 10241151

    94 11092026 94 11100038

    Spectrum ratio

    Frequency (Hz)

    NS EW

    UD

    Spectrum ratio

    (PI: small shocks before main shock)

  • Comparison of averaged spectrum

    ratios of small shocks before & after main

    shock (PI)

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    PI EW-direction GL-0m/GL-83.4m

    berore AfterShock First.peak Amp= 4.74 Freq= 0.78(Hz)after AfterShock First.peak Amp= 4.54 Freq= 0.78(Hz)

    before AfterShock Average

    after AfterShock Average

    Spectrum ratio

    Frequency (Hz)0 1 2 3 4 5 6 7 8 9 10

    0

    2

    4

    6

    8

    PI NS-direction GL-0m/GL-83.4m

    berore AfterShock First.peak Amp= 3.19 Freq= 0.83(Hz)after AfterShock First.peak Amp= 3.57 Freq= 0.88(Hz)

    before AfterShock Average

    after AfterShock Average

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    2

    4

    6

    8

    PI UD-direction GL-0m/GL-83.4m

    before AfterShock Average

    after AfterShock Average

    Spectrum ratio

    Frequency (Hz)

    NS

    UD

    EWBefore

    After

    Before

    After

    Before

    After

  • 0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    SGK EW-direction GL-0m/GL-97m

    Average

    01170738

    01170858

    01171305

    01152316

    02182315

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    SGK NS-direction GL-0m/GL-97m

    Average

    01170738

    01170858

    01171305 01152316

    02182315

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    2

    4

    6

    8

    SGK UD-direction GL-0m/GL-97m

    Average

    01170738

    01170858

    01171305

    01152316

    02182315Spectrum ratio

    Frequency (Hz)

    NS EW

    UD

    Spectrum ratio

    (SGK: aftershocks)

  • 0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    TKS EW-direction GL-0m/GL-100m

    Average

    01170628

    01170642

    01170738

    02182137

    Spectrum ratio

    Frequency (Hz)0 1 2 3 4 5 6 7 8 9 10

    0

    2

    4

    6

    8

    10

    TKS NS-direction GL-0m/GL-100m

    Average

    01170628

    01170642

    01170738

    02182137

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    2

    4

    6

    8

    10

    TKS UD-direction GL-0m/GL-100m

    Average

    01170628

    01170642

    01170738

    02182137

    Spectrum ratio

    Frequency (Hz)

    NS EW

    UD

    Spectrum ratio

    (TKS: aftershocks)

  • 0 1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    KNK EW-direction GL-0m/GL-100m

    Average

    01170550

    01170553

    01170629

    01170858

    01200047

    01230243

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    40

    50

    KNK NS-direction GL-0m/GL-100m

    Average

    01170550

    01170553

    01170629

    01170858

    01200047

    01230243

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    20

    40

    60

    80

    KNK UD-direction GL-0m/GL-100m

    Average

    01170550

    01170553

    01170629

    01170858

    01200047

    01230243Spectrum ratio

    Frequency (Hz)

    NS EW

    UD

    Spectrum ratio

    (KNK: aftershocks)

  • 0 1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8

    9

    10(AfterShock : before MainShock)

    PI EW-direction GL-0m/GL-83.4m

    Main Shock First.peak Amp= 2.91 Freq= 0.83(Hz)After Shock First.peak Amp= 4.74 Freq= 0.78(Hz)

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    5

    6

    7

    8(AfterShock : before MainShock)

    PI NS-direction GL-0m/GL-83.4m

    Main Shock First.peak Amp= 1.79 Freq= 0.68(Hz)After Shock First.peak Amp= 3.19 Freq= 0.83(Hz)

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    2

    4

    6

    8

    10

    12(AfterShock : before MainShock)

    PI UD-direction GL-0m/GL-83.4m

    MainShock AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    NS EW

    UDComparison of spectrum ratio of small shocks and

    main shock (PI)

  • 0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    10

    SGK EW-direction GL-0m/GL-97m

    Main Shock First.peak Amp= 8.90 Freq= 0.68(Hz)After Shock First.peak Amp= 3.72 Freq= 0.78(Hz)

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    SGK NS-direction GL-0m/GL-97m

    Main Shock First.peak Amp= 3.72 Freq= 0.68(Hz)After Shock First.peak Amp= 4.93 Freq= 0.78(Hz)

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    SGK UD-direction GL-0m/GL-97m

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    NS EW

    UDComparison of averaged spectrum ratio of

    aftershocks and main shock (SGK)

  • 0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    TKS EW-direction GL-0m/GL-100m

    Main Shock First.peak Amp=10.96 Freq= 1.12(Hz)After Shock First.peak Amp= 5.83 Freq= 1.22(Hz)

    MainShock

    AfterShock Average Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    10

    TKS NS-direction GL-0m/GL-100m

    Main Shock First.peak Amp= 9.46 Freq= 1.12(Hz)After Shock First.peak Amp= 5.49 Freq= 1.42(Hz)

    MainShock AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    2

    4

    6

    8

    TKS UD-direction GL-0m/GL-100m

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    NS EW

    UDComparison of averaged spectrum ratio of

    aftershocks and main shock (TKS)

  • 0 1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    KNK EW-direction GL-0m/GL-100m

    Main Shock First.peak Amp=18.81 Freq= 1.12(Hz)After Shock First.peak Amp=16.34 Freq= 1.12(Hz)

    MainShock

    AfterShock Average

    Average+SD Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    KNK NS-direction GL-0m/GL-100m

    Main Shock First.peak Amp=18.52 Freq= 1.03(Hz)After Shock First.peak Amp=15.65 Freq= 1.07(Hz)

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 200

    10

    20

    30

    40

    50

    KNK UD-direction GL-0m/GL-100m

    MainShock

    AfterShock Average

    Average+SD

    Average-SD

    Spectrum ratio

    Frequency (Hz)

    NS EW

    UDComparison of averaged spectrum ratio of

    aftershocks and main shock (KNK)

  • 0 5 10 15 20-200

    -100

    0

    100

    200

    U D

    Acceleration(gal)

    Tim e(sec)

    -800

    -400

    0

    400

    800

    analysis dom ain

    a part of P-waveskip dataAcceleration(gal)

    EW

    Analysis of vertical motion for initial P-wave

  • 0 2 4 6 8 10 12 14 16 18 200

    5

    10

    15

    20

    25PI UD-direction -0m /-83.4m

    Spectrum ratio

    Frequency(Hz)

    M ainShock94 6/28 13:0894 7/28 10:0194 10/24 11:5194 11/09 20:2694 11/10 00:38

    0 2 4 6 8 10 12 14 16 18 200

    5

    10

    15SG K UD-direction -0m /-97m

    M ain Shock 95 1/17 07:38 95 1/17 08:58 95 1/17 13:05 95 1/25 23:16 95 2/18 23:15

    Spe

    ctrum ratio

    Frequency(Hz)

    Comparison of spectrum ratios of vertical motion

    for initial P-wave between main shock and

    aftershocks

  • 0 2 4 6 8 10 12 14 16 18 200

    5

    10

    15

    TKS UD -direction 0/100

    M ain Shock 1170628 1170642 1170738 2182137

    Spectrum ratio

    Frequency(H z)

    0 2 4 6 8 10 12 14 16 18 200

    5

    10

    15

    20

    25

    30

    KNK UD-direction 0/100

    M ain Shock 1170550 1170553 1170629 1170858

    Spectrum ratio

    Frequency(Hz)

    Comparison of spectrum ratios of vertical motion

    for initial P-wave between main shock and

    aftershocks

  • 1 10 100 10000

    10

    20

    30

    40

    PI Main PI After SGK Main SGK After TKS Main TKS After KNK Main KNK After

    Maximum Spectrum ratio

    Acceleration at Base Layer (gal)

    1 10 100 10000

    4

    8

    12

    PI Main PI After SGK Main SGK After TKS Main TKS After KNK Main KNK After

    Average Spectrum ratio (0.5Hz-2.5Hz)

    Acceleration at Base Layer (gal)

    Average values (0.5-2.5Hz)

    Peak values

    Base Acc. versus Spectrum Ratios of horizontal motions

    (Peak & Average values)

  • 1 10 100 10000

    10

    20

    50

    60

    70

    80

    PI Main PI After SGK Main SGK After TKS Main TKS After KNK Main KNK After

    Maximum Spectrum ratio

    Acceleration at Base Layer (gal)

    1 10 100 10000

    1

    2

    3

    4

    5

    6

    7

    8

    PI Main PI After SGK MainSGK After

    TKS MainTKS After

    KNK MainKNK After

    Average Spectrum ratio (2.0Hz-8.0Hz)

    Acceleration at Base Layer (gal)

    Base Acc. versus Spectrum Ratios of vertical motions (Peak & Average values)

    Average values (0.5-2.5Hz)

    Peak values

  • SUMMARY ON SITE AMPLIFICATION BASED ON VERTICAL ARRAY RECORDS

    •Clear Acc. amplification reduction for increasing base Acc. The same trend for Vel. though milder.

    •Steady spectral response for small shocks.

    •Reduction in peak frequencies and magnitudes of spectrum ratios between main shocks and small shocks particularly in liquefaction sites.

    •Increase in amplification with increasing Vs ratio between base and surface.   

    •In vertical motions, no difference in peak frequenciesbetween main shocks and small shocks

  • Topics of the presentation:

    Seismic site amplification during strong earthquakes based on vertical

    array recordsBack-calculated in situ soil properties

    versus lab dataSoil properties for deep soil response

  • How to back-calculate in situ properties from vertical array records

    Optimize Vs (S-wave velocity) and D (damping ratio) based on 1D Multiple Reflection Theory of SH-wave.

    Minimize residuals by EBM between observed and computed spectrum ratios.

    Main shock properties compared with small shock linear properties for in situ degradation curves.

    Identify in situ soil-specific properties.

  • 0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    PI EW -direction G L-0m /G L-83.4m (A fter Shock) (inversion result)

    O BSERV ED A V ERA G E SPEC TRU M RA TIO A V ERA G E+SD

    A V ERA G E-SD

    O PTIM IZED

    Amplification Factor

    Frequency(H z)

    0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    PI N S-direction G L-0m /G L-83.4m (A fter Shock) (inversion result)

    O BSERV ED A V ERA G E SPEC TRU M RA TIO

    A V ERA G E+SD

    A V ERA G E-SD

    O PTIM IZED

    Amplification Factor

    Frequency(H z)

    Comparison of inversion and observation

    (Small shocks before main shock: PI)

    NS

    EW

  • 0 1 2 3 4 5 6 7 8 9 100

    5

    10

    SG K EW -direction G L-0m /G L-97m (A fter Shock) (inversion result)

    O BSERV ED A V ERA G E SPEC TRU M RA TIO

    A V ERA G E+SD

    A V ERA G E-SD

    O PTIM IZED

    Amplification Factor

    Frequency(H z)

    0 1 2 3 4 5 6 7 8 9 100

    5

    10

    SG K N S-direction G L-0m /G L-97m (A fter Shock) (inversion result)

    O BSERV ED A V ERA G E SPEC TRU M RA TIO

    A V ERA G E+SD

    A V ERA G E-SD

    O PTIM IZED

    Amplification Factor

    Frequency(H z)

    NS

    EW

    Comparison of inversion and observation

    (Aftershocks:SGK)

  • 0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    20

    TK S EW -direction G L-0m /G L-100m (A fter Shock) (inversion result)

    O BSERV ED A V ERA G E SPEC TRU M RA TIO

    A V ERA G E+SD

    A V ERA G E-SD

    O PTIM IZED

    Amplification Factor

    Frequency(H z)

    0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    20

    TK S N S-direction G L-0m /G L-100m (A fter Shock) (inversion result)

    O BSERV ED A V ERA G E SPEC TRU M RA TIO

    A V ERA G E+SD

    A V ERA G E-SD

    O PTIM IZED

    Amplification Factor

    Frequency(H z)

    NS

    EW

    Comparison of inversion and observation

    (Aftershocks:TKS)

  • 0 1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    40

    KNK NS-direction GL-0m/GL-100m (After Shock) (inversion result)

    OBSERVED AVERAGE SPECTRUM RATIO

    AVERAGE+SD

    AVERAGE-SD

    OPTIMIZED

    Amplification Factor

    Frequency(Hz)

    0 1 2 3 4 5 6 7 8 9 100

    10

    20

    30

    KNK EW-direction GL-0m/GL-100m (After Shock) (inversion result)

    OBSERVED AVERAGE SPECTRUM RATIO

    AVERAGE+SD

    AVERAGE-SD

    OPTIMIZED

    Amplification Factor

    Frequency(Hz)

    NS

    EW

    Comparison of inversion and observation

    (Aftershocks:KNK)

  • 0 1 2 3 4 5 6 7 8 9 100

    1

    2

    3

    4

    P I N S-direction G L -0m /G L -83.4m (M ain Shock) (inversion result)

    O B SE R V E D SP E C T R U M R A T IO O P T IM IZ E D

    電研

    Amplification Factor

    F requency(H z)

    0 1 2 3 4 5 6 7 8 9 100

    2

    4

    6

    8

    SG K N S-direction G L -0m /G L -97m (M ain Shock) (inversion result)

    O B SE R V E D SP E C T R U M R A T IO

    O P T IM IZ E D

    電研

    Amplification Factor

    F requency(H z)

    PI NS

    SGKNS

    Comparison of inversion and observation (Main

    shock: PI & SGK) Horizontal

  • 0 1 2 3 4 5 6 7 8 9 100

    4

    8

    12

    T K S N S-direction G L -0m /G L -100m (M ain Shock) (inversion result)

    O B SE R V E D SP E C T R U M R A T IO O P T IM IZ E D

    電研

    Amplification Factor

    F requency(H z)

    0 1 2 3 4 5 6 7 8 9 100

    5

    10

    15

    20

    K N K N S-direction G L -0m /G L -100m (M ain Shock) (inversion result)

    O B SE R V E D SP E C T R U M R A T IO

    O P T IM IZ E D

    電研Amplification Factor

    F requency(H z)

    TKSNS

    KNKNS

    Comparison of inversion and observation (Main shock: TKS & KNK)

  • -80

    -60

    -40

    -20

    0

    0 100 200 300 400 500

    -80

    -60

    -40

    -20

    00 100 200 300 400 500

    INITIAL OPTIMIZED AS EW OPTIMIZED AS NS OPTIMIZED MS EW OPTIMIZED MS NS Water table GL-4.0m

    Shear wave velocity : Vs (m/s)

    Depth from G

    L (m)

    -100

    -80

    -60

    -40

    -20

    0

    0 100 200 300 400 500 600-100

    -80

    -60

    -40

    -20

    00 100 200 300 400 500 600

    Shear wave velocity : V s (m /s)

    Depth from G

    L (m)

    IN ITIA L O PTIM IZED A S EW O PTIM IZED A S N S

    O PTIM IZED M S EW O PTIM IZED M S N S W ater table G L-2m

    PI

    SGK

    Optimized Vs distribution along depth for MS & AS

    compared with wave-logging (PI & SGK)

  • -100

    -80

    -60

    -40

    -20

    0

    0 100 200 300 400 500 600 700-100

    -80

    -60

    -40

    -20

    00 100 200 300 400 500 600 700

    Shear wave velocity : Vs (m /s)

    Depth from G

    L (m)

    INITIAL

    O PTIM IZED AS EW O PTIM IZED AS NS

    O PTIM IZED M S EW O PTIM IZED M S NS

    W ater table G L-2m

    -100

    -80

    -60

    -40

    -20

    0

    0 200 400 600 8001000120014001600-100

    -80

    -60

    -40

    -20

    00 200 400 600 8001000120014001600

    Shear wave velocity : Vs (m/s)

    Depth from G

    L (m)

    INITIAL OPTIMIZED AS EW OPTIMIZED AS NS OPTIMIZED MS EW OPTIMIZED MS NS Water table GL-2.2m

    TKS

    KNK

    Optimized Vs distribution along depth for MS & AS

    compared with wave-logging (TKS & KNK)

  • 0 500 1000 1500 2000 2500

    0

    20

    40

    60

    80

    100

    PS検層

    本震同定

    P波速度 Vp (m/s)

    深度 (m)

    地下水位埋立土

    軟弱粘土

    GL 0

    GL-16.4

    GL-32.4

    GL-83.4m

    洪積礫

    (t=0~5.12sのみを解析)

    Comparison of inversion and observation (Main shock: PI ) Vertical

    Wave logging

    Optimized for Main shockt=0~5.1 s for intial P-wave

    P-wave velocity: Vp (m/s)

    Dep

    th (

    m)

    Water tableFill

    Soft clay

    Sand

    Gravel

  • 0 2 4 6 8 100

    4

    8

    12

    (b) G L.0m /G L-97m

    Spectrum ratio

    Frequency(Hz)

    0

    4

    8

    12

    16SG K Aftershock-A (NS)

    (a) G L.0m /G L-24.9m

    Spectrum ratio

    0 2 4 6 8 100

    4

    8(b) G L.0m /-97m

    Spe

    ctrum ratio

    Frequency (Hz)

    M easured Initial guess Back-calculated L.M .S.M .

    0

    4

    8SG K M ain shock (NS)

    (a) G L.0m /-29.4m

    Spe

    ctrum ratio

    0 2 4 6 8 100

    4

    8

    12

    (b) G L.0m /G L-97m

    Spe

    ctrum ratio

    Frequency(Hz)

    0

    4

    8

    12

    16 SG K Aftershock-C (NS)

    (a) G L.0m /G L-24.9m

    Spectrum ratio

    M easured Initial guess Back-calculated

    0 2 4 6 8 100

    4

    8

    12

    (b) G L.0m /G L-97m

    Spectrum ratio

    Frequency (Hz)

    0 2 4 6 8 100

    4

    8

    12

    16 SG K Aftershock-B (NS)

    (a) G L.0m /G L-24.9m

    Spe

    ctrum ratio

    Measured & Back-calculated spectrum ratios compared in SGK for Aftershocks C, B, A and Main Shock

    AS-C AS-B

    AS-A MS

  • -100

    -80

    -60

    -40

    -20

    00 4 8 12 16 20

    (b) Dam ping ratio (%)

    M S(EW ) M S(NS) AS-A(EW ) AS-A(NS) AS-B(EW ) AS-B(NS) AS-C(EW ) AS-C(NS)

    -100

    -80

    -60

    -40

    -20

    00 200 400 600

    S-wave logging

    (a) S-wave velocity Vs (m /s)

    Depth (m)

    Back-calculated S-wave velocity and Damping in SGK for Aftershocks and Main Shock

    ( )20 MS ASG G Vs Vs=

  • 5 6 7 8 9 1 0 1 1- 4 0

    - 2 0

    0

    2 0

    4 0

    (a ) S G K A S - B N S - d ire c tio n

    T im e (s )

    In p u t W a v e

    - 4 0

    - 2 0

    0

    2 0

    4 0

    GL-24.9m

    GL-97m

    Acceleration(cm/s

    2 ) - 4 0- 2 0

    0

    2 0

    4 0

    GL-0m

    O b s e rv e d C a lc u la te d

    1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0- 5 0 0

    - 2 5 0

    0

    2 5 0

    5 0 0

    (b ) S G K M S N S - d ire c tio n

    G L - 9 7 m

    Acceleration(cm/s2)

    In p u t W a v e

    T im e (s )

    - 5 0 0

    - 2 5 0

    0

    2 5 0

    5 0 0

    G L - 2 4 .9 m

    - 5 0 0

    - 2 5 0

    0

    2 5 0

    5 0 0

    G L - 0 m

    O b s e rv e d C a lc u la te d

    Measured & Back-calculated Accelerogramscompared in SGK for Aftershocks and Main Shock

  • -100

    -80

    -60

    -40

    -20

    0

    0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

    T K S M ain Shock (01170546)

    EW N S

    M ax.Shear Strain(%)

    Depth from G

    L(m

    )

    -100

    -80

    -60

    -40

    -20

    0

    0.000.010.020.030.040.050.060.070.080.090.10

    KNK Main Shock (01170546)

    EW NS

    Max.Shear Strain (%)

    Depth from G

    L (m)

    -80

    -60

    -40

    -20

    0

    0.0 0.5 1.0 1.5 2.0 2.5 3.0

    PI M ain Shock (01170546)

    EW N S

    M ax.Shear Strain (%)

    Depth from G

    L (m)

    -100

    -80

    -60

    -40

    -20

    0

    0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

    SG K M ain Shock (01170546)

    EW N S

    M ax.Shear Strain (%)

    Depth from G

    L (m)

    Computed Max. shear strain versus Depth in 4 vertical array sites

    max0.65

    effγ γ= ⋅

    PI SGK

    TKS KNK

  • 1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    G /G0

    SG K PI KNK

    C lay: Ip=40-83by Kokusho et al.(1982)

    (a) C lay

    Shear m

    odulus ratio G/G

    0

    Effective shear strain γeff

    D SG K PI KNK

    Dam

    ping ratio D (%)

    1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    Shear m

    odulus ratio G/G

    0

    Effective shear strain γeff

    G /G0

    SG K PI TKS KNK

    Liquefied

    (c) Sand

    Dam

    ping ratio D (%)

    D SG K PI TKS KNK

    1E-6 1E-5 1E-4 1E-3 0.01 0.1

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    C lay: Ip=40-83by Kokusho et al.(1982)

    Sand: σc'=98 kPa

    by Kokusho (1980)

    Shear m

    odulus ratio G/G

    0

    Effective shear strain γeff

    Dam

    ping ratio D (%)

    (b) Silt

    1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    Shear m

    odulus ratio G/G

    0

    Effective shear strain γeff

    (d) G ravel

    Dam

    ping ratio D (%)

    1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    Shear m

    odulus ratio G/G

    0

    N orm alized effective shear strain γeff/(σ'

    c/p

    0)0.5

    G ravel: σc'=98 kPa

    by Kokusho and Tanaka (1994)

    (f) G ravel (Norm alized by confining stress)

    Dam

    ping ratio D (%)

    1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    SandIw asaki et al.(1978)

    Shear m

    odulus ratio G/G

    0

    N orm alized effective shear strain γeff/(σ'

    c/p

    0)0.5

    Sandby Seed-Idriss(1970)

    Sand: σc'=98 kPa

    by Kokusho(1980)

    (e) Sand (Norm alized by confining stress)

    Dam

    ping ratio D (%) G/G0~γeff

    relationships for different soils

  • In Japan, How to evaluate strain-dependent shear modulus and damping ratio in laboratory.

    1) Use triaxial device with inner load cell.

    2) Employ high-sensitivity gap sensors or LDT for vertical disp. measurement.

    3) Undrained cyclic loading test for f=1~0.1 Hz shear modulusand damping for wide strain range of 10-6-10-2.

    4) For small strain modulus, pulse tests or bender element test are also employed. Resonant column test is not so popular.

    LDT

  • Measured by gap sensor kokusho (1980)

    Measured by conventional sensor

  • Shear modulus versus strain of sand for different confining stress

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

    SHEAR STRAIN; γ

    SHEA

    R MO

    DULU

    S RA

    TIO; G

    /G0

    σc'=300 KN /m 2

    σc'=200 KN /m 2

    σc'=100 KN /m 2

    σc'=50 KN /m 2

    σc'=20 KN /m 2

    0

    50

    100

    150

    200

    250

    1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

    SHEAR STRAIN; γ

    SHEA

    R MODU

    LUS ; G

    (x 100

    0 kP

    a)

    N o.58(e=0.645, σc'=300 KN /m 2) N o.48(e=0.651, σc'=200 KN /m 2)

    N o.49(e=0.643, σc'=200 KN /m 2) N o.53(e=0.641, σc'=200 KN /m 2)

    N o.47(e=0.649, σc'=100 KN /m 2) N o.50(e=0.644, σc'=100 KN /m 2)

    N o.57(e=0.640, σc'=100 KN /m 2) N o.51(e=0.644, σc'=50 KN /m 2)

    N o.52(e=0.641, σc'=50 KN /m 2) N o.55(e=0.644, σc'=50 KN /m 2)

    N o.54(e=0.646, σc'=20 KN /m 2) N o.56(e=0.646, σc'=20 KN /m 2)

    N o.59(e=0.636, σc'=20 KN /m 2)

    Toyoura sand

  • Hysteretic damping ratio of sand for different confining stress

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

    SHEAR STRAIN; γ

    HYSTERETIC DAMPING RAITO; D

    N o.58(σc'=300 KN/m 2)

    No.48,49,53(σc'=200 KN/m 2)

    No.47,50,57(σc'=100 KN/m 2)

    No.51,52,55(σc'=50 KN/m 2)

    No.54,56,59(σc'=20 KN/m 2)

    Toyoura sand

  • Shear modulus ratio versus strain of clay for different Ip

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.E-06 1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

    SHEAR STRAIN; γ

    SHEAR M

    ODULUS RATIO; G/G

    0

    S -1-1 (IP=90,σc'=16 KN/m 2) S-1-3 (IP=38,σc'=16 KN/m 2) S-2-1 (IP=96,σc'=16 KN/m 2)

    S-2-3 (IP=85,σc'=16 KN/m 2) S-4-1 (IP=52,σc'=31 KN/m 2) S-4-3 (IP=54,σc'=29 KN/m 2)S-5-1 (IP=57,σc'=29 KN/m 2) S-5-3 (IP=52,σc'=36 KN/m 2) S-6-1 (IP=46,σc'=46 KN/m 2)

    S-6-2 (IP=56,σc'=45 KN/m 2) S-6-1 (IP=49,σc'=46 KN/m 2) S-8-1 (IP=41,σc'=62 KN/m 2)S-9-1 (IP=NP,σc'=69 KN/m 2) S-9-2 (IP=14,σc'=68 KN/m 2) Toyoura sand σc'=100 KN/m 2

    Ip > 80

    Ip = 50-60

    Ip = 40-50

    Ip = 30-40

    Ip = 10-20

    N PToyoura sand

    Intact Teganuma clay

  • Effect of confining stress on modulus degradation

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.E-05 1.E-04 1.E-03 1.E-02 1.E-01

    SHEAR STRAIN; γ

    SHEAR M

    ODULUS RATIO; G

    /G

    0

    S -6-2 (IP=56,σc'=45 KN/m 2)

    S-6-4 (IP=44,σc'=100 KN/m 2)

    S-6-5 (IP=38,σc'=300 KN/m 2)

    S-6-3 (IP=54,σc'=500 KN/m 2)

    Intact Teganuma clay

  • Modulus & Damping ratio versus strain of gravel for different confining stress

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

    SHEAR STRAIN; γ

    SHEA

    R MODULU

    S RATIO; G

    /G0

    σc'=75 KN/m 2, G 0=103 M Pa

    σc'=100 KN/m 2, G 0=100 M Pa

    σc'=200 KN/m 2, G 0=206 M Pa

    σc'=400 KN/m 2, G 0=288 M Pa

    0

    0.05

    0.1

    0.15

    0.2

    1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

    SHEAR STRAIN; γ

    HYST

    ERET

    IC DAM

    PING

    RAITO

    ; h

    Intact Pleistocene

    gravel

  • 1E-6 1E-5 1E-4 1E-3 0.01 0.1

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Lab test results

    G ravel(98kPa)

    Sand(98kPa)

    C lay(Ip=40-83)

    (a) Shear m odulus ratio

    Liquefied

    C lay Silt Sand G ravel

    Shear m

    odulus ratio G/G

    0

    Effective shear strain γeff or γ

    eff/(σ'

    c/p

    0)0.5

    Back-calculated strain-dependent modulus degradations of 4 types of soils compared with previous lab tests

  • 1E-6 1E-5 1E-4 1E-3 0.01 0.1

    0

    5

    10

    15

    20

    25

    G ravel(98kPa)

    C lay(Ip=40-83)

    Sand (98kPa)

    C lay Silt Sand G ravel

    (b) D am ping ratio

    Dam

    ping ratio D (%)

    Effective shear strain γeff or γ

    eff/(σ'

    c/p

    0)0.5

    Back-calculated damping ratios versus strain of 4 types of soils compared with previous lab tests

  • 1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    G /G0

    SG K PI KNK

    C lay: Ip=40-83by Kokusho et al.(1982)

    (a) C lay

    Shear m

    odulus ratio G/G

    0

    Effective shear strain γeff

    D SG K PI KNK

    Dam

    ping ratio D (%)

    Back-calculated modulus degradation and damping compared with lab test (Clay)

  • 1E-6 1E-5 1E-4 1E-3 0.01 0.1

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    C lay: Ip=40-83by Kokusho et al.(1982)

    Sand: σc'=98 kPa

    by Kokusho (1980)

    Shear m

    odulus ratio G/G

    0

    Effective shear strain γeff

    Dam

    ping ratio D (%)

    (b) Silt

    Back-calculated modulus degradation and damping compared with lab test (Silt)

  • 1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    SandIw asaki et al.(1978)

    Shear m

    odulus ratio G/G

    0

    N orm alized effective shear strain γeff/(σ'

    c/p

    0)0.5

    Sandby Seed-Idriss(1970)

    Sand: σc'=98 kPa

    by Kokusho(1980)

    (e) Sand (Norm alized by confining stress)

    Dam

    ping ratio D (%)

    Back-calculated modulus degradation and damping compared with lab test (Sand)

  • 1E-6 1E-5 1E-4 1E-3 0.01

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0

    5

    10

    15

    20

    25

    Shear m

    odulus ratio G/G

    0

    N orm alized effective shear strain γeff/(σ'

    c/p

    0)0.5

    G ravel: σc'=98 kPa

    by Kokusho and Tanaka (1994)

    (f) G ravel (Norm alized by confining stress)

    Dam

    ping ratio D (%)

    Back-calculated modulus degradation and damping compared with lab test (Gravel)

  • SUMMARY ON BACK-CALCULATED PROPERTIES (I)In spectrum ratios, back-calculation overestimates lower frequency peaks and under-estimates higher frequency peaks compared to observation presumably due to strain-dependency and frequency-dependency of properties.

    Clear differences in S-wave velocities are recognized not only between the main shock and aftershocks but also among aftershocks of different intensities.

    Damping ratios for the main shock are evidently larger than aftershocks.

    Clear modulus degradations can be identified from the back-calculated S-wave velocities.

    Degradations are almost consistent at 4 sites, from which soil-specific curves can be differentiated for clay, silt, sand and gravel.

  • SUMMARY ON BACK-CALCULATED PROPERTIES (II)Confining stresses have significant effect on the degradations of non-cohesive soils in situ, too.

    Back-calculated damping ratios increase with increasing effective strains for 10-4 or larger. Damping ratio in liquefied sand layers may be back-calculated as very large values (46-52%).

    The majority of back-calculated damping ratios in small strain ranges are a few percent higher than laboratory test results despite apparent splits in the back-calculated damping values (1-6%).

    A fair agreement in modulus degradation can be recognized between back-calculation and lab test results for clays and sands except for large strain level.

    For gravels, back-calculated degradations are milder than laboratory tests presumably reflecting appreciable fine content in in situ soils.

  • Topics of the presentation:

    Seismic site amplification during strong earthquakes based on vertical

    array recordsBack-calculated in situ soil properties

    versus lab dataSoil properties for deep soil response

  • Higashinadadeep hole site

    VsVp

    Higashinada deep hole site (GL-1670m), seismometer installation levels and Vs, Vp distribution along depth

    Seismometer

  • Acceleration amplification in deep soil ground for 3 larger earthquakes

    (M>6.0, Max.Surf. Acc~10 cm/s2)

    EQ1 EQ2 EQ3

  • Spectrum ratio (3 larger earthquakes M>6.0)

    Spec

    trum

    ratio

    Spec

    trum

    ratio

    Spec

    trum

    ratio

    Spec

    trum

    ratio

    GL-0m/GL-20m

    GL-0m/GL-50m GL-0m/GL-1670m

    GL-0m/GL-750m

  • Variation of D0 and m along depth for frequency-dependent damping ratio

    0.01 0.1 1

    0

    500

    1000

    1500

    2000

    Damping at f=1.0 Hz (D0) or m

    Depth(m)

    0mD D f −=

    mD0

  • Dam

    ping

    ratio

    x 2

    In situ frequency-dependent damping ratio based on previous papers (Fukushima and Midorikawa, 1994)

  • -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    0.0 0.5 1.0 1.5 2.0 2.5

    Density

    Density(t/m3)

    Depth(m

    )

    0 1000 2000 3000

    -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0 S-wave velocity

    Vs(m/s)

    Soil model, Vs and density distribution along depth

  • 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0

    - 6 0 0

    - 4 0 0

    - 2 0 0

    0

    2 0 0

    4 0 0

    6 0 0 (a ) m a x = 6 0 9 .4 (c m / s 2 ):tim e = 5 .3 2 (s)

    Acc

    eleration (cm

    /s2)

    T im e (s)

    0.1 1 100

    50

    100

    150

    200

    250

    300 (b)

    A nalyzed frequency range(U p to 20 H z)

    Fourier spec. (cm/s2*s)

    F re quency (H z)

    Accelerogram and Fourier spectrum of input motion (PI)

  • 1

    10

    100

    1000

    0.1 1 10 100

    Dep

    th fr

    om G

    L (m

    )

    Damping ratio D0 (%)

    Kokusho & Matsumoto 1998

    Kokusho et al.1992Yamamizu et al.1983

    Shear strain:

    γ≤10 −4

    γ>10 −310−3≥ γ≥10 −4

    (1995 Kobe EQ)

    Damping ratio in deep soil ground assuming 0mD D f −= ⋅

  • -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    0.0 0.2 0.4 0.6 0.8 1.0

    Case-A

    m =0.5 m =1.0

    (G0-G)/G

    0

    Depth(m

    )

    ( )0.5r vγ σ ′∝For cohesive soils,too.-1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    0.0 0.2 0.4 0.6 0.8 1.0

    Case-B

    m=0 m=0.5 m=1.0

    (G0-G)/G

    0

    Depth(m

    )Degree of

    nonlinearity

    versus depth

    ( )0 0G G G−

    .r co n stγ = for cohesive soils.

    ( )0.5r vγ σ ′∝ for cohesive soils,too.

  • -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    100 1000 10000

    Linear

    Equivalent linear

    Case-A

    m=0 m=0.5 m=1.0

    M axim um acceleration (gal)

    Depth(m

    )

    -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    100 1000 10000

    Linear

    Equivalent linear

    Case-B

    m=0.0 m=0.5 m=1.0

    M aximum acceleration (gal)

    Depth (m)

    Effect of m on Max. Acc. versus Depth relationship

    .r co n stγ = for cohesive soils.

    ( )0.5r vγ σ ′∝ for cohesive soils,too.

  • -1600

    -1400

    -1200

    -1000

    -800

    -600

    -400

    -200

    0

    0 1000 2000 3000 4000 5000 6000

    Linear

    Equivalent linear

    M axim um Acceleration (gal)

    Depth(m

    ) Basic case * 1/2 * 1/4

    Effect of reducing damping ratio on

    Max.Acc. distribution

    10 100 10000.1

    0.2

    0.4

    0.6

    0.81

    2

    Dam

    ping ratio D

    0 (%)

    Basic value (from Fig.4) x1/2 x1/4

    D epth(m )

  • 0.0 0.2 0.4 0.6 0.8 1.00

    500

    1000

    1500

    2000

    2500

    3000

    3500(cm /s2)

    Maximum

    base acceleration

    C onstant m

    γ'=const.: for cohesive soils. : for cohesive soils, too.( )0.5r vγ σ ′∝

    0mD D f −= ⋅

    Effect of m on Max. Base Acc. (GL-1670 m)

  • SUMMARY ON RESPONSE IN DEEP SOIL GROUND

    Even during the destructive Kobe earthquakes, calculated modulus degradation is milder than 20% deeper than about 300m.

    Acceleration tends to increase with increasing depth in analyses based on frequency-independent damping, indicating that the damping should inevitably be frequency-dependent in analyzing deep ground.

    Assumptions on soil properties such as frequency-dependency in damping or reference strain have a great effect in analytical seismic response in deep soil ground.

  • SUMMARY & FURTHER RESEARCH (I)

    In Situ PropertiesLaboratory modulus degradation for individual soil types are applicable to the field at least up to medium strain range. Field damping is only qualitatively consistent with lab test damping.

    More quantitative research for in situ properties; -Modulus degradation for large strain range considering

    strain-dependency and PP-buildup. --Damping ratio for small strain and its mechanism -Large strain damping considering cyclic mobility and

    PP-buildup.

  • SUMMARY & FURTHER RESEARCH (II)In vertical motions, little nonlinearity of amplification and back-calculated Vp.

    Deep Soil PropertiesStrain-dependent soil nonlinearity may be ignorable in depth of a few hundred meters of soil ground even during destructive earthquakes.

    Based on deep-hole data analyses, damping is no doubt frequency-dependent.

    Effect of high overburden stress on modulus and damping in deep soil should be investigated further.


Recommended