+ All Categories
Home > Documents > Influence of spin-orbit coupling on the transport properties of ...Ludwig Maximilians-Universita¨t...

Influence of spin-orbit coupling on the transport properties of ...Ludwig Maximilians-Universita¨t...

Date post: 31-Jan-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
22
Ludwig Maximilians- Universit¨ at unchen Influence of spin-orbit coupling on the transport properties of spintronics materials 1 H. Ebert, 1 S. Lowitzer, V. Popescu, 1 D. K ¨ odderitzsch, 1 J. Minar , 1 S. Bornemann 2 P.H. Dederichs, 2 R. Zeller 3 H. Akai, 3 M. Ogura 1 Univ. M ¨ unchen, Germany Germany 2 IFF J ¨ ulich, Germany 3 Osaka University funded by the DFG within the programme SFB 689 Spinph ¨ anomene in reduzierten Dimensionen Univ. Regensburg . JST-DFG workshop Kyoto 2009 – p.1/22
Transcript
  • Ludwig

    Maximilians-

    Universität

    München

    Influence of spin-orbit coupling on the transportproperties of spintronics materials

    1H. Ebert,1S. Lowitzer, V. Popescu,1D. Ködderitzsch,1J. Minar ,1S. Bornemann2P.H. Dederichs,2R. Zeller

    3H. Akai, 3 M. Ogura

    1Univ. München, Germany Germany2IFF J̈ulich, Germany

    3 Osaka University

    funded by theDFG within the programme

    SFB 689Spinpḧanomene in reduzierten Dimensionen

    Univ. Regensburg

    .

    JST-DFG workshop Kyoto 2009 – p.1/22

  • Ludwig

    Maximilians-

    Universität

    MünchenOUTLINE

    Introductionelectronic structure calculations

    Transport in trilayer systemsTMR

    in/out of plane anisotropy TAMR

    in plane TAMR

    Magnetotransport in bulkformalism

    Residual resistivity tensor

    spin transport

    Summary JST-DFG workshop Kyoto 2009 – p.2/22

  • Ludwig

    Maximilians-

    Universität

    MünchenGreen’s function in 2D

    FM/SC/FM-trilayers with perfect matching

    Green’s function (GF)

    G±(~r, ~r ′; E) = limǫ→0

    λ

    φλ(~r) φ×λ (~r)

    E − Eλ ± iǫ= G±(~ri + ~Ri, ~r

    ′j + ~Rj , E)

    tight-binding version of KKR-method

    G+(~r, ~r ′; E) =1

    ASBZ

    SBZ

    d2k‖ei~k‖(~ρν − ~ρν′ )

    ×

    [∑

    ΛΛ′

    RνΛ(~r, E) Gνν′

    ΛΛ′(~k‖, E) R

    ν′

    Λ′(~r′, E) − i p δνν′

    Λ

    RνΛ(~r, E)

    ]

    JST-DFG workshop Kyoto 2009 – p.3/22

  • Ludwig

    Maximilians-

    Universität

    München

    Accounting for Spin-Orbit Coupling (SOC)

    Dirac Hamiltonian within LSDA(Local Spin Density Approximation)

    ĤD = c~α~p + βmc2 + V (~r) + βB(~r)σz , ~α =

    (0 ~σ~σ 0

    ), β =

    (I2 00 −I2

    )

    =

    [iγ5σrc

    (∂

    ∂r+

    1

    r

    (1 − βK̂

    ))+ V (r) + βσzB(r) + (β − 1)

    c2

    2

    ]

    K̂ = σ̂ L̂ + 1 , γ5 =(

    0 −I2−I2 0

    ), σr =

    1

    r~r · ~σ

    four component Dirac formalism

    accounts for SOC and spin-polarisationon same level

    JST-DFG workshop Kyoto 2009 – p.4/22

  • Ludwig

    Maximilians-

    Universität

    München

    Fe/GaAs/Fe – SOC-induced anisotropy

    Bloch spectral functionsA(~k‖, EF) – SC interface layer

    As-termination~M ‖ (001)

    ~M ‖ (110)

    Ga-termination~M ‖ (001)

    ~M ‖ (110)

    JST-DFG workshop Kyoto 2009 – p.5/22

  • Ludwig

    Maximilians-

    Universität

    München

    Symmetry breaking at the FM/SC-interface

    ~M ‖ (001) − C2v

    ~M ‖ (110) − Cs

    Fe/9(GaAs)/Fe -µorb and MAE

    0.00

    0.05

    µ orb (

    µ B)

    bulkFe

    FeFe

    FeAs

    GaAs

    GaAs

    GaAs

    GaAs

    FeFe

    FeFe

    bulk

    x 10

    M || (001)

    M || (110)

    crystallographic direction

    0.0

    1.0

    2.0

    3.0

    E(φ

    ) -

    E(1

    10)

    (mR

    y)

    (110) (1--10) (

    --1

    --10)(010) (

    --100)

    see also: Sjöstedt et al. 2002, PRL 89, 267203

    Košuth et al. 2005, EPL 72, 816JST-DFG workshop Kyoto 2009 – p.6/22

  • Ludwig

    Maximilians-

    Universität

    München

    Transport properties

    Conductance- Landauer-Büttiker formalism

    G =e2

    h

    ~k‖

    g(~k‖)

    with ~k‖-resolved conductance:

    g(~k‖) =

    ALWS

    d2r

    ARWS

    d2r′ jz(~r) G(~r, ~r′;~k‖; EF) jz(~r

    ′) G∗(~r, ~r ′;~k‖; EF)

    jz(~r) =c

    EF + mc2

    (−i~∇z +

    V

    c~αz − i

    B

    cβ(~α × ~az)z

    )

    ”pessimistic” MR ratio

    T = GP−GAP

    GP

    ������������������������������������

    ������������������������������������

    j

    ������������������������������������

    ������������������������������������

    ������������������������������������������������

    ������������������������

    ������������������������������������������������������������

    ������������������������������������

    �������

    �������

    ���������������������������������������

    ���������������������������������������

    j

    ���������������������������������������

    ���������������������������������������

    ����������������������������������������������������

    ��������������������������

    ��������������������������������������������������������������

    ������������������������������������

    P / AP : parallel / antiparallel orientation of magnetisation KKR:Mavropoulos et al. (2004) JST-DFG workshop Kyoto 2009 – p.7/22

  • Ludwig

    Maximilians-

    Universität

    München

    Transport properties of Fe/ 13(AsGa)/Fe

    ~k‖-resolved conductance – AP orientation

    effect of the spin-orbit coupling (SOC)

    correct SOC

    GAP = 0.0076 e2/h

    SOC switched off

    GAP = 0.0044 e2/h

    JST-DFG workshop Kyoto 2009 – p.8/22

  • Ludwig

    Maximilians-

    Universität

    München

    Tunneling Conductance for Fe/ n(GaAs)/Fe

    Conductance

    21 29 37 45 53 6110

    -10

    10-8

    10-6

    10-4

    10-2

    g (e

    2 /h

    /sur

    face

    ato

    m)

    PAP

    TMR

    21 29 37 45 53 61

    0.7

    0.8

    0.9

    1.0

    TM

    R=

    (gP-g

    AP)/

    gP

    number of GaAs layers

    Symbols: SOC suppressed for inner GaAs layers

    dashed lines: full SOC ⇒ SOC increases gAPJST-DFG workshop Kyoto 2009 – p.9/22

  • Ludwig

    Maximilians-

    Universität

    München

    Dependence on orientation of ~M

    ~M along (110)

    AP orientation

    ~M along (001)

    AP orientation

    k‖-resolved conductance

    ����������������������������������������������������

    j

    ����������������������������������������������������

    ����������������������������������������������������

    ����������������������������������������������������

    ��������������������������

    ������������������������������������

    ������������������������������������

    ��������

    ��������

    ������������������������������������������������

    j

    ������������������������������������������������

    ������������������������������������������������

    ������������������������������������������������

    ������������������������

    ����������

    ����������

    ��������

    ��������

    JST-DFG workshop Kyoto 2009 – p.10/22

  • Ludwig

    Maximilians-

    Universität

    München

    Dependence on orientation of ~M

    Conductance for ~M ‖ (110) and (001)

    conductance for P/AP alignment

    21 25 29 33 37 41 45 49 53 number of GaAs layers

    10-8

    10-6

    10-4

    g (e

    2 /h

    /ato

    m)

    PAP

    TMR = (GP − GAP)/GP

    21 25 29 33 37 41 45 49 53 number of GaAs layers

    60

    70

    80

    90

    100

    TM

    R (

    %)

    j

    M

    j

    M

    j

    M

    j

    M

    symbols for ~M ‖ (110)

    lines for ~M ‖ (001)

    difference of G largest for AP configurationJST-DFG workshop Kyoto 2009 – p.11/22

  • Ludwig

    Maximilians-

    Universität

    MünchenFe/GaAs/Fe – TAMR calculations

    Fe/n(GaAs)/Fe tunnelling junction – Ga-termination

    conductance

    21 29 37 45 53 number of GaAs layers

    10-5

    10-4

    g (e

    2 /h

    /sur

    face

    ato

    m)

    M || (001)M || (110)

    TAMR

    21 29 37 45 53 number of GaAs layers

    -5.0

    0.0

    5.0

    10.0

    15.0

    20.0

    TA

    MR

    =(g

    (00

    1) -g

    (11

    0) )/

    g(0

    01

    ) (%

    )

    exact SOCSOC off I

    j

    M

    j

    M

    strong TAMR effect for thin spacersuppressing SOC at the interface reduces the TAMR by ≈50%TAMR ≈ 6 × larger than for As termination JST-DFG workshop Kyoto 2009 – p.12/22

  • Ludwig

    Maximilians-

    Universität

    München

    Tunneling Anisotropic Magneto-Resistance

    Gould et al. 2004, PRL 93, 117203Rüster et al. 2005, PRL 94, 027203

    spin-valve behaviour with only one (ortwo coupled) magnetic layer

    depending on φ width and sign change(unlike TMR)

    at saturation, the sample is a sensor ofthe absolute directionof ~H

    modelling conductance gg ∝ ’tunnelling’ DOS∆DOS≡DOS(M‖x) − DOS(M‖y)

    spin-orbit coupling (SOC) inducedanisotropy

    JST-DFG workshop Kyoto 2009 – p.13/22

  • Ludwig

    Maximilians-

    Universität

    München

    Fe/29(GaAs)/Au – in-plane TAMR

    theory

    0.0

    0.1

    0.2

    0.3

    0.4

    (R(φ

    )-R

    min)/

    Rm

    in

    0.1

    0.2

    0.3

    0.4

    [110] [--110]

    Ga termAs term x 20

    experiment

    0.996

    0.997

    0.998

    0.999

    1.000

    R(Ω

    )

    0.5 Tesla5 Tesla10 Tesla

    Fe(epitaxial)/GaAs(8nm)/Aumeasured at 4.2 K and -90 mV

    [110

    ]

    [1-1

    0]

    Moser et al., Univ. of Regensburg

    Phys. Rev. Lett. 99 056601 (2007)

    qualitative (but not quantitative) agreement between theory and experiment

    φ

    j

    M

    JST-DFG workshop Kyoto 2009 – p.14/22

  • Ludwig

    Maximilians-

    Universität

    München

    Full conductivity tensor σ

    Str̆eda, Smirc̆ka, JPF (1975,1977)

    σµν = −~

    2πV

    ∫ +∞

    −∞dE f(E) Tr

    〈ĵµ

    dG+

    dEĵν(G

    +−G−)−ĵµ(G+−G−)ĵν

    dG−

    dE

    Crépieux, Bruno, PRB (2001), (T = 0)

    σµν =~

    4πVTr

    ĵµ(G+ − G−)ĵνG

    − − ĵµG+ĵν(G

    + − G−)

    +e

    4iπVTr

    〈(G+ − G−)(rµĵν − rν ĵµ)

    JST-DFG workshop Kyoto 2009 – p.15/22

  • Ludwig

    Maximilians-

    Universität

    München

    Residual resistivity of non-magnetic alloys

    0 0.2 0.4 0.6 0.8 1X

    0

    10

    20

    30

    40

    ρ (1

    0-6 O

    hm c

    m)

    GuenaultCPA no VC CPA VC

    AgxPd

    1-x

    0 0.2 0.4 0.6 0.8 1X

    0

    2

    4

    6

    ρ (1

    0-6 O

    hm c

    m)

    no SROSROEXP ordered

    CuxZn

    1-x

    Experiment:

    Guénault, Phil. Mag. 30, 641, 1974 W. Webb, Phys. Rev. 55, 297, 1938

    JST-DFG workshop Kyoto 2009 – p.16/22

  • Ludwig

    Maximilians-

    Universität

    München

    (Ga1−xMnx)As

    A

    B

    O

    C

    As

    Ga/Mn0 0.05 0.1 0.15 0.2

    x0

    1000

    2000

    3000

    4000

    5000

    ρ (1

    0-6 O

    hm c

    m)

    Turek et al. (TB-LMTO), J. Phys.: Cond. Mat. 16 (2004) Ogura, Akai (KKR), unpublishedpresent workEdmonds, Appl. Phys. Let. 81 3010 (2002), as-grownEdmonds et al., Appl. Phys. Let. 81 3010 (2002), annealedChoi et al., Appl. Phys. Let. 89 102503 (2006), annealedChun et al., Phys. Rev. Let. 98 26601 (2007), as-grown

    Residual resistivitycomparison with experiment

    JST-DFG workshop Kyoto 2009 – p.17/22

  • Ludwig

    Maximilians-

    Universität

    München

    (Ga1−x+z−yMnx−zAs y)AsMn iz

    O

    A

    C

    B As

    Mn

    Ga/Mn/As

    0 0.05 0.1 0.15 0.2x

    0

    1000

    2000

    3000

    4000

    5000

    ρ (1

    0-6 O

    hm c

    m)

    Ga1-x

    MnxAs

    (Ga1-x-y

    MnxAs

    y)As, y=0.01

    (Ga1-x+z

    Mnx-z

    )AsMni

    z, z=0.01

    (Ga1-x+z-y

    Mnx-z

    Asy)AsMn

    i

    z, y=0.01, z=0.01

    Edmonds, Appl. Phys. Let. 81 3010 (2002), as-grownEdmonds et al., Appl. Phys. Let. 81 3010 (2002), annealedChoi et al., Appl. Phys. Let. 89 102503 (2006), annealedChun et al., Phys. Rev. Let. 98 26601 (2007), as-grown

    Residual Resistivityinfluence of antisite and interstitial occupation

    JST-DFG workshop Kyoto 2009 – p.18/22

  • Ludwig

    Maximilians-

    Universität

    München

    Galvano-magnetic effects

    Cubic ferromagnet ~M ‖ ~z

    ρ =

    ρxx ρxy 0

    −ρxy ρxx 0

    0 0 ρzz

    Isotropic resistance ρ̄ = 13(2ρ‖ + ρ⊥)

    Anomalous magneto-resistance AMR =ρ‖−ρ⊥

    ρ̄

    spontaneous Hall effect ρxy

    JST-DFG workshop Kyoto 2009 – p.19/22

  • Ludwig

    Maximilians-

    Universität

    München

    Resistivity tensor of Co xPd1−x and Co xPt1−x

    Isotropic resistivity ρ

    0.0 20.0 40.0 60.0 80.0 100.0at. % Co

    0.0

    10.0

    20.0

    30.0

    40.0

    ρ(µ

    Ω.c

    m)

    CoPd TheoryCoPd Exp.CoPt TheoryCoPt Exp.

    CoPt

    CoPd

    Anomalous Magneto-Resistivity ∆ρρ

    0.0 20.0 40.0 60.0 80.0 100.0at. % Co

    0.0

    2.0

    4.0

    6.0

    8.0

    10.0

    ∆ρ/

    ρ (%

    )

    CoPd

    CoPt

    JST-DFG workshop Kyoto 2009 – p.20/22

  • Ludwig

    Maximilians-

    Universität

    München

    Spin conductivity tensor

    ~Σµν = −~

    2πV

    ∫ +∞

    −∞dE f(E) Tr

    〈~Jµ

    dG+

    dEĵν(G

    +−G−)− ~Jµ(G+−G−)ĵν

    dG−

    dE

    ~Jµ spin current operator for direction µjν electrical current operator for direction ν (~j = ec~α)

    Naive definition Jzµ = σz jµ/eIntroduce auxilary current that fulfills continuity equation

    Jzµ =d

    dt(σz rµ) = σz jµ/e +

    (d

    dtσz

    )rµ

    d

    dtσz spin-flip events due to SOC or non-collinear magnetism

    Semi-relativistic: Niu (2005) and several others

    Relativistic: Gyorffy, Szunyogh (2008)JST-DFG workshop Kyoto 2009 – p.21/22

  • Ludwig

    Maximilians-

    Universität

    München

    Summary

    Fully relativistiv description of transport withinLandauer-Büttiker

    Kubo-Greenwood (and extensions)

    Role of SOCinfluence on conductance G

    in/out of plane anisotropy of TMR

    in plane anisotropy of TMR-TAMR

    source for bulk galvano-magnetotransport

    Formal basis for corresponding spin transportcalculations

    JST-DFG workshop Kyoto 2009 – p.22/22

    OUTLINEGreen's function in 2DAccounting for Spin-Orbit Coupling (SOC)Fe/GaAs/Fe -- SOC-induced anisotropySymmetry breaking at the FM/SC-interfaceTransport propertiesTransport properties of Fe/BFM {13}(AsGa)/Fe Tunneling Conductance for Fe/$n$(GaAs)/Fe Dependence on orientation of �m {vec M}Dependence on orientation of �m {vec M}Fe/GaAs/Fe -- TAMR calculationsTunneling Anisotropic Magneto-ResistanceFe/�m {29}(GaAs)/Au -- in-plane TAMRFull conductivity tensor $sigma $Residual resistivity of non-magnetic alloys(Ga$_{1-x}$Mn$_{x}$)As (Ga$_{1-x+z-y}$Mn$_{x-z}$As$_y$)AsMn$^{{m i}}_z$ Galvano-magnetic effectsResistivity tensor of Co$_x$Pd$_{1-x}$ and Co$_x$Pt$_{1-x}$ Spin conductivity tensor Summary


Recommended