+ All Categories
Home > Documents > Magnetization Switching Using Spin Orbit Torques from ...

Magnetization Switching Using Spin Orbit Torques from ...

Date post: 20-Mar-2022
Category:
Upload: others
View: 4 times
Download: 0 times
Share this document with a friend
16
A Science & Technology Center Magnetization Switching Using Spin Orbit Torques from Sputtered Conductive WTe x Xiang (Shaun) Li, Mahendra DC, Chong Bi, and S. X. Wang Materials Science and Engineering, Electrical Engineering Peng Li, Yuri Suzuki Applied Physics Stanford University 2019 E3S Annual Retreat University of California, Berkeley, September 19-20, 2019
Transcript

A Science & Technology Center

Magnetization Switching Using Spin Orbit Torques from Sputtered Conductive WTex

Xiang (Shaun) Li,

Mahendra DC, Chong Bi, and S. X. WangMaterials Science and Engineering, Electrical Engineering

Peng Li, Yuri SuzukiApplied Physics

Stanford University

2019 E3S Annual RetreatUniversity of California, Berkeley, September 19-20, 2019

A Science & Technology Center

9/19/2019 Page 2

0.1

1

10

100

1000

10000

Read time (ns)

Write time (ns)

Cell size (F2)Read energy (fJ)

Write energy (fJ)

SRAMeDRAMDRAMSTT-MRAMFeFETReRAMPCM

Xiang Li, Kang L. Wang, et al., MRS Bulletin, vol. 43, pp. 970-977, 2018.

S. Salahuddin, K. Ni, and S. Datta, Nature Electronics, vol. 1, pp. 442-450, 2018.

Standby Power

Limited Endurance

Comparison of Existing and Emerging Memories

A Science & Technology Center

SOT-MRAM Towards SRAM Performance

Page 39/19/2019

Bit switching energy estimates:

~250 fJ @ 110 nm

Scaling down possibility:

~10 fJ @ 22 nm ~0.5 fJ @ 5 nm

Sato, Wang, et al., Nature Electronics, 1(9), 508, 2018

A Science & Technology Center

Leverage New Physics for More Efficient Write

Page 49/19/2019

http://www.cpfs.mpg.de/2520563/Dirac-semimetal_-Transport-by-massless-fermionsJ. Phys. Soc. Jpn. 87, 041002 (2018)https://www.eecs.mit.edu/node/6509

A Science & Technology Center

Topological Insulator and Weyl Semimetals

Page 59/19/2019

https://www.eecs.mit.edu/node/6509

K. Kuroda, et al., Physical Review B, vol. 94, Nov 18 2016.

• High resistivity of topological insulators lowers overall on/off ratio (over 4000 𝜇Ω cm for 5 nm films)

• Weyl semimetals are promising candidates, for example WTe2

A Science & Technology Center

Sputtered Weyl Semimetal WTex

Page 69/19/2019

100 150 200 250

0

100

200

300

400

500

600 A10

1 A4

276.9 nm

76.9 nm

36.4 nm

36.4 nm

27.6 nm

A5

2A

6

1

A9

1 A2

1

Inte

nsity (

arb

itra

ry u

nit)

Raman shift (cm-1)

A5

1

27.6 nm

Y. C. Jiang, J. Gao, and L. Wang, Scientific

Reports, vol. 6, p. 19624, 01/22/online 2016.

• Sputter deposition desired for industry adoption• Signature Raman peaks of sputtered WTe2

Xiang Li, Shan Wang, et al., in preparation

A Science & Technology Center

High Resolution TEM Analysis

Page 79/19/2019

• TEM shows W:Te ratio of 1:1.34 with visible WTex grains/clusters

Xiang Li, Shan Wang, et al., in preparation

A Science & Technology Center

Low Frequency Current Induced Resistance Change

Page 89/19/2019

• Charge-to-spin conversion efficiency characterized using harmonic current induced magnetization oscillation

• HDL is the damping-like effective field that drives switching

CoFeB

HDL

Mo

damping-like effective field

H

V

𝑰𝒔𝒊𝒏(𝝎𝒕)𝝓

x

y Raw data

Fitted data

-6000 -3000 0 3000 6000-15

-10

-5

0

5

10

15

= 45o

R x

y

2 (

m

)H (Oe)

I = 0.5 mA

Q Shao, Kang Wang et al., 2018 IEDM

𝑅2𝜔 = 𝑅𝑃𝐻𝐹𝐿𝐻𝑒𝑥𝑡

𝑐𝑜𝑠2𝜙𝑐𝑜𝑠𝜙 +𝑅𝐴2

𝐻𝐷𝐿𝐻𝑒𝑥𝑡 − 𝐻𝐾

+ 𝑅𝑡ℎ 𝑐𝑜𝑠𝜙

Xiang Li, Shan Wang, et al., in preparation

A Science & Technology Center

Charge-to-Spin Conversion Efficiency

Page 99/19/2019

• Mo between WTe2 and CoFeB partially absorb spin-polarized electrons• Real 𝜉𝑆𝑇 value of WTe2 should be larger 𝜉𝑆𝑇 =

2𝑒𝑀𝑆𝑡𝐶𝑜𝐹𝑒𝐵ℏ

𝐻𝐷𝐿𝐽𝑊𝑇𝑒2Xiang Li, Shan Wang, et al., in preparation

0.0 0.5 1.0 1.5 2.00

2

4

6

8

10

WTeX(5)/Mo(1)/CoFeB(1)

Mo(6)/CoFeB(1)

Linear Fit

Linear FitHD

L (

Oe)

I (mA)

ST= 0.50 0.03

WTeX

ST = 0.039 0.002Mo

A Science & Technology Center

Unidirectional Spin Hall Magnetoresistance (USMR)

Page 109/19/2019

• Spin currents interaction with magnetization affects interface scattering, thus changes longitudinal resistance

-15 -10 -5 0 5 10 15

-10

-5

0

5

-5000 0 5000-4

-2

I = 0.7 mA

R x

x

2

(m

)

Hy (Oe)

C. O. Avci et al., Nature Physics, vol. 11, p. 570, 2015.

Xiang Li, Shan Wang, et al., in preparation

A Science & Technology Center

Current-Induced Field-Free Switching

Page 119/19/2019

• Switching current density in WTex 0.77-1.41 MA/cm2

-15 -10 -5 0 5 10 15

-10

-5

0

5

-5000 0 5000-4

-2

I = 0.7 mA

R x

x

2

(m

)

Hy (Oe)

-8 -4 0 4 8

-10

-5

0

5

Ipulse

(mA)

R x

x

2

(m

)

- My initialization

My initialization

H = 0

tpulse

= 1 ms

Xiang Li, Shan Wang, et al., in preparation

A Science & Technology Center

Resistivity (𝜇Ω ⋅ 𝑐𝑚)

𝜉 𝑆𝑇

0.1

1

10

100

100 1000 10000

Benchmark: Power Efficiency of SOT-MTJ Cell

Page 129/19/2019

Physical Review Applied, vol. 10, Sep 6 2018.

Assumes 6 nm SOT write line under 1 nm in-plane CoFeB.

Resistivity (𝜇Ω 𝑐𝑚)

Pow

er

1

10

100

100 1000 10000

435.2

300

713

12000

Sputtered WTex

Sputtered WExfoliated WTe2*Sputtered BiSex**

Xiang Li, Shan Wang, et al., in preparation

*Yang et al., Nature

Nano, 2019.

**Wang et al.,

Nature Materials,

2018.

A Science & Technology Center

High Frequency Current Induced Magnetic Resonance

2018 NSF Site Visit Page 139/19/2019

• Fitted resonance peak with symmetric and asymmetric Lorentzian line shapes

𝜃 =

Luqiao Liu, et al., PRL 106, 036601 (2011)

Raw data

Fitted Data

Symmetric Lorentzian

Asymmetric Lorentzian

200 300 400

0.0

1.0µ

2.0µ

3.0µ

WTeX

Vm

ix (

V)

H (Oe)

f = 5 GHz

t = 58.2 nm

ST = 0.82

Xiang Li, Shan Wang, et al., in preparation

A Science & Technology Center

SOT-MTJ Integration and Test

Page 149/19/2019

A Science & Technology Center

Conclusions

• MRAM holds great promise to replace or complement SRAM for data-centric applications as high-density on-chip memory

• Unique topological band structure gives rise to highly spin polarized electrons in Weyl semimetal WTe2

• Sputtered 5 nm WTex at room temperature shows attractive charge-to-spin conversion efficiency (0.5), low switching current density (1 MA/cm2), and low thin film resistivity (570 𝝁𝛀⋅𝒄𝒎)

• Greatly improved energy/delay performance compared with other topological materials such as BiSe or exfoliated WTe2

• Even larger charge-to-spin conversion efficiency up to 0.8

Page 159/19/2019

A Science & Technology Center

Acknowledgements

Page 169/19/2019


Recommended