+ All Categories
Home > Documents > Integrale Tabelare

Integrale Tabelare

Date post: 07-Aug-2018
Category:
Upload: liridon-sulejmani
View: 227 times
Download: 1 times
Share this document with a friend
20
8/20/2019 Integrale Tabelare http://slidepdf.com/reader/full/integrale-tabelare 1/20
Transcript
Page 1: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 1/20

Page 2: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 2/20

Page 3: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 3/20

Page 4: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 4/20

Page 5: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 5/20

Page 6: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 6/20

S.3.2-3. Integrals containing (

  2 +

  2)1   2.

18.

  (

  2 +

  2)1   2

=  1

2   (

  2 +

  2)1   2 +

2

2  ln

  + (

  2 +

  2)1   2 .

19.

  (

  2

+

  2

)

1   2

=

  1

3 (

  2

+

  2

)

3   2

.

20.

  (

  2 +

  2)3   2

=  1

4   (

  2 +

  2)3   2 +  3

8

2 (

  2 +

  2)1   2 +  3

8

4 ln

  + (

  2 +

  2)1   2

.

21.

  1

(

  2 +

  2)1   2

= (

  2 +

  2)1   2 −   ln

  + (

  2 +

  2)1   2

.

22.

2 +

  2= ln

  + (

  2 +

  2)1   2 .

23.

2 +

  2= (

  2 +

  2)1   2.

24.

  (

  2 +

  2)−3   2

=

  −2 (

  2 +

  2)−1   2.

S.3.2-4. Integrals containing (

  2 −

  2)1   2.

25.

  (

  2 −

  2)1   2

=  1

2   (

  2 −

  2)1   2 −

2

2  ln

  + (

  2 −

  2)1   2

.

26.

  (

  2 −

  2)1   2

=  1

3(

  2 −

  2)3   2.

27.

  (

  2 −

  2)3   2

=  1

4   (

  2 −

  2)3   2 −  3

8

2 (

  2 −

  2)1   2 +  3

8

4 ln

  + (

  2 −

  2)1   2

.

28.

  1

(

  2 −

  2)1   2

= (

  2 −

  2)1   2 −   arccos

  .

29.

2 −

  2 = ln

  + (

  2

  2

)1   2

.

30.

2 −

  2= (

  2 −

  2)1   2.

31.

  (

  2 −

  2)−3   2

= −

  −2 (

  2 −

  2)−1   2.

S.3.2-5. Integrals containing (

  2 −

  2)1   2.

32.

  (

  2 −

  2)1   2

=  1

2   (

  2 −

  2)1   2 +

2

2  arcsin

  .

33.

  (

  2 −

  2)1   2

= −1

3(

  2 −

  2)3   2.

34.

  (

  2 −

  2)3   2

=  1

4   (

  2 −

  2)3   2 +  3

8

2 (

  2 −

  2)1   2 +  3

8

4 arcsin

  .

35.

  1

(

  2 −

  2)1   2

= (

  2 −

  2)1   2 −   ln

  + (

  2 −

  2)1   2

.

36.

2 −

  2= arcsin

  .

37.

2 −

  2= −(

  2 −

  2)1   2.

38.

  (

  2 −

  2)−3   2

=

  −2 (

  2 −

  2)−1   2.

© 2003 by Chapman & Hall/CRC

Page 7: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 7/20

S.3.2-6. Reduction formulas.

The parameters   ,   ,  ,

  , and   below can assume arbitrary values, except for those at which

denominators vanish in successive applications of a formula. Notation:

  =

  +   .

39.

  (

  +

  )

  =

  1

+   + 1

+1

+

  −1

.

40.

  (

  +   )

  =  1

(   + 1)

  −

  +1

  +1 + (

  +   +   + 1)

  +1

.

41.

  (

  +   )

  =  1

(

  + 1)

+1

  +1 −   (

  +   +   + 1)

  +

.

42.

  (

  +   )

  =  1

(

  +   + 1)

−   +1

  +1 −   (

  −   + 1)

  −

.

S.3.3. Integrals Containing Exponential Functions

1.

  =

  1

.

2.

  =

ln

  .

3.

  =

  −  1

2

  .

4.

  2

=

2

−  2

2  +

  2

3

  .

5.

  =

  1

2

−1 +  (   − 1)

3

−2 −   + (−1)   −1

  !

+ (−1)

  !

+1  ,

= 1,  2,

6.

  (   )

  =

=0

(−1)

+1

  (   ), where

  (   ) is an arbitrary polynomial of degree   .

7.

+

  =

  −  1

ln |   +

  |.

8.

+

  −

  =

 

1

arctan

  if    > 0,

1

2

  −

ln

  +

  −

  −

if 

  < 0.

9.

+

=

 

1

ln

  +

  −

+

  +

if    > 0,

2

  arctan

  +

  if    < 0.

S.3.4. Integrals Containing Hyperbolic Functions

S.3.4-1. Integrals containing cosh   .

1.

  cosh(   +   )

  =  1

sinh(   +   ).

2.

  cosh

  =   sinh   − cosh   .

© 2003 by Chapman & Hall/CRC

Page 8: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 8/20

3.

  2 cosh

  = (

  2 + 2) sinh   − 2   cosh   .

4.

  2 cosh

  = (2   )!

=1

2

(2   )! sinh   −

2   −1

(2   − 1)! cosh

  .

5.

  2   +1 cosh

  = (2   + 1)!

=0

2   +1

(2   + 1)! sinh   −

2

(2   )! cosh

  .

6.

  cosh

  =

  sinh   −

  −1 cosh   +  (

  − 1)

  −2 cosh

  .

7.

  cosh2

=   1

2   +   1

4  sinh 2   .

8.

  cosh3

= sinh   +   1

3  sinh3

.

9.

  cosh2

=

2

22

  +  1

22   −1

−1

=0

2

sinh[2(   −   )   ]

2(   −   )  ,   = 1,  2,

10.

  cosh2   +1

=  1

22

=0

2   +1

sinh[(2   − 2   + 1)   ]

2   − 2   + 1  =

=0

sinh2   +1

2   + 1  ,   = 1,  2,

11.

  cosh

  =  1

sinh   cosh

  −1 +

  − 1

cosh

  −2

.

12.

  cosh   cosh

  =  1

2 −

  2 (   cosh

  sinh

  −   cosh

  sinh

  ).

13.

cosh

  =  2

arctan

  .

14.

cosh2

  =  sinh

2

  − 1

1

cosh2   −1

  +

−1

=1

2   (   − 1)(   − 2)   (   −   )

(2

  − 3)(2

  − 5)

  (2

  − 2

  − 1)

1

cosh2   −2   −1

  ,

= 1,  2,

15.

cosh2   +1

  =  sinh

2

1

cosh2

  +

−1

=1

(2   − 1)(2   − 3)   (2   − 2   + 1)

2   (   − 1)(   − 2)   (   −   )

1

cosh2   −2

+  (2   − 1)!!

(2   )!!  arctan sinh   ,   = 1,  2,

16.

+   cosh

  =

 

−  sign

2 −

  2arcsin

  +   cosh

+   cosh

  if 

  2 <

  2,

1

2 −

  2ln

  +   +

  2 −

  2 tanh(

  2)

+   −

  2 −

  2 tanh(

  2)if 

  2 >

  2.

S.3.4-2. Integrals containing sinh   .

17.

  sinh(   +   )

  =  1

cosh(   +   ).

18.

  sinh

  =   cosh   − sinh   .

19.

  2 sinh

  = (

  2 + 2) cosh   − 2   sinh   .

20.

  2 sinh

  = (2   )!

=0

2

(2   )! cosh   −

=1

2   −1

(2   − 1)! sinh

  .

© 2003 by Chapman & Hall/CRC

Page 9: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 9/20

21.

  2   +1 sinh

  = (2   + 1)!

=0

2   +1

(2   + 1)! cosh   −

2

(2   )! sinh

  .

22.

  sinh

  =

  cosh   −

  −1 sinh   +  (

  − 1)

  −2 sinh

  .

23.

  sinh2

= − 1

2   +   1

4 sinh 2   .

24.

  sinh3

= − cosh   +   1

3 cosh3

.

25.

  sinh2

= (−1)

2

22

  +  1

22   −1

−1

=0

(−1)

2

sinh[2(   −   )   ]

2(   −   )  ,   = 1,  2,

26.

  sinh2   +1

=  1

22

=0

(−1)

2   +1

cosh[(2   − 2   + 1)   ]

2   − 2   + 1  =

=0

(−1)   +

  cosh2   +1

2   + 1  ,

= 1,  2,

27.

  sinh

  =

  1

sinh

  −1

cosh

  −

  − 1

sinh

  −2

.

28.

  sinh   sinh

  =  1

2 −

  2

  cosh   sinh

  −   cosh

  sinh

  .

29.

sinh

  =  1

ln

 tanh

2

  .

30.

sinh2

  =  cosh

2   − 1  −

  1

sinh2   −1

+

−1

=1

(−1)   −1  2   (   − 1)(   − 2)

  (   −   )

(2   − 3)(2   − 5)   (2   − 2   − 1)

1

sinh2   −2   −1

  ,   = 1,  2,

31.

sinh2   +1

  =

  cosh

2

  −

  1

sinh2

  +

−1

=1(−1)

  −1 (2   −1)(2   −3)

  (2   −2   +1)

2   (   −1)(   −2)   (   −   )

1

sinh2   −2

+ (−1)

  (2   − 1)!!

(2   )!!  ln tanh

2 ,   = 1,  2,

32.

+   sinh

  =  1

2 +

  2ln

  tanh(

  2) −   +

  2 +

  2

tanh(

  2) −   −

  2 +

  2.

33.

  +   sinh

+   sinh

  =

  +

  −

2 +

  2ln

  tanh(

  2) −   +

  2 +

  2

tanh(

  2) −   −

  2 +

  2.

S.3.4-3. Integrals containing tanh   or coth   .

34.

  tanh

  = ln cosh   .

35.

  tanh2

=   − tanh   .

36.

  tanh3

= − 1

2 tanh2

+ ln cosh   .

37.

  tanh2

=   −

=1

tanh2   −2   +1

2   − 2   + 1  ,   = 1,  2,

38.

  tanh2   +1

= ln cosh   −

=1

(−1)

2   cosh2

  = ln cosh   −

=1

tanh2   −2   +2

2   − 2   + 2  ,   = 1,  2,

© 2003 by Chapman & Hall/CRC

Page 10: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 10/20

39.

  tanh

  = −  1

− 1 tanh

  −1 +

  tanh

  −2

.

40.

  coth

  = ln |sinh   |.

41.   coth2

=   − coth   .

42.

  coth3

= − 1

2 coth2

+ ln |sinh   |.

43.

  coth2

=   −

=1

coth2   −2   +1

2   − 2   + 1  ,   = 1,  2,

44.

  coth2   +1

= ln |sinh   | −

=1

  2   sinh2

  = ln |sinh   |−

=1

coth2   −2   +2

2   − 2   + 2  ,   = 1,  2,

45.

  coth

  = −  1

− 1 coth

  −1 +

  coth

  −2

.

S.3.5. Integrals Containing Logarithmic Functions

1.

  ln

  =   ln   −   .

2.

  ln

  =   1

2

2 ln   −   1

4

2.

3.

  ln

  =

 

1

+ 1

+1 ln   −

  1

(   + 1)2

+1 if   ≠ −1,

1

2  ln2

if   = −1.

4.

  (ln   )2

=   (ln   )2 − 2   ln   + 2   .

5.

  (ln   )2

=   1

2

2(ln   )2 −   1

2

2 ln   +   1

4

2.

6.

  (ln   )2

=

 

+1

+ 1(ln   )2 −

  2

  +1

(   + 1)2

  ln   +  2

  +1

(   + 1)3

  if   ≠ −1,

1

3  ln3

if   = −1.

7.

  (ln   )

  =

+ 1

=0

(−1)   (   + 1)   (   −   + 1)(ln   )   − ,   = 1,  2,

8.

  (ln   )

  =   (ln   )   −

  (ln   )

  −1

,  ≠ −1.

9.

  (ln   )

  =

+1

+ 1

=0

(−1)

(   + 1)   +1 (

  + 1)

  (

  −   + 1)(ln   )   − ,   ,

  = 1,  2,

10.

  (ln   )

  =  1

+ 1

+1(ln   )   −

+ 1

  (ln   )

  −1

,   ,   ≠ −1.

11.

  ln(   +   )

  =  1

(   +   ) ln(

  +   ) −   .

12.

  ln(   +   )

  =  1

2

2 −

2

2

  ln(   +   ) −

  1

2

2

2  −

  .

13.

  2 ln(   +   )

  =  1

3

3 −

3

3

  ln(   +   ) −

  1

3

3

3  −

2

2

  +

2

2

  .

© 2003 by Chapman & Hall/CRC

Page 11: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 11/20

14.

  ln

(   +   )2

  = −  ln

(   +   )

  +  1

ln

+

  .

15.

  ln

(   +   )3

  = −  ln

2   (   +   )2

  +  1

2

  (   +   )

  +  1

2

  2

  ln

+

  .

16.

  ln

+

=

 

2

(ln   − 2)

  +   +

  ln

  +

  +

+   −

if    > 0,

2

(ln   − 2)

  +   + 2   −   arctan

  +

  if    < 0.

17.

  ln(

  2 +

  2)

  =   ln(

  2 +

  2) − 2   + 2   arctan(

  ).

18.

  ln(

  2 +

  2)

  =   1

2

  (

  2 +

  2) ln(

  2 +

  2) −

  2 .

19.

  2 ln(

  2 +

  2)

  =   1

3

3 ln(

  2 +

  2) −   2

3

3 + 2

  2 − 2

  3 arctan(

  )   .

S.3.6. Integrals Containing Trigonometric Functions

S.3.6-1. Integrals containing cos   (   = 1,  2,

  ).

1.

  cos(   +   )

  =  1

sin(   +   ).

2.

  cos

  = cos   +   sin   .

3.

  2 cos

  = 2   cos   + (

  2 − 2) sin   .

4.

  2

cos

  = (2   )!

=0

(−1)

2   −2

(2   − 2   )!  sin   +

−1

=0

(−1)

2   −2   −1

(2   − 2   − 1)! cos   .

5.

  2   +1 cos

  = (2   + 1)!

=0

(−1)

2   −2   +1

(2   − 2   + 1)! sin   +

2   −2

(2   − 2   )! cos

  .

6.

  cos

  =

  sin   +

  −1 cos   −   (   − 1)

  −2 cos

  .

7.

  cos2

=   1

2   +   1

4 sin 2   .

8.

  cos3

= sin   −   1

3 sin3

.

9.

  cos2

=   122

  2

  +   122   −1

−1

=0

2

sin[(2   − 2   )   ]2   − 2

  .

10.

  cos2   +1

=  1

22

=0

2   +1

sin[(2   − 2   + 1)   ]

2   − 2   + 1  .

11.

cos

  = ln

  tan

2  +

4

  .

12.

cos2

  = tan   .

13.

cos3

  =  sin

2 cos2

  +  1

2  ln

  tan

2  +

4

  .

© 2003 by Chapman & Hall/CRC

Page 12: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 12/20

14.

cos

  =  sin

(   − 1) cos   −1

  +   − 2

− 1

  cos   −2

  ,   > 1.

15.

cos2

  =

−1

=0

(2   − 2)(2   − 4)   (2   − 2   + 2)

(2   − 1)(2   − 3)   (2   − 2   + 3)

(2   − 2   )   sin   − cos

(2   − 2   + 1)(2   − 2   )cos2   −2   +1

+  2

  −1(   − 1)!

(2   − 1)!!

  tan   + ln |cos   |   .

16.

  cos   cos

  =sin   (   −   )

2(   −   )  +

sin   (   +   )

2(   +   )  ,   ≠

  .

17.

+   cos

  =

 

2

2 −

  2arctan

 (   −   ) tan(

  2)

2 −

  2if 

  2 >

  2,

1

2 −

  2ln

2 −

  2 + (   −   ) tan(

  2)

2 −

  2 − (   −   ) tan(

  2)

if 

  2 >

  2.

18.

(   +   cos   )2  =

  sin

(

  2 −

  2)(   +   cos   )  −

2 −

  2

+   cos

  .

19.

2 +

  2 cos2

  =   1

2 +

  2arctan

  tan

2 +

  2.

20.

2 −

  2 cos2

  =

 

1

2 −

  2arctan

  tan

2 −

  2if 

  2 >

  2,

1

2

  2 −

  2ln

2 −

  2 −   tan

2 −

  2 +   tan

if 

  2 >

  2.

21.

  cos

  =

2 +

  2  sin

  +

2 +

  2  cos

  .

22.

  cos2

=

2 + 4

  cos2 + 2 sin   cos   +

  2

.

23.

  cos

  =

  cos   −1

2 +

  2  (   cos   +   sin   ) +

  (   − 1)

2 +

  2

  cos   −2

.

S.3.6-2. Integrals containing sin   (   = 1,  2,   ).

24.

  sin(   +   )

  = −1

cos(   +   ).

25.

  sin

  = sin   −   cos   .

26.

  2 sin

  = 2   sin   − (

  2 − 2)cos   .

27.

  3 sin

  = (3

  2 − 6) sin   − (

  3 − 6   ) cos   .

28.

  2 sin

  = (2   )!

=0

(−1)   +1

2   −2

(2   − 2   )! cos   +

−1

=0

(−1)

2   −2   −1

(2   − 2   − 1)! sin

  .

29.

  2   +1 sin

  = (2   + 1)!

=0

(−1)   +1

2   −2   +1

(2   − 2   + 1)! cos   + (−1)

2   −2

(2   − 2   )! sin

  .

30.

  sin

  = −

  cos   +

  −1 sin   −  (

  − 1)

  −2 sin

  .

31.

  sin2

=   1

2   −   1

4 sin 2   .

© 2003 by Chapman & Hall/CRC

Page 13: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 13/20

Page 14: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 14/20

50.

  sin

  =

2 +

  2  sin

  −

2 +

  2  cos

  .

51.

  sin2

=

2 + 4

  sin2 − 2 sin   cos   +

  2

.

52.

  sin

  =

  sin   −1

2 +

  2  (   sin   −   cos   ) +

  (

  − 1)

2 +

  2

  sin   −2

.

S.3.6-3. Integrals containing sin   and cos   .

53.

  sin   cos

  = −cos[(   +   )   ]

2(   +   )  −

cos   (   −   )

2(   −   )  ,   ≠

  .

54.

2 cos2

+

  2 sin2

  =  1

arctan

  tan

  .

55.

2 cos2

  2 sin2

  =  1

2

  ln

  tan   +

tan   −

  .

56.

cos2

sin2

  =

+   −1

=0

+   −1

tan2   −2   +1

2   − 2

  + 1 ,   ,

  = 1,  2,

57.

cos2   +1 sin2   +1

  =

+

  ln |tan   | +

+

=0

+

tan2   −2

2   − 2

  ,   ,

  = 1,  2,

S.3.6-4. Reduction formulas.

The parameters  and

  below can assume any values, except for those at which the denominators

on the right-hand side vanish.

58.

  sin

  cos

  = − sin

  −1 cos

  +1

+

  +

  − 1

+

  sin

  −2 cos

  .

59.

  sin

  cos

  =  sin

  +1 cos

  −1

+

  +  − 1

+

  sin

  cos

  −2

.

60.

  sin

  cos

  =  sin

  −1 cos

  −1

+

  sin2 −

  − 1

+

  − 2

+  (

  − 1)(

  − 1)

(   +   )(   +   − 2)

  sin

  −2 cos

  −2

.

61.

  sin

  cos

  =  sin

  +1 cos

  +1

+ 1

  +  +

  + 2

+ 1

  sin

  +2 cos

  .

62.

  sin

  cos

  = − sin

  +1

cos

  +1

+ 1

  +

  +

  + 2

+ 1

  sin

  cos

  +2

.

63.

  sin

  cos

  = −sin

  −1 cos

  +1

+ 1

  +   − 1

+ 1

  sin

  −2 cos

  +2

.

64.

  sin

  cos

  =  sin

  +1 cos

  −1

+ 1  +

  − 1

+ 1

  sin

  +2 cos

  −2

.

S.3.6-5. Integrals containing tan   and cot   .

65.

  tan

  = − ln |cos   |.

© 2003 by Chapman & Hall/CRC

Page 15: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 15/20

Page 16: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 16/20

10.

  arctan

  =  1

2(

  2 +

  2) arctan

  −

2  .

11.

  2 arctan

  =

3

3  arctan

  −

2

6  +

3

6  ln(

  2 +

  2).

12.

  arccot

  =   arccot

  +

2  ln(

  2 +

  2).

13.

  arccot

  =  1

2(

  2 +

  2) arccot

  +

2  .

14.

  2 arccot

  =

3

3  arccot

  +

2

6  −

3

6  ln(

  2 +

  2).

 References for Subsection  S.3.3: H. B. Dwight (1961), I. S. Gradshteyn and I. M. Ryzhik (1980), A. P. Prudnikov,Yu. A. Brychkov, and O. I. Marichev (1986, 1988).

© 2003 by Chapman & Hall/CRC

Page 17: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 17/20

REFERENCES

Abramowitz, M. and Stegun, I. A. (Editors), Handbook of MathematicalFunctionswith Formulas,

Graphs and Mathematical Tables, National Bureau of Standards Applied Mathematics,

Washington, 1964.

Akulenko, L. D. and Nesterov, S. V.,   Accelerated convergence method in the Sturm–Liouville

problem, Russ. J. Math. Phys.,  Vol. 3, No. 4, pp. 517–521, 1996.

Akulenko, L. D. and Nesterov, S. V., Determination of the frequencies and forms of oscillations of 

non-uniform distributed systems with boundary conditions of the third kind, Appl. Math. Mech.

(PMM), Vol. 61, No. 4, pp. 531–538, 1997.

Alexeeva, T. A., Zaitsev, V. F., and Shvets, T. B.,  On discrete symmetries of the Abel equation of 

the 2nd kind [in Russian], In: Applied Mechanics and Mathematics, MIPT, Moscow, pp. 4–11,

1992.Anderson, R. L. and Ibragimov, N. H.,  Lie–B ¨ acklund Transformations in Applications, SIAM

Studies in Applied Mathematics, Philadelphia, 1979.

Arnold, V. I., Kozlov, V. V., and Neishtadt, A. I.,  Mathematical Aspects of Classical and Celestial

 Mechanics, Dynamical System III , Springer-Verlag, Berlin, 1993.

Baker, G. A. (Jr.) and Graves–Morris, P.,  Pad   e Approximants, Addison–Wesley, London, 1981.

Bakhvalov, N. S., Numerical Methods [in Russian], Nauka, Moscow, 1973.

Bateman, H. and Erdelyi, A.,  Higher Transcendental Functions, Vols. 1–2, McGraw-Hill, New

York, 1953.

Bateman, H. and Erdelyi, A., Higher Transcendental Functions, Vol. 3, McGraw-Hill, New York,

1955.Berkovich, L. M.,   Factorization and Transformations of Ordinary Differential Equations [in Rus-

sian], Saratov University Publ., Saratov, 1989.

Birkhoff, G. and Rota, G. C.,  Ordinary Differential Equations, John Wiley & Sons, New York,

1978.

Blaquiere, A., Nonlinear System Analysis, Academic Press, New York, 1966.

Bluman, G. W. and Cole, J. D.,  Similarity Methods for Differential Equations, Springer-Verlag,

New York, 1974.

Bluman, G. W. and Kumei, S., Symmetries and Differential Equations, Springer-Verlag, New York,

1989.

Bogolyubov, N. N. and Mitropol’skii, Yu. A.,  Asymptotic Methods in the Theory of Nonlinear 

Oscillations  [in Russian], Nauka, Moscow, 1974.

Boyce, W. E. and DiPrima, R. C., Elementary Differential Equations and Boundary Value Problems,

John Wiley & Sons, New York, 1986.

Chicone, C., Ordinary Differential Equations with Applications, Springer-Verlag, Berlin, 1999.

Chowdhury, A. R.,   Painlev´ e Analysis and its Applications, Chapman & Hall/CRC Press, Boca

Raton, 2000.

Cole, G. D.,   Perturbation Methods in Applied Mathematics, Blaisdell Publishing Company,

Waltham, MA, 1968.

Collatz, L.,  Eigenwertaufgaben mit Technischen Anwendungen, Akademische Verlagsgesellschaft

Geest & Portig, Leipzig, 1963.

Page 18: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 18/20

Conte, R.,  The Painleve approach to nonlinear ordinary differential equations, In:  The Painlev ´ e

Property (ed. by R. Conte), pp. 77–180, CRM Series in Mathematical Physics, Springer-Verlag,

New York, 1999.

Dobrokhotov, S. Yu.,   Integration by quadratures of  2   -dimensional linear Hamiltonian systems

with   known skew-orthogonal solutions,  Russ. Math. Surveys, Vol. 53, No. 2, pp. 380–381,

1998.

El’sgol’ts, L. E., Differential Equations, Gordon & Breach Inc., New York, 1961.

Fedoryuk, M. V.,  Asymptotic Analysis. Linear Ordinary Differential Equations, Springer-Verlag,

Berlin, 1993.

Finlayson, B. A., The Method of Weighted Residuals and Variational Principles , Academic Press,

New York, 1972.

Fokas, A. S. and Ablowitz M. J., On unified approach to transformation and elementary solutions

of Painleve equations, J. Math. Phys., Vol. 23, No. 11, pp. 2033–2042, 1982.

Gambier, B., Sur les equations differentielles du second ordre et du premier degre dont l‘integrale

generale est a points critiques fixes, Acta Math., Vol. 33, pp. 1–55, 1910.

Giacaglia, G. E. O.,  Perturbation Methods in Non-Linear Systems, Springer-Verlag, New York,1972.

Godunov, S. K. and Ryaben’kii, V. S.,  Differences Schemes [in Russian], Nauka, Moscow, 1973.

Golubev, V. V., Lectures on Analytic Theory of Differential Equations [in Russian], GITTL, Moscow,

1950.

Gradshteyn, I. S. and Ryzhik, I. M.,  Tables of Integrals, Series, and Products, Academic Press,

New York, 1980.

Gromak, V. I. and Lukashevich, N. A.,  Analytical Properties of Solutions of Painlev ´ e Equations

[in Russian], Universitetskoe, Minsk, 1990.

Hartman, P., Ordinary Differential Equations, John Wiley & Sons, New York, 1964.

Hill, J. M.,   Solution of Differential Equations by Means of One-parameter Groups, Pitman,

Marshfield, MA, 1982.

Ibragimov, N. H. (Editor), CRC Handbook of Lie Group Analysis of Differential Equations, Vol. 1,

CRC Press, Boca Raton, 1994.

Ibragimov, N. H.,  Transformation Groups Applied to Mathematical Physics, (English translation

published by D. Reidel), Dordrecht, 1985.

Ince, E. L.,  Ordinary Differential Equations, Dover Publications, New York, 1964.

Its, A. R. and Novokshenov, V. Yu.,   The Isomonodromic Deformation Method in the Theory of 

Painlev´ e Equations, Springer-Verlag, Berlin, 1986.

Kalitkin, N. N., Numerical Methods [in Russian], Nauka, Moscow, 1978.

Kantorovich, L. V. and Krylov, V. I.,   Approximate Methods of Higher Analysis   [in Russian],

Fizmatgiz, Moscow, 1962.Kamke, E., Differentialgleichungen: L ¨ osungsmethoden und L¨ osungen, I, Gew¨ ohnliche Differential-

gleichungen, B. G. Teubner, Leipzig, 1977.

Keller, H. B.,  Numerical Solutions of Two Point Boundary Value Problems, SIAM, Philadelphia,

1976.

Kevorkian, J. and Cole, J. D.,  Perturbation Methods in Applied Mathematics, Springer-Verlag,

New York, 1981.

Kevorkian, J. and Cole, J. D., Multiple Scale and Singular Perturbation Methods, Springer-Verlag,

New York, 1996.

Korn, G. A. and Korn, T. M., Mathematical Handbook for Scientists and Engineers, McGraw-Hill,

New York, 1968.

© 2003 by Chapman & Hall/CRC

Page 19: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 19/20

Page 20: Integrale Tabelare

8/20/2019 Integrale Tabelare

http://slidepdf.com/reader/full/integrale-tabelare 20/20

Prudnikov, A. P., Brychkov, Yu. A., and Marichev, O. I.,  Integrals and Series, Vol. 1, Elementary

Functions, Gordon & Breach Sci. Publ., New York, 1986.

Reid, W. T., Riccati Differential Equations, Academic Press, New York, 1972.

Rosen, G., Alternative integration procedure for scale-invariant ordinary differential equations, Intl.

 J. Math. & Math. Sci.,  Vol. 2, pp. 143–145, 1979.Sachdev, P. L., Nonlinear Ordinary Differential Equations and Their Applications, Marcel Dekker,

New York, 1991.

Saigo, M. and Kilbas, A. A.,  Solution of one class of linear differential equations in terms of 

Mittag-Leffler type functions [in Russian], Dif. Uravneniya, Vol. 38, No. 2, pp. 168–176, 2000.

Simmons, G. F., Differential Equations with Applications and Historical Notes, McGraw-Hill, New

York, 1972.

Slavyanov, S. Yu., Lay, W., and Seeger, A., Heun’s Differential Equation, University Press, Oxford,

1955.

Ronveaux, A. (Editor), Heun’s Differential Equations, Oxford University Press, Oxford, 1995.

Stephani, H.,   Differential Equations: Their Solutions Using Symmetries, Cambridge University

Press, Cambridge, 1989.

Svirshchevskii, S. R.,  Lie–Backlund symmetries of linear ODEs and generalized separation of 

variables in nonlinear equations, Phys. Letters A, Vol. 199, pp. 344–348, 1995.

Temme, N. M.,   Special Functions. An Introduction to the Classical Functions of Mathematical

Physics, Wiley-Interscience, New York, 1996.

Tikhonov, A. N., Vasil’eva, A. B., and Sveshnikov, A. G.,  Differential Equations  [in Russian],

Nauka, Moscow, 1985.

Van Dyke, M., Perturbation Methods in Fluid Mechanics, Academic Press, New York, 1964.

Vinokurov, V. A. and Sadovnichii, V. A.,  Arbitrary-order asymptotic relations for eigenvalues and

eigenfunctions in the Sturm–Liouville boundary-value problem on an interval with summable

potential [in Russian], Izv. RAN, Ser. Matematicheskaya, Vol. 64, No. 4, pp. 47–108, 2000.

Wasov, W., Asymptotic Expansions for Ordinary Differential Equations, John Wiley & Sons, New

York, 1965.

Whittaker, E. T. and Watson, G. N., A Course of Modern Analysis, Vols. 1–2, Cambridge University

Press, Cambridge, 1952.

Yermakov, V. P.,   Second-order differential equations. Integrability conditions in closed form

[in Russian], Universitetskie Izvestiya, Kiev, No. 9, pp. 1–25, 1880.

Zaitsev, V. F.,  Universal description of symmetries on a basis of the formal operators,  Proc. Intl.

Conf. MOGRAN-2000 “Modern Group Analysis for the new Millenium”, USATU Publishers,

Ufa, pp. 157–160, 2001.

Zaitsev, V. F. and Polyanin, A. D., Discrete-Group Methods for Integrating Equations of Nonlinear 

 Mechanics, CRC Press, Boca Raton, 1994.Zaitsev, V. F. and Polyanin, A. D., Handbook of Nonlinear Differential Equations. Exact Solutions

and Applications in Mechanics [in Russian], Nauka, Moscow, 1993.

Zaitsev, V. F. and Polyanin, A. D.,  Handbook of Ordinary Differential Equations   [in Russian],

Fizmatlit, Moscow, 2001.

Zhuravlev, V. Ph. and Klimov, D. M.,  Applied Methods in Oscillation Theory [in Russian], Nauka,

Moscow, 1988.

Zwillinger, D., Handbook of Differential Equations, Academic Press, San Diego, 1989 and 1998.


Recommended