+ All Categories
Home > Documents > International Key Comparison COOMET.QM-K3 -...

International Key Comparison COOMET.QM-K3 -...

Date post: 07-May-2019
Category:
Upload: trannga
View: 214 times
Download: 0 times
Share this document with a friend
63
1 International Key Comparison COOMET.QM-K3 Final report L.A. Konopelko 1 , Yu.A. Kustikov 1 , A.V. Kolobova 1 , M.S. Rozhnov 2 N.V. Khairova 3 , A.S. Kluchits 3 , H.-J. Heine 4 1 D.I. Mendeleyev Institute for Metrology (VNIIM), Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD), 19, Moskovsky pr., St.-Petersburg, 198005, Russia 2 All Ukrainian State Research-Industrial Center of Standardization, Metrology, Certification and Protection of Consumers (Ukrmetrteststandard), Metchimenergotest, 4, Metrologicheskaya str., Kiev, 03143, Ukraine 3 Belorussian State Institute for Metrology (BelGIM), Department of Physical-Chemical and Optical Measurement, Sector of Standards and Gas Mixtures, 93, Starovilenskiy pr., Minsk, Buelorus 4 Federal Institute for Materials Research and Testing (BAM), Labor I.43, Unter den Eichen 87, D-12205, Berlin, Germany Field Amount of substance: gas analysis Subject International comparisons of national measurement standards in the field of analysis of gas mixtures of CO 2 , CO, C 3 H 8 in nitrogen (automobile gases) Participants: Institute City Country VNIIM St. Petersburg Russia Ukrmetrteststandard Kiev Ukraina BelGIM Minsk Belarus BAM Berlin Germany Organising body TC 1.8 «Physical Chemistry» COOMET Rationale This comparison is the first key comparison in the field of gas analysis organized by Technical Committee 1.8 «Physical Chemistry» COOMET. The comparison was registered in international database on key comparison (KCDB), Appendix B of MRA, as COOMET.QM-K3. This comparison is the fourth key comparison on automobile gases. Earlier key comparisons on automobile gases were carried out by Consultative Committee for Amount of Substance CCQM- K3 (the results were published on 21 November 2001) and by regional metrological organizations EUROMET, APMP (EUROMET.QM-K3 – the results were published on 5 July 2002, APMP.QM-K3 - the results were published on 14 November 2003). The relevance of the comparison is founded by tightening of requirements to a control of automobile emissions (putting EURO 4, EURO-5 into operation). Foundation of this comparison:
Transcript

1

International Key Comparison COOMETQM-K3 Final report LA Konopelko1 YuA Kustikov1 AV Kolobova 1 MS Rozhnov2 NV Khairova3 AS Kluchits3 H-J Heine4 1DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia 2All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers (Ukrmetrteststandard) Metchimenergotest 4 Metrologicheskaya str Kiev 03143 Ukraine 3Belorussian State Institute for Metrology (BelGIM) Department of Physical-Chemical and Optical Measurement Sector of Standards and Gas Mixtures 93 Starovilenskiy pr Minsk Buelorus 4Federal Institute for Materials Research and Testing (BAM) Labor I43 Unter den Eichen 87 D-12205 Berlin Germany Field Amount of substance gas analysis Subject International comparisons of national measurement standards in the field of analysis of gas mixtures of CO2 CO C3H8 in nitrogen (automobile gases) Participants

Institute City Country VNIIM St Petersburg Russia Ukrmetrteststandard Kiev Ukraina BelGIM Minsk Belarus BAM Berlin Germany Organising body TC 18 laquoPhysical Chemistryraquo COOMET Rationale This comparison is the first key comparison in the field of gas analysis organized by Technical Committee 18 laquoPhysical Chemistryraquo COOMET The comparison was registered in international database on key comparison (KCDB) Appendix B of MRA as COOMETQM-K3 This comparison is the fourth key comparison on automobile gases Earlier key comparisons on automobile gases were carried out by Consultative Committee for Amount of Substance CCQM-K3 (the results were published on 21 November 2001) and by regional metrological organizations EUROMET APMP (EUROMETQM-K3 ndash the results were published on 5 July 2002 APMPQM-K3 - the results were published on 14 November 2003) The relevance of the comparison is founded by tightening of requirements to a control of automobile emissions (putting EURO 4 EURO-5 into operation) Foundation of this comparison

2

bull Formation of circumstances for recognition of national measurement standards of Belarus and Ukraine which earlier did not participate in key comparisons and entering of calibration and measurement capabilities (CMC) of BelGIM and Ukrmetrteststandard in the field of automobile gases to the international database KCDB in accordance with Mutual Recognition Arrangement (CIPM MRA) for national measurement standards and for calibration and measurement certificates issued by NMIs

bull Objective of NMIs which participated in key comparisons on automobile gases earlier (BAM VNIIM) is to support or improve our calibration and measurement capabilities

Measurement standards The design of this comparison was adopted from key comparison CCQM-K3 The gas mixtures for the comparison were prepared by means of gravimetry and were studied thoroughly regarding its composition and stability at the coordinating laboratory (VNIIM PCD) The nominal amount of substance ratios of components in gas mixtures read as follows Carbon dioxide 135 mmolmol Carbon monoxide 30 mmolmol Propane 2 mmolmol Nitrogen balance Schedule The cylinders with gas mixtures were sent out to all participants of the comparison on April 2005 The measurement results were submitted by the participants on August ndash October 2005 All cylinders with gas mixtures were dispatched to the coordinating laboratory on November 2005 In connection with customs delay of the cylinders with gas mixtures the date of re-analysis of these gas mixtures was extended till January 2006 The laboratories were also requested to submit the calculation of expanded uncertainty with the uncertainty budget Measurement protocol The measurement protocol requested each laboratory to perform at least 3 measurements obtained under repeatability conditions including at least three separate calibrations The protocol informed the participants about the nominal concentration ranges Measurement equation The measurement model has been taken from the key comparison CCQM-K3 [3] The gas mixtures for the comparison were prepared by means of gravimetry in accordance with requirements of ISO 6142 [1] and were studied thoroughly regarding its composition and stability at the coordinating laboratory (VNIIM PCD) in accordance with requirements of ISO 6143 [2] A confidence on gravimetric values of gas mixtures used for this key comparison CCQM-K3 is adopted by VNIIM results from CCQM-P23 VNIIM gravimetric capability for 50 mmolmol and 1 mmolmol CO were comparable with other NMIs within 007 It was prepared nine gas mixtures three of which were sent to participants for study Three groups of uncertainty sources have been considered for the gravimetric preparation of gas mixtures 1 gravimetric preparation (weighing process) 2 purity of the parent gases 3 stability of the gas mixtures

There has been no evidence that there would be relevant effect of adsorption and the component of gas mixtures has been known as very stable compounds so that only the first two groups of

3

uncertainty components appear in the model for evaluating the uncertainty from gravimetric preparation

)()()( 222purityweighinggravp xuxuxu ∆+= (1)

A second contributor to the uncertainty of the reference value of gas mixtures ugravR is the uncertainty from verification u(xver) The verification process is used to confirm the gravimetric composition by NDIR analyzer included to the set of National Primary Measurement Standard GET 154-01 as checking internal consistency between prepared cylinders in accordance with requirements of ISO 6143 [2]

gravRgravR kuU = (2) where

)()( 22vergravpgravR xuxuu += (3)

k=2 Measurement methods and calibration procedures The following methods of measurement and calibration methods have been employed (table 1) Table 1 Measurement and calibration methods Laboratory Measurement

method Calibration method Total number of

measurements VNIIM NDIR Three points

linear 3 measurements 5 submeasurements

Ukrmetrteststandard GC-TCD (COCO2) GC-FID (C3H8)

Three points linear Three points linear

2 measurements 3 submeasurements

BelGIM GC-TCD (COCO2) GC-FID (C3H8)

Three points linear Three points linear

3 measurements 6 submeasurements

ВАМ GC-TCD (COCO2) GC-FID (C3H8)

Bracketing Bracketing

5 measurements 9 submeasurements

Results In the current comparison on gas mixtures measurements were performed on individually prepared gas mixtures with (slightly) different concentrations The individual gravimetric values are reference values The difference between the analyzed and gravimetric values has been taken as degree of equivalence Di defined as

igravilabi xxD minus= (4) The combined standard uncertainty of the degree of equivalence can be expressed as

4

2

2

)( igravRilabi uuDu += (5) The expanded uncertainty )( iDU of the degree of equivalence Di

2

2)( igravRilabi uukDU += (6)

where Di ndash Degree of equivalence difference between the laboratory value and the gravimetric value U(Di) ndash Expended uncertainty of the degree of equivalence

gravx - Assigned amount of substance fraction of a component

labx - Result as reported by the participant

gravRu - Standard uncertainty of gravx

labu - Standard uncertainty of labx k - Coverage factor 2=k All results of this key comparison are presented in the tables 2 ndash 4 and shown in figures 1 ndash 3 The tables 2 - 4 contain the following information Lab Laboratory Cylinder Identification code of cylinder

gravx Assigned amount of substance fraction of a component

gravRU Expended Uncertainty of gravx 2=k

labx Result as reported by the participant

labU Expended Uncertainty of labx Di Degree of equivalence

)( iDU Expended Uncertainty of Di

labk Coverage factor as reported by the participant Calculation of expanded uncertainty was carried out with coverage factor k=2 Degrees of equivalence The unilateral degree of equivalence has already been defined (4) For the bilateral degrees of equivalence the model used for CCQM-K1 has been adapted The degree of equivalence between two laboratories is defined as

jgravjlabigravilabij xxxxD minusminusminus= (7) where

igravx - the assigned value for the laboratory i

ilabx -the amount of substance fraction of the laboratory i

jgravx - the assigned value for the laboratory j

5

jlabx - the amount of substance fraction of the laboratory i The expanded uncertainty of the degree of equivalence Dij (k=2)

2

2

2

2)( igravRjlabigravRilabij uuuukDU +++= (8)

6

Table 2 Results for СО Lab Cylinder

gravx (10-2

molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 2979 0002 2980 0006 2 0001 003 2 00063 021 Ukrmetrteststandard

0138 2962 0002 2951 0012 2 -0011 -037 2 00122 041

BelGIM 0128 2966 0002 296 002 2 -0006 -020 2 00201 068 BAM ML 6617 2986 0002 29816 00149 2 -0004 -015 2 0015 050 Table 3 Results for СО2

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 13545 00012 13557 0013 2 0012 009 2 0013 010 Ukrmetrteststandard

0138 13600 00014 13586 0022 2 -0014 -010 2 0022 016

BelGIM 0128 13514 00014 136 0100 2 0086 064 2 0100 074 BAM ML 6617 13499 00013 135076 00405 2 0009 006 2 00405 030 Table 4 Results for С3H8

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 02001 00002 02002 00003 2 00001 005 2 00004 018 Ukrmetrteststandard

0138 01991 00002 01990 00004 2 -00001 -005 2 00004 022

BelGIM 0128 01984 00002 0198 0002 2 -00004 -020 2 00020 101 BAM ML 6617 01999 00002 02009 00012 2 0001 050 2 00012 061

7

СООМЕТQM-К3 Results for СО

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-1

-08

-06

-04

-02

0

02

04

06

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 1 Degree of equivalence for СО

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

2

bull Formation of circumstances for recognition of national measurement standards of Belarus and Ukraine which earlier did not participate in key comparisons and entering of calibration and measurement capabilities (CMC) of BelGIM and Ukrmetrteststandard in the field of automobile gases to the international database KCDB in accordance with Mutual Recognition Arrangement (CIPM MRA) for national measurement standards and for calibration and measurement certificates issued by NMIs

bull Objective of NMIs which participated in key comparisons on automobile gases earlier (BAM VNIIM) is to support or improve our calibration and measurement capabilities

Measurement standards The design of this comparison was adopted from key comparison CCQM-K3 The gas mixtures for the comparison were prepared by means of gravimetry and were studied thoroughly regarding its composition and stability at the coordinating laboratory (VNIIM PCD) The nominal amount of substance ratios of components in gas mixtures read as follows Carbon dioxide 135 mmolmol Carbon monoxide 30 mmolmol Propane 2 mmolmol Nitrogen balance Schedule The cylinders with gas mixtures were sent out to all participants of the comparison on April 2005 The measurement results were submitted by the participants on August ndash October 2005 All cylinders with gas mixtures were dispatched to the coordinating laboratory on November 2005 In connection with customs delay of the cylinders with gas mixtures the date of re-analysis of these gas mixtures was extended till January 2006 The laboratories were also requested to submit the calculation of expanded uncertainty with the uncertainty budget Measurement protocol The measurement protocol requested each laboratory to perform at least 3 measurements obtained under repeatability conditions including at least three separate calibrations The protocol informed the participants about the nominal concentration ranges Measurement equation The measurement model has been taken from the key comparison CCQM-K3 [3] The gas mixtures for the comparison were prepared by means of gravimetry in accordance with requirements of ISO 6142 [1] and were studied thoroughly regarding its composition and stability at the coordinating laboratory (VNIIM PCD) in accordance with requirements of ISO 6143 [2] A confidence on gravimetric values of gas mixtures used for this key comparison CCQM-K3 is adopted by VNIIM results from CCQM-P23 VNIIM gravimetric capability for 50 mmolmol and 1 mmolmol CO were comparable with other NMIs within 007 It was prepared nine gas mixtures three of which were sent to participants for study Three groups of uncertainty sources have been considered for the gravimetric preparation of gas mixtures 1 gravimetric preparation (weighing process) 2 purity of the parent gases 3 stability of the gas mixtures

There has been no evidence that there would be relevant effect of adsorption and the component of gas mixtures has been known as very stable compounds so that only the first two groups of

3

uncertainty components appear in the model for evaluating the uncertainty from gravimetric preparation

)()()( 222purityweighinggravp xuxuxu ∆+= (1)

A second contributor to the uncertainty of the reference value of gas mixtures ugravR is the uncertainty from verification u(xver) The verification process is used to confirm the gravimetric composition by NDIR analyzer included to the set of National Primary Measurement Standard GET 154-01 as checking internal consistency between prepared cylinders in accordance with requirements of ISO 6143 [2]

gravRgravR kuU = (2) where

)()( 22vergravpgravR xuxuu += (3)

k=2 Measurement methods and calibration procedures The following methods of measurement and calibration methods have been employed (table 1) Table 1 Measurement and calibration methods Laboratory Measurement

method Calibration method Total number of

measurements VNIIM NDIR Three points

linear 3 measurements 5 submeasurements

Ukrmetrteststandard GC-TCD (COCO2) GC-FID (C3H8)

Three points linear Three points linear

2 measurements 3 submeasurements

BelGIM GC-TCD (COCO2) GC-FID (C3H8)

Three points linear Three points linear

3 measurements 6 submeasurements

ВАМ GC-TCD (COCO2) GC-FID (C3H8)

Bracketing Bracketing

5 measurements 9 submeasurements

Results In the current comparison on gas mixtures measurements were performed on individually prepared gas mixtures with (slightly) different concentrations The individual gravimetric values are reference values The difference between the analyzed and gravimetric values has been taken as degree of equivalence Di defined as

igravilabi xxD minus= (4) The combined standard uncertainty of the degree of equivalence can be expressed as

4

2

2

)( igravRilabi uuDu += (5) The expanded uncertainty )( iDU of the degree of equivalence Di

2

2)( igravRilabi uukDU += (6)

where Di ndash Degree of equivalence difference between the laboratory value and the gravimetric value U(Di) ndash Expended uncertainty of the degree of equivalence

gravx - Assigned amount of substance fraction of a component

labx - Result as reported by the participant

gravRu - Standard uncertainty of gravx

labu - Standard uncertainty of labx k - Coverage factor 2=k All results of this key comparison are presented in the tables 2 ndash 4 and shown in figures 1 ndash 3 The tables 2 - 4 contain the following information Lab Laboratory Cylinder Identification code of cylinder

gravx Assigned amount of substance fraction of a component

gravRU Expended Uncertainty of gravx 2=k

labx Result as reported by the participant

labU Expended Uncertainty of labx Di Degree of equivalence

)( iDU Expended Uncertainty of Di

labk Coverage factor as reported by the participant Calculation of expanded uncertainty was carried out with coverage factor k=2 Degrees of equivalence The unilateral degree of equivalence has already been defined (4) For the bilateral degrees of equivalence the model used for CCQM-K1 has been adapted The degree of equivalence between two laboratories is defined as

jgravjlabigravilabij xxxxD minusminusminus= (7) where

igravx - the assigned value for the laboratory i

ilabx -the amount of substance fraction of the laboratory i

jgravx - the assigned value for the laboratory j

5

jlabx - the amount of substance fraction of the laboratory i The expanded uncertainty of the degree of equivalence Dij (k=2)

2

2

2

2)( igravRjlabigravRilabij uuuukDU +++= (8)

6

Table 2 Results for СО Lab Cylinder

gravx (10-2

molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 2979 0002 2980 0006 2 0001 003 2 00063 021 Ukrmetrteststandard

0138 2962 0002 2951 0012 2 -0011 -037 2 00122 041

BelGIM 0128 2966 0002 296 002 2 -0006 -020 2 00201 068 BAM ML 6617 2986 0002 29816 00149 2 -0004 -015 2 0015 050 Table 3 Results for СО2

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 13545 00012 13557 0013 2 0012 009 2 0013 010 Ukrmetrteststandard

0138 13600 00014 13586 0022 2 -0014 -010 2 0022 016

BelGIM 0128 13514 00014 136 0100 2 0086 064 2 0100 074 BAM ML 6617 13499 00013 135076 00405 2 0009 006 2 00405 030 Table 4 Results for С3H8

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 02001 00002 02002 00003 2 00001 005 2 00004 018 Ukrmetrteststandard

0138 01991 00002 01990 00004 2 -00001 -005 2 00004 022

BelGIM 0128 01984 00002 0198 0002 2 -00004 -020 2 00020 101 BAM ML 6617 01999 00002 02009 00012 2 0001 050 2 00012 061

7

СООМЕТQM-К3 Results for СО

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-1

-08

-06

-04

-02

0

02

04

06

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 1 Degree of equivalence for СО

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

3

uncertainty components appear in the model for evaluating the uncertainty from gravimetric preparation

)()()( 222purityweighinggravp xuxuxu ∆+= (1)

A second contributor to the uncertainty of the reference value of gas mixtures ugravR is the uncertainty from verification u(xver) The verification process is used to confirm the gravimetric composition by NDIR analyzer included to the set of National Primary Measurement Standard GET 154-01 as checking internal consistency between prepared cylinders in accordance with requirements of ISO 6143 [2]

gravRgravR kuU = (2) where

)()( 22vergravpgravR xuxuu += (3)

k=2 Measurement methods and calibration procedures The following methods of measurement and calibration methods have been employed (table 1) Table 1 Measurement and calibration methods Laboratory Measurement

method Calibration method Total number of

measurements VNIIM NDIR Three points

linear 3 measurements 5 submeasurements

Ukrmetrteststandard GC-TCD (COCO2) GC-FID (C3H8)

Three points linear Three points linear

2 measurements 3 submeasurements

BelGIM GC-TCD (COCO2) GC-FID (C3H8)

Three points linear Three points linear

3 measurements 6 submeasurements

ВАМ GC-TCD (COCO2) GC-FID (C3H8)

Bracketing Bracketing

5 measurements 9 submeasurements

Results In the current comparison on gas mixtures measurements were performed on individually prepared gas mixtures with (slightly) different concentrations The individual gravimetric values are reference values The difference between the analyzed and gravimetric values has been taken as degree of equivalence Di defined as

igravilabi xxD minus= (4) The combined standard uncertainty of the degree of equivalence can be expressed as

4

2

2

)( igravRilabi uuDu += (5) The expanded uncertainty )( iDU of the degree of equivalence Di

2

2)( igravRilabi uukDU += (6)

where Di ndash Degree of equivalence difference between the laboratory value and the gravimetric value U(Di) ndash Expended uncertainty of the degree of equivalence

gravx - Assigned amount of substance fraction of a component

labx - Result as reported by the participant

gravRu - Standard uncertainty of gravx

labu - Standard uncertainty of labx k - Coverage factor 2=k All results of this key comparison are presented in the tables 2 ndash 4 and shown in figures 1 ndash 3 The tables 2 - 4 contain the following information Lab Laboratory Cylinder Identification code of cylinder

gravx Assigned amount of substance fraction of a component

gravRU Expended Uncertainty of gravx 2=k

labx Result as reported by the participant

labU Expended Uncertainty of labx Di Degree of equivalence

)( iDU Expended Uncertainty of Di

labk Coverage factor as reported by the participant Calculation of expanded uncertainty was carried out with coverage factor k=2 Degrees of equivalence The unilateral degree of equivalence has already been defined (4) For the bilateral degrees of equivalence the model used for CCQM-K1 has been adapted The degree of equivalence between two laboratories is defined as

jgravjlabigravilabij xxxxD minusminusminus= (7) where

igravx - the assigned value for the laboratory i

ilabx -the amount of substance fraction of the laboratory i

jgravx - the assigned value for the laboratory j

5

jlabx - the amount of substance fraction of the laboratory i The expanded uncertainty of the degree of equivalence Dij (k=2)

2

2

2

2)( igravRjlabigravRilabij uuuukDU +++= (8)

6

Table 2 Results for СО Lab Cylinder

gravx (10-2

molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 2979 0002 2980 0006 2 0001 003 2 00063 021 Ukrmetrteststandard

0138 2962 0002 2951 0012 2 -0011 -037 2 00122 041

BelGIM 0128 2966 0002 296 002 2 -0006 -020 2 00201 068 BAM ML 6617 2986 0002 29816 00149 2 -0004 -015 2 0015 050 Table 3 Results for СО2

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 13545 00012 13557 0013 2 0012 009 2 0013 010 Ukrmetrteststandard

0138 13600 00014 13586 0022 2 -0014 -010 2 0022 016

BelGIM 0128 13514 00014 136 0100 2 0086 064 2 0100 074 BAM ML 6617 13499 00013 135076 00405 2 0009 006 2 00405 030 Table 4 Results for С3H8

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 02001 00002 02002 00003 2 00001 005 2 00004 018 Ukrmetrteststandard

0138 01991 00002 01990 00004 2 -00001 -005 2 00004 022

BelGIM 0128 01984 00002 0198 0002 2 -00004 -020 2 00020 101 BAM ML 6617 01999 00002 02009 00012 2 0001 050 2 00012 061

7

СООМЕТQM-К3 Results for СО

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-1

-08

-06

-04

-02

0

02

04

06

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 1 Degree of equivalence for СО

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

4

2

2

)( igravRilabi uuDu += (5) The expanded uncertainty )( iDU of the degree of equivalence Di

2

2)( igravRilabi uukDU += (6)

where Di ndash Degree of equivalence difference between the laboratory value and the gravimetric value U(Di) ndash Expended uncertainty of the degree of equivalence

gravx - Assigned amount of substance fraction of a component

labx - Result as reported by the participant

gravRu - Standard uncertainty of gravx

labu - Standard uncertainty of labx k - Coverage factor 2=k All results of this key comparison are presented in the tables 2 ndash 4 and shown in figures 1 ndash 3 The tables 2 - 4 contain the following information Lab Laboratory Cylinder Identification code of cylinder

gravx Assigned amount of substance fraction of a component

gravRU Expended Uncertainty of gravx 2=k

labx Result as reported by the participant

labU Expended Uncertainty of labx Di Degree of equivalence

)( iDU Expended Uncertainty of Di

labk Coverage factor as reported by the participant Calculation of expanded uncertainty was carried out with coverage factor k=2 Degrees of equivalence The unilateral degree of equivalence has already been defined (4) For the bilateral degrees of equivalence the model used for CCQM-K1 has been adapted The degree of equivalence between two laboratories is defined as

jgravjlabigravilabij xxxxD minusminusminus= (7) where

igravx - the assigned value for the laboratory i

ilabx -the amount of substance fraction of the laboratory i

jgravx - the assigned value for the laboratory j

5

jlabx - the amount of substance fraction of the laboratory i The expanded uncertainty of the degree of equivalence Dij (k=2)

2

2

2

2)( igravRjlabigravRilabij uuuukDU +++= (8)

6

Table 2 Results for СО Lab Cylinder

gravx (10-2

molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 2979 0002 2980 0006 2 0001 003 2 00063 021 Ukrmetrteststandard

0138 2962 0002 2951 0012 2 -0011 -037 2 00122 041

BelGIM 0128 2966 0002 296 002 2 -0006 -020 2 00201 068 BAM ML 6617 2986 0002 29816 00149 2 -0004 -015 2 0015 050 Table 3 Results for СО2

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 13545 00012 13557 0013 2 0012 009 2 0013 010 Ukrmetrteststandard

0138 13600 00014 13586 0022 2 -0014 -010 2 0022 016

BelGIM 0128 13514 00014 136 0100 2 0086 064 2 0100 074 BAM ML 6617 13499 00013 135076 00405 2 0009 006 2 00405 030 Table 4 Results for С3H8

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 02001 00002 02002 00003 2 00001 005 2 00004 018 Ukrmetrteststandard

0138 01991 00002 01990 00004 2 -00001 -005 2 00004 022

BelGIM 0128 01984 00002 0198 0002 2 -00004 -020 2 00020 101 BAM ML 6617 01999 00002 02009 00012 2 0001 050 2 00012 061

7

СООМЕТQM-К3 Results for СО

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-1

-08

-06

-04

-02

0

02

04

06

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 1 Degree of equivalence for СО

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

5

jlabx - the amount of substance fraction of the laboratory i The expanded uncertainty of the degree of equivalence Dij (k=2)

2

2

2

2)( igravRjlabigravRilabij uuuukDU +++= (8)

6

Table 2 Results for СО Lab Cylinder

gravx (10-2

molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 2979 0002 2980 0006 2 0001 003 2 00063 021 Ukrmetrteststandard

0138 2962 0002 2951 0012 2 -0011 -037 2 00122 041

BelGIM 0128 2966 0002 296 002 2 -0006 -020 2 00201 068 BAM ML 6617 2986 0002 29816 00149 2 -0004 -015 2 0015 050 Table 3 Results for СО2

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 13545 00012 13557 0013 2 0012 009 2 0013 010 Ukrmetrteststandard

0138 13600 00014 13586 0022 2 -0014 -010 2 0022 016

BelGIM 0128 13514 00014 136 0100 2 0086 064 2 0100 074 BAM ML 6617 13499 00013 135076 00405 2 0009 006 2 00405 030 Table 4 Results for С3H8

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 02001 00002 02002 00003 2 00001 005 2 00004 018 Ukrmetrteststandard

0138 01991 00002 01990 00004 2 -00001 -005 2 00004 022

BelGIM 0128 01984 00002 0198 0002 2 -00004 -020 2 00020 101 BAM ML 6617 01999 00002 02009 00012 2 0001 050 2 00012 061

7

СООМЕТQM-К3 Results for СО

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-1

-08

-06

-04

-02

0

02

04

06

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 1 Degree of equivalence for СО

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

6

Table 2 Results for СО Lab Cylinder

gravx (10-2

molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 2979 0002 2980 0006 2 0001 003 2 00063 021 Ukrmetrteststandard

0138 2962 0002 2951 0012 2 -0011 -037 2 00122 041

BelGIM 0128 2966 0002 296 002 2 -0006 -020 2 00201 068 BAM ML 6617 2986 0002 29816 00149 2 -0004 -015 2 0015 050 Table 3 Results for СО2

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 13545 00012 13557 0013 2 0012 009 2 0013 010 Ukrmetrteststandard

0138 13600 00014 13586 0022 2 -0014 -010 2 0022 016

BelGIM 0128 13514 00014 136 0100 2 0086 064 2 0100 074 BAM ML 6617 13499 00013 135076 00405 2 0009 006 2 00405 030 Table 4 Results for С3H8

Lab Cylinder gravx

(10-2 molmol)

gravRU (10-2

molmol)

labx (10-2

molmol)

labU (10-2

molmol)

labk

D (10-2

molmol)

gravxD

k )(DU (10-2

molmol)

gravxDU )(

VNIIM 6562 02001 00002 02002 00003 2 00001 005 2 00004 018 Ukrmetrteststandard

0138 01991 00002 01990 00004 2 -00001 -005 2 00004 022

BelGIM 0128 01984 00002 0198 0002 2 -00004 -020 2 00020 101 BAM ML 6617 01999 00002 02009 00012 2 0001 050 2 00012 061

7

СООМЕТQM-К3 Results for СО

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-1

-08

-06

-04

-02

0

02

04

06

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 1 Degree of equivalence for СО

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

7

СООМЕТQM-К3 Results for СО

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-1

-08

-06

-04

-02

0

02

04

06

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 1 Degree of equivalence for СО

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

8

СООМЕТQM-К3 Results for C3H8

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-15

-1

-05

0

05

1

15

0 05 1 15 2 25 3 35 4 45

Participants

Dx

grav

re

lativ

e

Figure 2 Degree of equivalence for С3Н8

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

9

СООМЕТQM-К3 Results for CO2

VNIIM

Ukr

met

rtes

tst

anda

rd

Bel

GIM

BA

M

-04-02

0020406

081

121416

0 0 5 1 1 5 2 2 5 3 3 5 4 4 5

ParticipantsDx

grav

re

lativ

e

Figure 3 Degree of equivalence for СО2

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

10

Discussion and Conclusions All laboratories find the gravimetric value within plusmn07 relative to the gravimetric value This holds for all three components COCO2 and C3H8 in nitrogen This is a satisfying result For all laboratories the observed difference between the gravimetric and reported values does not exceed its combined uncertainty VNIIM and BAM are link laboratories for CCQM-K3 The results of this comparison are linked to the key comparison CCQM-K3 Reference [1] International Organization for Standardization ISO 61422001 Gas analysis - Preparation of calibration gas mixtures - Gravimetric methods 2nd edition [2] International Organization for Standardization ISO 61432001 Gas analysis ndash Comparison methods for determining and checking the composition of calibration gas mixtures [3] Van der Veen AMH De Leer EWB Perrochet J-F Wang Lin Zhen Heine H-JKnopf D Richter W Barbe J Marschal A Vargha G Deaacutek E Takahashi C Kim JS Kim YD Kim BM Kustikov YA Khatskevitch EA Pankratov VV Popova TA Konopelko L Musil S Holland P Milton MJT Miller WR Guenther FR International Comparison CCQM-K3 Final Report Coordinator Leonid Konopelko VNIIM Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD) 19 Moskovsky pr St-Petersburg 198005 Russia Phone +7 812 3151145 Fax +7 812 3279776 E-mail lkonopmailrcomru Completion Date March 2006

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

11

Annex 1 Proposal of Degrees of Equivalence Table 5 Degrees of Equivalence for carbon monoxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 001 006 012 014 007 021 005 016 Ukrmetrteststandard -011 012 -012 014 -005 024 -007 019 BelGIM -006 020 -007 021 005 024 -002 025 BAM -004 015 -005 016 007 019 0016 025 Table 6 Degrees of Equivalence for carbon dioxide Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 012 013 026 026 -074 101 0034 043 Ukrmetrteststandard -014 022 -026 026 -10 102 -023 046 BelGIM 086 100 074 101 10 102 077 108 BAM 009 041 -0034 043 023 046 -077 108 Table 7 Degrees of Equivalence for propane Lab j VNIIM Ukrmetrteststandard BelGIM BAM Lab i Di Ui Dij Uij Dij Uij Dij Uij Dij Uij mmolmol mmolmol mmolmol mmolmol mmolmol VNIIM 0001 0004 0002 0006 0005 0020 -0009 0013 Ukrmetrteststandard -0001 0004 -0002 0006 0003 0021 -0011 0013 BelGIM -0004 0020 -0005 0020 -0003 0021 -0014 0023 BAM 0010 0012 0009 0013 0011 0013 0014 0023

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

12

Annex 2 Results and measurement reports as submitted by participating laboratories Key comparison participants

MEASUREMENT REPORT - DI Mendeleyev Institute for Metrology

Russian Federation (VNIIM)

I Results of Study

Laboratory DI Mendeleyev Institute for Metrology (VNIIM) Research Department for the State Standard in the Field of Physical-Chemical Measurements (PCD)

Cylinder number 6562

NOMINAL COMPOSITION

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

-Nitrogen balance

Measurement

1 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 20050516 0135649 0046 5

Carbon monoxide 20050516 0029772 0090 5

Propane 20050516 0002003 0040 5

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

13

Measurement 2

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050614 0135554 0048 5

Carbon monoxide 20050614 0029815 0075 5

Propane 20050614 0002001 0045 5

Measurement 3

Date Result (molmol)

stand deviation ( relative)

number of sub measurements

Carbon dioxide 20050718 0135500 0049 5

Carbon monoxide 20050718 0029820 0105 5

Propane 20050718 0002003 0050 5

Results

Gas mixture Result (assigned value)

Coverage factor

Assigned expanded

uncertainty

Carbon dioxide 013557 2 000013

Carbon monoxide 002980 2 000006

Propane 0002002 2 0000003

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

14

II Description of Study

Instruments Multichannel automatic NDIR analyzer included to the set of the National Primary measurement standard of units of mole fraction and mass concentration of components in gas medium GET 154-01 was used for the analysis Calibration Standards All calibration multicomponent gas mixtures were prepared gravimetrically according to ISO 6142 The calibration multicomponent gas mixtures were prepared from pure gases directly on components CO CO2 and from pre-mixtures which were prepared from pure gases on component С3Н8 The content of the impurities in all pure gases was determined by GC with helium-ionization flame-ionization and thermal-conductivity detectors as well as standard hygrometer apparatus included to the standard complex A1 of analysis of pure gases and substances from GET 154-01 The calibration multicomponent gas mixtures were verified with usage of existing gravimetric gas mixtures in accordance with ISO 6143 Composition of calibration standards

Cylinder 6547 Cylinder 6571 Cylinder 6538 Component x мольmol Standard

uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

x molmol Standard uncertainty u(x) rel

СО 0032168 002 0031752 002 0029777 002 СО2 0135896 001 0136567 001 0135975 001 С3Н8 00020426 005 00020279 005 00019896 005 N2 Balance Balance Balance

Instrument Calibration Three independent measurements were carried out under repeatability conditions Before each measurement an instrument calibration was made One measurement contained 5 submeasurements Sample Handling The time of the cylinder keeping is 24 hrs It was used the automatic unit of commutation for inputting gas mixtures

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

15

Uncertainty Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 0010 1 0010

Analysis A B 0048 1 0048

Coverage factor 2 Expanded uncertainty 01 Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 002 1 002

Analysis A B 0095 1 0095

Coverage factor 2 Expanded uncertainty 019

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

16

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 005 1 005

Analysis A B 0045 1 0045

Coverage factor 2 Expanded uncertainty 013

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

17

MEASUREMENT REPORT ndash Belorussian State Institute for Metrology Belarus (BelGIM)

I Results of experimental study

Laboratory Belarus BelGIM Section for physicochemical and optical measurements sector for standards and gas mixtures 8 Serova st Minsk Cylinder No 0128 9 dm3 aluminium NOMINAL COMPOSITION - Carbon dioxide 13middot10-2 - 14middot10-2 molmol - Carbon oxide 28middot10-2 - 32middot10-2 molmol - Propane 19middot10-4 - 21middot10-4molmol - Nitrogen Residual

Measurement No1 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 17062005 13567middot10-2 0096 6

Carbon oxide 17062005 2957middot10-2 014 6

Propane 17062005 1977middot10-4 015 6

Measurement No2 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 21062005 13564middot10-2 004 6

Carbon oxide 21062005 2957middot10-2 02 6

Propane 21062005 1979middot10-4 01 6

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

18

Measurement No3 Date

Result (molmol)

x_

Standard deviation

S( x_

) rel

No of observations

n

Carbon dioxide 23062005 13537middot10-2 007 6

Carbon oxide 23062005 2955middot10-2 01 6

Propane 23062005 1982middot10-4 01 6

Final results

Gas mixture Result

(molmol)

Coverage factor

Expanded uncertainty (molmol)

Carbon dioxide 136middot10-2 2 01 middot10-2

Carbon oxide 296middot10-2 2 002middot10-2

Propane 198middot10-4 2 02middot10-4

II Description of study Apparatus (principle of operation type configuration data collection etc)

Measurements were carried out using gas chromatograph Crystal 2000М (hereinafter

referred to as chromatograph) combined with thermal conductivity detector (hereinafter referred to as TCD) with detection limit of 510-9 gml for propane and flame-ionization detector (hereinafter referred to as FID) with detection limit of 510-12 gs for propane

Computers and software Chromatech Analytic version 121 were used to control chromatograph and collect and process chromatographical data

For the purpose of measurements the following auxiliary devices and materials were used

1 Two-position doser with 10 ports and with doses of 025 cm3 for FID channel and with doses of 025 cm3 for TCD channel (hereinafter referred to as doser)

2 Metallic packed column 3m х 3mm х 2mm - HayeSep N 80100 metallic packed column 1m х 4mm х 2mm-CaA 016025 (TCD channel) capillary column HP PLOTQ 30m х 0536mm (FID channel)

3 Aneroid BАММ-1 with a measurement range of 80-106 kPа and accuracy of plusmn 02 kPа

4 Mercurial thermometer ТL-4 with a measurement range of 0-50ordmС and scale division of 01ordmС

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

19

5 Fine adjustment valve (hereinafter referred to as FAV) provided to transport a gas sample into chromotograph and set to gas flow-rate of 10-15 mlmin

6 Foamy gas flow meter type YIRG - 2А accuracy of flow measurement plusmn 1 сm3min

7 Helium gas Type A according to TU 51-940-80 8 High purity hydrogen gas according to TU 301-07-27-90 9 Compressed air 10 Multicomponent calibration gas mixtures (hereinafter referred to as CGM)

produced and certified by gravimetric method

Calibration reference materials - calibration gas mixtures used for measurements 1 Quantitative composition of KGS is determined using gravimetric method defined in

ISO 61422001 by calculating weight of each component of a gas mixture The content of CGM components is expressed as a mole fraction Uncertainty of KGS composition is expressed as expanded uncertainty with coverage factor k = 2 Molar masses of components and their uncertainties are taken from ISO 149122003 Performance and metrological characteristics of the equipment used for gravimetric preparation of mixtures are given in Table 1

Table 1

Description of the equipment

Manufacturer Metrological characteristics

Mass-comparator balance type КА10-3Р

Mettler-Toledo

Switzerland

Maximum load 15 kg Scale division 1 mg Standard deviation 19 mg at load of 10 kg Operating temperature range +10divide30degС Maximum temperature change within 1 h plusmn05 degС

Gas mixer type USG 00001 BelGIM

Measurement range 000025 divide 100 МPa Accuracy class for manometers ndash 015 Accuracy class for vacuummeters ndash 025 Vacuummeter with pressure sensor for measuring the residual pressure before filling Residual pressure before filling of each component not more than 20 Pa

2 Purity analysis of primary gas standards

The purity analysis of primary gas standards is based on the information provided by the supplier or on the results of determination of impurity in pure gases using measurement procedure developed inside BelGIM

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

20

If an analytical method laid down in 43 of ISO 61422001 cannot be used for impurity determination mole fraction of an expected impurity is assumed to be half of the detection limit of the analytical method The content of the undetected impurity produces rectangular distribution

whereby its standard uncertainty is calculated as half of the detection limit divided by 3 The composition of the pure gases used for preparation of calibration mixtures is given

in Table 2 Table 2 - Metrological characteristics of pure gases

Pure gas ComponentContent

mole fraction

Standard uncertainty

mole fraction Carbon dioxide Cylinder 40 dm3 Origin Belarus

CO2 999 01

Carbon oxide Cylinder 40 dm3 Origin Russia

CO 999 01

N2 999967 00005 Nitrogen Cylinder 40 dm3 Origin Russia O2 00033 00005 Propane Cylinder 2 dm3 Origin Russia

C3H8 9979 0017

3 After preparation of mixture the cylinder was maintained in laboratory room within

24 hours the mixture then was homogenized on the stand by rotating on the rollers within 4-5 hours The chromotograph for CGM was calibrated 2-3 days after its preparation

Calibration of the chromotograph

1 The chromotograph was calibrated using CGMs with composition identical to the analyzed sample The content of each component and its expanded uncertainty (k = 2) are given in Table 1 Table 1 - Calibrationе gas mixtures

Cylinder No Volume material preparation date

Component Content x (molmol)

Expanded uncertainty U(x)

(molmol) СО2 13890middot10-2 0004middot10-2 26658 4 dm3 steel

02052005 СО 3160middot10-2 0005middot10-2

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

21

C3H8 202middot10-4 02middot10-4 СО2 13374middot10-2 0004middot10-2 СО 2916middot10-2 0005middot10-2 3072 4dm3 steel

02052005 C3H8 190middot10-4 02middot10-4 26648 4dm3 steel 13052005 СО2 12833middot10-2 0004middot10-2

2 Number of observations of each calibration sample- 3 Number of calibration samples - 3

3 The analytical function used for determination of the content of the analyzed sample components is as follows

x (y) =b1y+b0 (2) Where x ndash determined content molmol y - chromotograph response for the specific component b1- slope b0 - intercept 4 After completion of calibration the coefficients of analytical function were

calculated according to ISO 61432001 using generalized least-squares method Also the uncertainties of the intercept and slope and covariance between them were calculated After determination of parameters which are part of analytical function and which affect the uncertainty of measurements it was checked whether the analytical function is fit to the experimental data obtained in calibration and subsequently whether the analytical function is applicable

Results of calibration measurements coefficients of analytical function their uncertainties covariance and measure of goodness-of-fit Г (maximum value of the weighted differences of the experimental points and calculated points of the analytical function for each measurement run) are given in Tables 3 and 4 respectively Chromotograph operating conditions in calibration and analysis are given in Table 5

Table 3 - Results of experimental study

Date Component of

calibration mixture

Content x mole fraction

Expanded uncertainty

U(x) mole fraction

Mean of peak area y

mVs

Uncertainty )(yu

mVs

13374 0004 1279500 141 1389 0004 1329150 2899 CO2

12833 0004 1231000 849 2916 0005 404070 240

316 0005 437705 926 CO 2768 0004 383070 467

019 0002 3143200 4101

1706 2005

C3H8 0202 0002 3319150 2051

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

22

0181 0002 2948750 212 13374 0004 1269833 624

1389 0004 1321000 1272 CO2 12833 0004 1223900 1698

2916 0005 399490 612 316 0005 434010 863 CO

2768 0004 379660 410 019 0002 3157867 6772

0202 0002 3332400 3394

2106 2005

C3H8 0181 0002 2959900 4950

13374 0004 1277100 2152 1389 0004 1329900 2828 CO2

12833 0004 1229100 1980 2916 0005 400330 529

316 0005 434745 969 CO 2768 0004 379695 106

019 0002 3142433 9416 0202 0002 3321600 4101

2306 2005

C3H8 0181 0002 2961000 3111

According to ISO 61432003 calculation of the measure of goodness-of-fit Г is the maximum value of the weighed differences between the coordinates of measured and adjusted calibration points is an effective and simple method to test the compatibility of а prospective analytical function A function is admissible if Г le 2

minus

minus=

)(ˆ

)(ˆ

iii

iii

yuyy

xuxxΓ

(4) Where хi is the reference value of the content of calibration sample component

ix is the CGM component content obtained using the calculated analytical function

уi is the experimental response to the reference content of component iy is the response obtained in calculation of analytical function

u (хi) u (уi) are the uncertainties of reference contents and responses to these contents respectively

i is the number of calibration points i=1 3 This prerequisite is equivalent to the requirement that the curve of calculated response should cross each experimental calibration rectangular [хi plusmn 2u(хi) уi plusmn 2и(уi)] based on an expanded uncertainty U = ku with coverage factor k = 2 Table 4 Calculations of analytical function

Date Component Analytical function parameters

Uncertainty of analytical

function parameters

Covariance of

parameters Г

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

23

b1 b0 u(b1) u(b0) u(b0b1) 1706 11086E-

03 -81128E-

0119491E-

0524883E-

01 -48497E-06 10544

2106 10729E-03

-26126E-01

22698E-05

28930E-01 -65652E-06 19997

2306

CO2 10593E-

03 -17688E-

0135807E-

0545413E-

01 -16254E-05 10022

1706 71537E-04

26507E-02

14231E-05

57044E-02 -81115E-07 03017

2106 72346E-04

22401E-02

13819E-05

54490E-02 -75209E-07 05935

2306

CO 71321E-

04 60080E-

0212663E-

0549016E-

02 -62026E-07 01341

1706 56521E-06

13712E-02

38279E-07

12015E-02 -45937E-09 12991

2106 56295E-06

13707E-02

39247E-07

12379E-02 -48529E-09 12905

2306

C3H8 58258E-

06 80469E-

0340085E-

0712590E-

02 -50407E-09 08589

Two columns separated by switching device are located one after another in TCD

channel One column is intended for carbon dioxide heavy hydrocarbons and another column is intended for light gases Before the first switch the light gases including carbon oxide flow through the first column without being separated and remain in the second column The switch makes them locked in the second column The analysis of carbon dioxide is carried out up to the second switch Second switch makes the second column unlocked and carbon oxide is analyzed Third switch is required to allow propane escape from a column and prevent it from getting into a second column The analysis of the very propane is carried out using FID Time intervals between switches were selected experimentally when developing the analysis method Such analysis method makes it possible to analyze all three components per one sample inject

Table 5 - Chromotograph operating conditions in calibration and analysis Parameter of the operating conditions Thermostating temperature of TCD and FID degС 170

Temperature of separation columns degС

Program 60 degС within 9 min

than rise to 160 degС at 20degСmin

Rate of flow of carrier gas through TCD channel columns mlmin 15

Rate of flow of carrier gas through TCD comparison channel mlmin 15

Pressure in FID channel column kPa Program

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

24

80 to 100 Rise from the 1st s of

analysis at 2 kPamin

Flow-rate of hydrogen FID mlmin 20 Flow-rate of air FID mlmin 200 Temperature of switching device degС 65 Response time of switching device s 1 110 2 330 3 540

TCD FID Volume of injected analyzed gas cm3 025 025 Carrier gas Helium Duration of analysis min 17 Calculation of the content of comparison sample components and its uncertainty Results of comparison sample measurements are given in Table 6 Table 6 - Results of comparison sample measurements

Date Component Mean of peak area

y Uncertainty

)(yu

17062005 1296983 1200 21062005 1288550 554 23062005

CO2 1294633 868

17062005 409633 514 21062005 405663 840 23062005

CO 405882 455

17062005 3255817 4944 21062005 3273329 4727 23062005

C3H8 3263600 2595

1 The content of comparison sample component and its uncertainty were determined

using calculated analytical function according to ISO 61432001 as follows (5) Where G(y)=b1y+b0 is the calculated analytical function и(y) is the standard uncertainty of response y u2(bj) is the variance of analytical function parameter bj

u(bj bI) is the covariance of analytical function parameters bj bI N is the number of function coefficients N=2 j=0 1

sum sumsumminus

= +==

partpart

partpart

+

partpart

+

partpart

=1

0 1

2

2

0

22

)(2)()()(N

jIj

N

jI Ijj

N

j j

bbubG

bGbu

bGyu

yGxu

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

25

After substitution of analytical function (2) and transformations the expression takes form (5)

)(2)()()()()( 01122

0222

1 bbyubuybuyubxu +++= (6) The contents of comparison sample components under determination and their

uncertainties were calculated using B_LEAST a computer program recommended in ISO 6143 Calculations are summarized in Table 6

Table 6 Calculations of the content of comparison sample components and their

uncertainties

Date Component Result

(molmol) x

Uncertainty (molmol)

)(xu 17062005 13567middot10-2 0014middot10-2 21062005 13564middot10-2 0009middot10-2 23062005

CO2 13537middot10-2 0019middot10-2

17062005 2957middot10-2 0005middot10-2 21062005 2957middot10-2 0007middot10-2 23062005

CO 2955middot10-2 0004middot10-2

17062005 1977middot10-4 008middot10-4 21062005 1979middot10-4 008middot10-4 23062005

C3H8 1982middot10-4 008middot10-4

2 The final content of a component was determined as an arithmetiс mean from three measurements Final standard uncertainty was calculated using formula as follows

22

222)( Адаватмтемсериикал uuuuuxu ++++= (7)

Where ucal is the uncertainty of the component content produced by

calibration of chromotograph urun is the uncertainty of the component content produced by

change of chromotograph response in each measurement run ut is the uncertainty of the component content produced by

change of an ambient temperature upressure is the uncertainty of the component content produced by

change of atmospheric pressure u A is the standard uncertainty of three measurement runs

21 Uncertainty of the component content produced by calibration of chromotograph

This uncertainty is calculated using formula (6) but the first term of the sum ie

)()( 221 yub which represents the standard uncertainty of the chromotograph response in a

measurement run is not taken into account Calculations are summarized in Table 7

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

26

Table 7 Calculation of uncertainty produced by calibration of chromotograph

Date u(b1) u(b0) u(b0b1) x

molmol y Ucal molmol

Ucal rel

1706 19491E-05

24883E-01

-48497E-06

13567middot10-

2129698

3 0005middot1

0-2 003

2106 22698E-05

28930E-01

-65652E-06

13564middot10-

2 128855 0007middot1

0-2 005

2306

CO2

35807E-05

45413E-01

-16254E-05

135374middot10-2

1294633

0016middot10-2 012

1706 14231E-05

57044E-02

-81115E-07 2957middot10-2 409633

0003middot10-2 009

2106 13819E-05

54490E-02

-75209E-07

29577middot10-

2 405663 0003middot1

0-2 01

2306

CO

12663E-05

49016E-02

-62026E-07 2955middot10-2 405882

0003middot10-2 01

1706 38279E-07

12015E-02

-45937E-09 1977middot10-4

3255817

007middot10-

2 038

2106 39247E-07

12379E-02

-48529E-09 1980middot10-4

3273329

008middot10-

2 038

2306

C3H8

40085E-07

12590E-02

-50407E-09 1982middot10-4 32636

008middot10-

2 04 The total estimate of relative uncertainty produced by calibration of chromotograph was

calculated for each component as follows

3

3

1

2sum=

cali

cali

uu (8)

Where ucal i is the relative uncertainty produced by calibration of chromotograph and calculated for each measurement run

The calculations are summarized in Table 8

Table 8 Uncertainty produced by calibration of chromotograph

Component Ucal rel

CO2 008 CO 01

C3H8 04 22 Uncertainty of the component content produced by change of chromotograph response in each measurement run This uncertainty is calculated using the equation (6) whereby the first term of the sum

only ie )()( 221 yub which represents the standard uncertainty of the chromotograph

response in a measurement run is taken into account Calculations are summarized in Table 9

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

27

Table 9 Calculation of uncertainty produced by change of chromotograph response in each measurement run

Date b1 x

molmol u(y) u cерии мольмоль

uсерии отн

1706 11086E-03

13567middot10-

2 12 0013middot10-2 0098

2106 10729E-03

13564middot10-

2 554 00059middot10-2 0044

2306

CO2

10593E-03

135374middot10-2 868 00092middot10-2 0068

1706 71537E-04 2957middot10-2 514 00037middot10-2 012

2106 72346E-04

29577middot10-

2 84 00061middot10-2 021

2306

CO

71321E-04 2955middot10-2 455 00032middot10-2 011

1706 56521E-06 1977middot10-4 4944 0028middot10-4 014

2106 56295E-06 1980middot10-4 4727 0027middot10-4 013

2306

C3H8

58258E-06 1982middot10-4 2595 0015middot10-4 008

The total estimate of relative uncertainty produced by change of chromotograph

response in each measurement run was calculated for each component as follows

3

3

1

2sum=

run

run

uu (9)

Where urun is the relative uncertainty produced by change of chromotograph response in each measurement run Calculations are summarized in Table 10

Table 10 Uncertainty produced by change of chromotograph response in each measurement

run

Component Urun rel

CO2 007 CO 015

C3H8 012 23 Uncertainty of the component content produced by change of temperature in a room

The recorded change of temperature in measurements is plusmn 05 degree The contribution of uncertainty type B (rectangular distribution) is estimated as follows

201003

12931

=sdotsdot=tu rel

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

28

24 Uncertainty of the component content produced by change of atmospheric pressure The recorded change of atmospheric pressure within three days was

05 kPа The contribution of uncertainty type B (rectangular distribution) is estimated as follows

2801003

13101

50=sdotsdot=pressureu rel

25 Standard deviation of 3 measurement runs Standard deviation is calculated as follows

isu p

A

2

= (10)

Where S2p is the group experimental variation

The group experimental variation is calculated as follows

(11)

Where si

2 is the experimental variation of measurement run i from independent repeated observations ni having freedom degrees

νi = n - 1 n=6 i= 3 Calculations are summarized in Table 11 Table 11 Calculations of standard uncertainty of 3 measurement runs

Date 2iS x

molmol 2iS

rel uA

rel

1706 2953E-05 13567middot10-2 000022

2106 588987E-06 13564middot10-2 0000043

2306

CO2 141137E-

05 135374middot10

-2 000010

0006

1706 225604E-06 2957middot10-2 0000077

2106 681346E-06 29577middot10-2 000023

2306

CO

175166E-06 2955middot10-2 0000060

0006

1706 C3H8 130158E-

08 1977middot10-4 00000066 0001

ss

p

i ii

N

ii

N2

2

1

1

= =

=

sum

sum

ν

ν

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

29

2106 44616E-09 1980middot10-4 00000023

2306

381032E-09 1982middot10-4 00000019

26 Total standard uncertainty

Uncertainty estimation СО2

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 008 1 008

Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028

Changes of chromotograph response

urun Normal 007 1 007

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 036 Coverage factor k=2 Expanded uncertainty 01middot10-2 molmol Uncertainty estimation СО

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph ucal Normal 01 1 01 Change of temperature ut Rectangular 02 1 02 Change of atmospheric pressure upressure Rectangular 028 1 028 Changes of chromotograph response

urun Normal 015 1 015

Standard deviation of 3 runs uA Normal 0006 1 0006

Relative total standard uncertainty 039 Coverage factor k=2 Expanded uncertainty 002middot10-2 molmol Uncertainty estimation С3Н8

Source of uncertainty

Xj

Estimate xj

Prospective distribution

Standard uncertainty u(xj) rel

Sensitivity coefficient

cj

Contribution to standard uncertainty

uj(y) rel

Calibration of chromotograph 04 Normal 04 1 008

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

30

Change of temperature 02 Rectangular 02 1 02 Change of atmospheric pressure 028 Rectangular 028 1 028

Changes of chromotograph response

012 Normal 012 1 007

Standard deviation of 3 runs 0001 Normal 0001 1 0006

Relative total standard uncertainty 054 Coverage factor k=2 Expanded uncertainty 02middot10-4 molmol

Sample handling

Period for exposure of cylinder to measurement conditions and method how to transport sample to the device

1 Stands for storing gas standard cylinders and calibration mixture cylinders and chromotograph are placed in a laboratory room which is not accessible to unauthorized persons The laboratory is equipped with air-conditioner to maintain required temperature and humidity on a continuous basis and some auxiliary measuring instruments as thermometer psychrometric hygrometer and aneroid to control temperature humidity and atmospheric inside the room

2 The comparison sample cylinder was stored in laboratory from the date of its

delivery to Minsk on 25042005 CGM cylinders are stored horizontally on racks and positioned vertically using special support when measurements are carried out

3 The analyzed gas sample is transported through the fine adjustment valve (FAV)

Conjunctions Cylinder - FAV FAV - tube tube - doser are made of metal and use adapters with spherical ends and bushes FAV is made of brass tube is made of copper and doser is made of duralumin

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

31

MEASUREMENT REPORT - Bundesanstalt fuumlr Materialforschung

und ndashpruumlfung Germany (BAM)

I Results of Study

Laboratory Bundesanstalt fuumlr Materialforschung und ndashpruumlfung (BAM) Labor I43

Cylinder number ML 6617

NOMINAL COMPOSITION^1

- Carbon dioxide 13middot10-2 - 14middot10-2molmol

- Carbon monoxide 28middot10-2 ndash 32middot10-2molmol

-Propane 19middot10-4 - 21middot10-4molmol

- Nitrogen balance

Measurement 1

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-24 013510 012 9 Carbon monoxide 2005-05-24 0029771 007 9

Propane 2005-05-24 0002010 030 9

Measurement 2

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-05-25 013509 013 9 Carbon monoxide 2005-05-25 0029773 013 9

Propane 2005-05-25 0002015 019 9

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

32

Measurement

3 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-29 013507 009 9 Carbon monoxide 2005-08-29 0029865 020 9

Propane 2005-08-29 0002006 025 9

Measurement 4

Date Result (molmol)

stand deviation( relative)

number of sub measurements

Carbon dioxide 2005-08-30 013507 013 9 Carbon monoxide 2005-08-30 0029858 007 9

Propane 2005-08-30 0002010 030 9

Measurement

5 Date Result

(molmol)stand deviation

( relative)number of sub measurements

Carbon dioxide 2005-08-31 013506 011 9 Carbon monoxide 2005-08-31 0029815 009 9

Propane 2005-08-31 0002004 022 9

Note Please copy this table as many times as needed for reporting additional measurements

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

33

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor

Assigned expanded uncertainty ( relative)

Carbon dioxide 0135076 2 03 Carbon monoxide 0029816 2 05

Propane 00020090 2 06

II Description of Study

Instrument(s) (principles make type configuration data collection etc) For the analysis a GC were used with specifically applications For the determination of (Nitrogen (N2)) Carbon Dioxide (CO2) Carbon Monoxide (CO) and Propane (C3H8) balance GC Perkin Elmer AutoSystem XL (two channel system) with a stream selection valve for 4 streams and 2 gas sampling valves

Channel A for the determination of N2 CO and CO2 Carrier Gas Helium Columns Column system with two packed columns (6 ft x 18rdquo Porapak R 80100 mesh and 6 ft x 18rdquo Mol-Sieve 13X 80100 mesh) Oven Temperature 960 degC to 180 degC Detector micro-TCD Data Collection Total Chrom Workstation Channel B for the determination of C3H8 Carrier Gas Helium Columns Capillary column 50 m x 032 microm LP-SIL-8-CB Oven Temperature 60 degC to 180 degC Detector FID Data Collection Total Chrom Workstation

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

34

Calibration Standards

Calibration Standards for the measurements (preparation method purity analyses estimated uncertainty etc)

All standards were prepared individually according to ISO 6142 rdquoGas analysis - Preparation of calibration gases - Gravimetric Methodrdquo

Depending on the concentration of the components standards were prepared individually from pure gases or from pre-mixtures which were individually prepared from pure gases

The content of the impurities in all pure gases were determined before use by GC-DID GC-FID and or GC-TCD

After preparation the standards were verified by analytical comparisons against existing gravimetrically prepared standards Only when no significant difference between the analysed and the calculated gravimetric composition is found the ldquonew prepared candidate rdquo is accepted as a new standards

For the analysis of all components multi component standards with nitrogen as balance gas were used

Composition of calibrants BAM C49250-050722 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832066 003 Carbon monoxide 29119 007 Carbon dioxide 136779 002 Propane 20358 010 BAM C49290-981102 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 831527 003 Carbon monoxide 32391 007 Carbon dioxide 134405 002 Propane 20269 010 BAM C49295-981028 Component Assigned value( x)

mmol mol Standard uncertainty (u(x)) relativ (k=2)

Nitrogen 832290 003 Carbon monoxide 31989 007 Carbon dioxide 133117 002 Propane 19940 010

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

35

Instrument Calibration

Calibration procedure (mathematical modelcalibration curve number and concentrations of standards measurement sequence temperaturepressure correction etc)

For the instrument calibration the bracketing technique was used The fraction of the current used standards deviated no more than +10rel and -10rel respectively from those of the sample

Measurement sequence

Sample Handling

How were the cylinders treated after arrival (eg stabilized) and how were samples transferred to the instrument (automatic high pressure mass-flow controller dilution etc) After heating (45 - 50 degC) the cylinder for 8 hours the cylinder were rolled about 16 hours before analysis was started Each cylinder was equipped with a pressure regulator that was purged three times by sequential evacuation and pressurisation with the gas mixture used Continous flow (2 ndash 3mlmin) through the sample loop

Uncertainty The specification of potential uncertainty sources is given in Annex 3

3 injection standard (high)

3 injection sample

3 injection standard (high)

3 injection sample

3 injection standard (low)

3 injection sample

3 injection standard (low)

3 injection standard (low)

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

36

Uncertainty table CO2

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 002 rel 1 002 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 03 rel

Uncertainty table CO

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 007 rel 1 007 rel

Analysis normal 025 rel 1 025 rel

Coverage factor 2

Expanded uncertainty 05 rel

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

37

Uncertainty table C3H8

Uncertainty source

Xi

Estimate

xi

Assumed distribution

Standard uncertainty

u(xi)

( k = 2)

Sensitivity coefficient

ci

Contribution to standard uncertainty

ui(y) (k = 2)

Calibration gas

mixture

normal 010 rel 1 001 rel

Analysis normal 028 rel 1 028 rel

Coverage factor 2

Expanded uncertainty 06 rel

Optional

You may provide additional data like the raw measurement data information on your

measurement procedure chromatograms etc

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

38

Appendix 3 SPECIFICATION OF POTENTIAL UNCERTAINTY SOURCES

a Uncertainty related to the balance and the weights Resolution of balance Accuracy of balance including linearity Incorrect zero point Drift (thermal and time effects) Instability due to draught Location of cylinder on the balance pan Uncertainties in the weights used Buoyancy effects on the weights used

b Uncertainties related to the gas cylinder Mechanical handling of cylinder

Loss of metal paints or labels from surface of cylinder Loss of metal from threads of valvefitting Dirt on cylinder valves or associated fitting

Absorptiondesorption effects on the external cylinder surface Buoyancy effects on the cylinder itself

Cylinder temperature differs from surrounding air due to eg filling with gas Change of cylinder volume during filling Change of density of surrounding air due to changes in temperature air pressure humidity and carbon dioxide content

Uncertainty in determination of external cylinder volume c Uncertainties related to the component gases Residual gas in cylinder Leakage Leakage of air into the cylinder after evacuation

Leakage of gas from the cylinder valve during filling Escape of gas from cylinder into transport lines

Gas remaining in transfer system when weight loss method is used Absorptionreaction of components on internal cylinder surface Reaction between components Impurities in all the initial gases Insufficient homogenization Uncertainty of molecular mass d Uncertainties related to the analysis

Repeatability and selectivity of the analyzer Appropriateness of the calibration curve

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

39

MEASUREMENT REPORT - All Ukrainian State Research-Industrial Center of Standardization Metrology Certification and Protection of Consumers Ukraine

(Ukrmetrteststandard)

I Results of Study

Laboratory Ukrmetrteststandard Kiev Ukraina

Cylinder number 0138

NOMINAL COMPOSITION -Carbon dioxide 13middot10-2 - 14middot10-2molmol -Carbon monoxide 28middot10-2 ndash 32middot10-2molmol -Propane 19middot10-4 - 21middot10-4molmol -Nitrogen balance

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

40

Measurement 1 Date Results

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-08-28 13594sdot10-2 0076 3

Carbon monoxide 2005-08-30 29536sdot10-2 0152 3

Propane 2005-09-01 19967sdot10-4 0079 3

Measurement 2 Date Result

(molmol) stand deviation

( relative) number of sub measurements

Carbon dioxide 2005-09-05 13577sdot10-2 0019 3

Carbon monoxide 2005-08-30 29477sdot10-2 0155 3

Propane 2005-09-07 19837sdot10-4 0075 3

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

41

Results

Gas mixture Result

(assigned value) (molmol)

Coverage factor Assigned expanded

uncertainty (molmol)

Carbon dioxide 13586sdot10-2 2 0022sdot10-2

Carbon monoxide 2951sdot10-2 2 0012sdot10-2

Propane 1990sdot10-4 2 004sdot10-4

II Description of Study

Instrument(s)

GC НР 6890 - for С3Н8 - column 15FT 25 DC-200 HP19006-80105 carrier gas ndash helium

flow rate 15 cm3min detector FID tdetector = 300 ordmС toven = 90 ordmС - for СО - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier gas

ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 30 ordmС - for СО2 - column 10FT HAYESEP Q 80100 MESH HP19006-80110 carrier

gas ndash helium flow rate 15 cm3min detector TCD tdetector = 250 ordmС toven = 70 ordmС It was automatic data collection

Measurement and Calibration Methods Laboratory Measurement method Type of calibration curve

GCFID (С3Н8) 3 points linear Ukrmetrteststandard GCTCD (СО СО2) 3 points linear

GCFID ndash gas-chromatographic with flame-ionization detector GCTCD - gas-chromatographic with thermal-conductivity detector

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

42

Calibration Standards

Calibration standards ndash primary standard gas mixtures (PSGM) used for measurements by comparison method

PSGM-1 Cylinder 0116

PSGM-2 Cylinder 0107

PSGM-3 Cylinder 0093 Composition

x u(x) x u(x) x u(x) СО 27874 00015 29899 00015 31891 00015 СО2 130187 00015 144456 00016 137016 00016 С3Н8 019003 000008 020017 000008 021013 000008 N2 balance balance balance

Note x ndash mole fraction u(x) ndash absolute standard uncertainty

It was used gravimetric method of preparation of PSGM Electronic balance КА-20-3 of Mettler Toledo max limit of weighing is 20 kg least

limit of weighing is 01 g standard deviation is 0006 g Analysis of purity of parent gases was carried out with usage of chromatographs

НР6890N with helium ndash ionization detector flame ndash ionization detector thermal ndash conductivity detector and mass ndash spectrometric detector as well аs gas analyzers GIAM-15M and Onix condensate-thermometer hygrometer TOROS-3-2B

Calculation of uncertainties was carried out according to ISO 6142-2003 Corrections of temperature pressure and humidity of environment were considered

in calculations according to ISO 6142-2003 (program of ISO-6142 2000-03-17 designer is NMi) Protocols and explanations are in Annex A

Instrument (Comparator) Calibration Calibration of comparator ndash gas chromatograph HP 6890 was carried out with usage

of PSGM Measurement sequence PSGM -1 х 3 PSGM -2 х 3 COOMET gas mixture х 3 PSGM -2 х 3 PSGM -3 х 3 It is necessary to use PSGM-2 repeatedly for estimation of reproducibility of results

Program B_LEAST recommended by ISO 6143-2003 was used for constructing the curve Mathematical model of calibration curve is linear one

Sample Handling The cylinder was kept for 24 hrs at a room where comparators were disposed This room is a thermostatic room with t = (20plusmn2) ordmС

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

43

A method of sample input to a comparator is a method with flow stabilization Uncertainty The following uncertainties were included to the budget of uncertainty - uncertainty of the balance - uncertainties of impurities in parent gases Contribution from other uncertainty sources was insignificant A cabin of the balance is thermostatically The balance is the one-pan balance

Air transfer is absent in the cabin of the balance Drift of the balance is absent for PSGM preparation

Contribution from other uncertainty sources was considered in software according to ISO 6142-2003

Uncertainties related to the analysis (comparison) were considered in software according to ISO 6143-2003 and enclosed in Annex B

Uncertainty table СО2

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 001 1 001

Analysis A B 008 1 008

Coverage factor 2 Expanded uncertainty 002sdot10-2 molmol Uncertainty table СО

Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas mixture

B 005 1 005

Analysis A B 022 1 022

Coverage factor 2 Expanded uncertainty 0012sdot10-2 molmol

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

44

Uncertainty table С3Н8 Uncertainty source

Xi

Evaluation type

Standard uncertainty u(xi) rel

Sensitivity coefficient

ci

Contribution to standard uncertainty ui(y) rel

Calibration gas

mixture

B 004 1 004

Analysis A B 011 1 011

Coverage factor 2 Expanded uncertainty 004sdot10-4 molmol

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

45

Annex A

Protocols of PSGM preparation in accordance with ISO 6142-2003

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

46

Filename ciso6142datac3h8pur FileDate 13102005 210500

Purity table Cylinder code C3H8 Preparation date 130905 Producer UKR Component Propane

Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 000000998026446 000001000000000 000000300000000Hydrogen H2 000000000457149 000000010000000 000000003000000Oxygen O2 000000007256486 000000010000000 000000003000000Nitrogen N2 000000114348961 000000180000000 000000054000000Ethene C2H4 000000063618636 000000100000000 000000030000000Propane C3H8 099995257460790 099996000000000 000000649900000Isobutane C4H10 000001713511479 000001300000000 000000390000000n-Butane C4H10 000001845320054 000001400000000 000000420000000

Number of components 8 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145644

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

47

Filename ciso6142datan2-1pur FileDate 13102005 211750

Purity table Cylinder code N2-1 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000470595830 000000330000000 000000099000000Oxygen O2 000006373925524 000005580000000 000001674000000Nitrogen N2 099988917434026 099987500000000 000002592400000Water H2O 000004238044620 000006590000000 000001977000000Number of components 4 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145822

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

48

Filename ciso6142datan2-2pur FileDate 13102005 212420

Purity table Cylinder code N2-2 Preparation date 130905 Producer UKR Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000156863277 000000110000000 000000033000000Carbondioxide CO2 000000392756120 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000004500528032 000003940000000 000001182000000Nitrogen N2 099993342066769 099993199300000 000001400000000Water H2O 000001607735430 000002500000000 000000750000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145838

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

49

Mixture data Cylinder code 0086 Preparation date 130905 Producer ukr Maincomponent Propane Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

1 C3H8pur UKR Propane 31445 0006 2 N2-1pur UKR Nitrogen 1969 0006 3 N2-2pur UKR Nitrogen 185349 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000294262838 000000212233612 000000050793132Carbon dioxide CO2 000000251828394 000000164865236 000000037635123Hydrogen H2 000000000057317 000000000819201 000000000177659Oxygen O2 000005050647305 000004547651088 000000983968257Nitrogen N2 092390722121168 095024388907721 000001640830732Water H2O 000002737441539 000004378018810 000001027646595Ethene C2H4 000000004835671 000000004966367 000000001489910Propane C3H8 007600668297960 004966168446053 000000930593736Isobutane C4H10 000000130244501 000000064562772 000000019368520n-Butane C4H10 000000140263308 000000069529139 000000020858380 ISO-6142 version 10 Page 1 of 1

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

50

Filename ciso6142dataco2pur FileDate 13102005 214748

Purity table Cylinder code CO2 Preparation date 130905 Producer UKR Component Carbon dioxide Component Formula Mass fraction Mole fraction Uncertainty Carbon dioxide CO2 099964249373336 099914760000000 000023000000000Hydrogen H2 000000064159117 000001400000000 000000420000000Oxygen O2 000000465563936 000000640000000 000000192000000Nitrogen N2 000003375270605 000005300000000 000001590000000Water H2O 000031371512012 000076600000000 000022980000000Methane CH4 000000474120994 000001300000000 000000390000000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145726

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

51

Filename ciso6142datacopur FileDate 13102005 214012

Purity table Cylinder code CO Preparation date 130905 Producer UKR Component Carbon monoxide Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000001426351025 000001000000000 000000300000000Carbon monoxide

CO 099961566205111 099949900000000 000010110000000

Carbon dioxide CO2 000004714135126 000003000000000 000000900000000Hydrogen H2 000001079660748 000015000000000 000004500000000Oxygen O2 000001142523310 000001000000000 000000300000000Nitrogen N2 000030006800776 000030000000000 000009000000000Water H2O 000000064323904 000000100000000 000000030000000Number of components 7 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145802

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

52

Filename ciso6142datan2-3pur FileDate 13102005 215712

Purity table Cylinder code N2-3 Preparation date 130905 Producer Ukr Component Nitrogen Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000356509421 000000250000000 000000075000000Carbon dioxide CO2 000000392758294 000000250000000 000000075000000Hydrogen H2 000000000050373 000000000700000 000000000210000Oxygen O2 000005437216249 000004760000000 000001428000000Nitrogen N2 099990890586471 099990194300000 000001977000000Water H2O 000002922879191 000004545000000 000001363500000 Number of components 6 ISO-6142 version 10 Page 1 of 1 printed on 14102005 145902

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

53

Mixture data Cylinder code 0093 Preparation date 130605 Producer ukr Maincomponent Nitrogen Cylinder code

Producer Component Transferred gas [g]

Uncertainty [g]

10086mix ukr Propane 17266 0006 2Copur UKR Carbon

monoxide 12656 0006

3CO2pur UKR Carbon dioxide 8543 0006 4N2-3pur Ukr Nitrogen 312892 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314497311 000000238049698 000000059956846Carbonmonoxide CO 002954188691241 003189074455477 000001502076456Carbondioxide CO2 019942212208600 013701549269322 000001562610111Hydrogen H2 000000044745637 000000671168802 000000154699898Oxygen O2 000004302918068 000004066072547 000001127302251Nitrogen N2 076783880360170 082879807065145 000003546657784Water H2O 000008506114589 000014276966840 000003329199388Methane CH4 000000094581959 000000178268198 000000053480256Ethene C2H4 000000000194965 000000000210141 000000000063042Propane C3H8 000306444781089 000210132800018 000000079611789Isobutane C4H10 000000005251216 000000002731836 000000000819537n-Butane C4H10 000000005655155 000000002941977 000000000882577 ISO-6142 version 10 Page 1 of 1

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

54

Mixture data Cylinder code 0107 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 16405 0006 2Copur UKR Carbon

monoxide 11835 0006

3CO2pur UKR Carbon dioxide 89838 0006 4N2-3pur Ukr Nitrogen 310725 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000308963874 000000234769053 000000059605292Carbonmonoxide CO 002758947899240 002989870486453 000001504604186Carbondioxide CO2 020943813821391 014445565952016 000001620206587Hydrogen H2 000000043279324 000000651694393 000000147672404Oxygen O2 000004262288240 000004043312530 000001122342627Nitrogen N2 075992932959726 082344449683681 000003645113931Water H2O 000008797127200 000014822724710 000003490068135Methane CH4 000000099332518 000000187948760 000000056384415Ethene C2H4 000000000185001 000000000200176 000000000060053Propane C3H8 000290783794488 000200167823481 000000079086030Isobutane C4H10 000000004982850 000000002602286 000000000780673n-Butane C4H10 000000005366146 000000002802462 000000000840723 ISO-6142 version 10 Page 1 of 1

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

55

Mixture data Cylinder code 0116 Preparation date 130905 Producer ukr Maincomponent Nitrogen Cylinder code Producer Component Transferred

gas [g] Uncertainty [g]

10086mix ukr Propane 1564 0006 2Copur UKR Carbon

monoxide 1108 0006

3CO2pur UKR Carbon dioxide 813065 0006 4N2-3pur Ukr Nitrogen 31933 0006 Purity table Component Formula Mass fraction Mole fraction Uncertainty Argon Ar 000000314141457 000000236896626 000000060875354Carbonmonoxide CO 002591686691446 002787352215682 000001496609579Carbondioxide CO2 019019073846746 013018730371136 000001511655820Hydrogen H2 000000040238481 000000601319883 000000136905632Oxygen O2 000004365841917 000004110200209 000001148384435Nitrogen N2 078098002234085 083984960943827 000003470111559Water H2O 000008254460030 000013803089857 000003187897299Methane CH4 000000090203656 000000169384097 000000050815034Ethene C2H4 000000000176971 000000000190038 000000000057011Propane C3H8 000278162265416 000190030257624 000000078071627Isobutane C4H10 000000004766568 000000002470492 000000000741135n-Butane C4H10 000000005133227 000000002660530 000000000798145 ISO-6142 version 10 Page 1 of 1

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

56

Annex B

Protocols of analysis (comparison) in accordance with ISO 6143-2003

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

57

Explanation of protocols of comparison

Chapter I ldquoThe calibration data set isrdquo contains columns 1 mole fraction of a component 2 absolute standard uncertainty of mole fraction of a component 3 a signal of a comparator 4 absolute standard uncertainty of a comparator signal

Chapter II ldquoResults of ISO 6143 methodrdquo contains parameters of a calibration curve including its

uncertainty

Chapter ІІІ ldquoPart II Processing of datardquo contains columns

1 calc x - the results of comparison mole fraction of a component 2 u(x) - absolute standard uncertainty of mole fraction of a component 3 response y - a signal of a comparator 4 u(y) - absolute standard uncertainty of a comparator signal

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

58

СО2 - measurement 1 Data setCO2_21 The calibration data set is 1302E+01 1510E-03 1022E+04 1820E+00 1370E+01 1560E-03 1077E+04 2730E+00 1445E+01 1620E-03 1135E+04 5900E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 20331E-02 12711E-03 12573E-01 11653E-05 -14638E-06 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 10548E-02 12722E-03 31762E-02 28898E-06 -91698E-08 Remaining SSD is 74346 Weighted distances x-value x-dist y-dist 100E+00 130E+01 490E-01 -755E-01 200E+00 137E+01 -103E+00 228E+00 300E+00 144E+01 539E-01 -250E-01 Goodness-of-fit measure 22837 Parameter set 1 1054788657490729E-2 1272208026684145E-3 3176237146276368E-2 2889798108124711E-6 -

9169821653851327E-8 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_21c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13577E+01 25542E-03 10664E+04 15200E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 547E-06 328E-06 316E-06 784E-06 286E-06 652E-06 Linear model Parameters for the fit were (b0 b1) 10548E-02 12722E-03

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

59

СО2 - measurement 2

Data setCO2_20 The calibration data set is 1302E+01 1512E-03 1021E+04 4723E+00 1370E+01 1563E-03 1075E+04 1600E+00 1445E+01 1620E-03 1133E+04 7300E-01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -38760E-02 12784E-03 26817E-02 24890E-06 -66689E-08 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -62452E-02 12805E-03 47930E-02 43243E-06 -20716E-07 Remaining SSD is 03231 Weighted distances x-value x-dist y-dist 100E+00 130E+01 107E-01 -415E-01 200E+00 137E+01 -212E-01 283E-01 300E+00 144E+01 104E-01 -584E-02 Goodness-of-fit measure 04155 Parameter set 1 -6245240430658412E-2 1280492624666799E-3 4792952200361109E-2 4324266278840409E-6 -

2071623966851869E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO2_20c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 13594E+01 10290E-02 10665E+04 78300E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 121E-05 683E-06 651E-06 315E-05 560E-06 106E-04 Linear model Parameters for the fit were (b0 b1) -62452E-02 12805E-03

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

60

С3Н8 - measurement 1

Data setC3H8 The calibration data set is 1900E-01 7800E-05 9057E+03 1098E+01 2002E-01 7900E-05 9552E+03 8569E+00 2101E-01 7960E-05 1007E+04 4049E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10529E-02 19831E-05 34552E-03 36109E-07 -12465E-09 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11642E-02 19714E-05 23073E-03 23522E-07 -54231E-10 Remaining SSD is 19453 Weighted distances x-value x-dist y-dist 100E+00 190E-01 -239E-01 666E-01 200E+00 200E-01 487E-01 -104E+00 300E+00 210E-01 -247E-01 248E-01 Goodness-of-fit measure 10414 Parameter set 1 1164239985182795E-2 1971441115316992E-5 2307269625077337E-3 2352198415608386E-7 -

5423119774765299E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19837E-01 14840E-04 94718E+03 45610E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

61

С3Н8 - measurement 2

Data setC3H8_14 The calibration data set is 1900E-01 7800E-05 1066E+04 4425E+00 2002E-01 7900E-05 1129E+04 4063E+00 2101E-01 7960E-05 1189E+04 1261E+01 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 14872E-02 16419E-05 20927E-03 18531E-07 -38743E-10 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 16125E-02 16303E-05 19143E-03 17264E-07 -33027E-10 Remaining SSD is 14769 Weighted distances x-value x-dist y-dist 100E+00 190E-01 288E-01 -266E-01 200E+00 200E-01 -596E-01 500E-01 300E+00 210E-01 306E-01 -790E-01 Goodness-of-fit measure 07901 Parameter set 1 1612516316404608E-2 1630344048324982E-5 1914349241689507E-3 1726393754008018E-7 -

3302701233478155E-10 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file C3H8_14c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 19967E-01 15845E-04 11258E+04 85110E+00 More than 1 prediction Calculated values have covariances VC matrix of predictions 168E-08 570E-09 542E-09 181E-08 637E-09 251E-08 Linear model Parameters for the fit were (b0 b1) 16125E-02 16303E-05

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

62

СО - measurement 1

Data setCO The calibration data set is 2787E+00 1496E-03 1901E+03 3045E+00 2990E+00 1500E-03 2032E+03 2102E+00 3189E+00 1500E-03 2157E+03 1545E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov -18937E-01 15655E-03 27792E-02 13671E-05 -37945E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov -19949E-01 15704E-03 44525E-02 21438E-05 -95352E-07 Remaining SSD is 04343 Weighted distances x-value x-dist y-dist 100E+00 279E+00 107E-01 -341E-01 200E+00 299E+00 -213E-01 469E-01 300E+00 319E+00 107E-01 -172E-01 Goodness-of-fit measure 04694 Parameter set 1 -1994919907095992 1570356532205788E-3 4452516736737186E-2 2143794414858978E-5 -

9535194343176842E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO_c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29536E+00 44841E-03 20079E+03 23713E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00

63

СО - measurement 2

Data setCO_ The calibration data set is 2787E+00 1496E-03 1889E+03 1416E+00 2990E+00 1505E-03 2034E+03 6445E-01 3189E+00 1502E-03 2172E+03 1956E+00 Fit type x vs y Calibration Linear case Ordinary-least-squares results b0 b1 u (b0) u (b1) cov 10834E-01 14178E-03 21704E-02 10666E-05 -23112E-07 Results of ISO 6143 method b0 b1 u (b0) u (b1) cov 11251E-01 14155E-03 28122E-02 13917E-05 -39096E-07 Remaining SSD is 09539 Weighted distances x-value x-dist y-dist 100E+00 279E+00 270E-01 -362E-01 200E+00 299E+00 -549E-01 333E-01 300E+00 319E+00 277E-01 -511E-01 Goodness-of-fit measure 05490 Parameter set 1 112511530253064 1415485104605818E-3 2812193018795215E-2 1391730320259904E-5 -

3909572230036017E-7 0 0 0 0 0 0 0 0 0 End set Part II Processing of data Parameters from file CO__c Data set Input from keyboard (max 30 points) MF type l calc x u(x) response y u(y) 29477E+00 45573E-03 20030E+03 30802E+00


Recommended