+ All Categories
Home > Documents > Introduction of Lab & Research Subjectsyossvr0.ed.kyushu-u.ac.jp/english/EJUST/E-JUST_Yoshida... ·...

Introduction of Lab & Research Subjectsyossvr0.ed.kyushu-u.ac.jp/english/EJUST/E-JUST_Yoshida... ·...

Date post: 18-Feb-2021
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
60
1 Introduction of Lab & Research Subjects Keiji Yoshida Prof. , Dr. Eng. Graduate School of Information Science and Electrical Engineering ( ISEE ) Kyushu University 2010.7.26@E-JUST
Transcript
  • 1

    Introduction of Lab & Research Subjects

    Keiji Yoshida Prof. , Dr. Eng.

    Graduate School of Information Science

    and Electrical Engineering ( ISEE )

    Kyushu University

    2010.7.26@E-JUST

  • 2

    Clustering of JSUC by Programs

    Electronics, Communications

    & Computer Eng. Dept.

    Energy &Environmental

    Eng. Dept.

    Electronics & Communications Eng.

    Computer Science and Engineering

    Materials Science and Engineering

    Industrial Eng.& Management Systems

    Mechatronics and Micro-Electromechanical Systems

    Chemical & Petrochemicals Eng.

    Energy Resources & Environmental Eng.

    Tohoku (Prof. Tsuchiya)

    Waseda (D Prof.Hashimoto)

    Tokyo (Prof. Maekawa)

    Keio (TBD) 

    Tokyo Tech (Prof.Miki)

    Nagoya (VD Prof. Tanaka)

    Kyoto (D Prof. Komori)

    KIT (Prof. Kunugi)

    Ritsumei (VP Prof. Cassim)

    Osaka (Prof. Kawasaki)

    Kyushu (VP Prof.Yasuura)

    Hokkaido (D Prof. Baba)

    JSUC

    [ Osaka] Kawasaki

    Innovative Design

    Eng. Dept.

    Kyoto Nishimoto(Oshima) 2011 Fall

    Kyushu YoshidaVictor, Jia

    Main Program Supporting Univ.

    Faculty of Eng.

    [Advisor(s)To Pres.]

    [Tsunoda PA]

    [Adachi PC]

    [Okano PC]

    [Okumoto PC]

    [Matsushita]

    Kyoto Tabata 2011 Fall

    Tokyo TechIijima (TBD)

          = 3 Graduate Programs started from Feb. 2010.

    [Kyoto] Ono

    Waseda YamakawaIwata, Others

    Tokyo Tech SuzukiOkawara, Oliver

    [TokyoTech] Ichimura

    Waseda

    Kyoto

    Kyushu

    Chair Univ.

    ※Japanese Supporting University Consortium (JSUC)

    Waseda UedaWada, Others

    2010 Fall

  • 3

    JICA Project : Dep. of Electronics & Commun. Eng. (E-JUST)During 2010-2013 (first stage) ( -2018 second stage)Director from Kyushu Univ.:Prof. Yoshida

    E-JUST-Local Teachers

    Kyudai’s two associate professors for E-JUSTHongting Jia Victor Goulart

    Prof. Yasuura & Murakami’s group

    Prof

    . Yos

    hida

    ’s g

    roup Department of Electronics and

    Communication Engineering E-JUST

    Prof. Furukawa’s group

    (RF and Analog LSI)

    Multi-core processor

    Wireless network

  • 4

    MEXT Project ( Kyushu University : During 2010-2014 )Directors:Profs. Yoshida & Murakami

    Missions Feasibility-Study, Development and           Implementation of :• Student Exchange Program• Int. Collaboration between Universities & Industries• Cultural Exchange Program between Egypt, Middle-East & Japan• Support to E-JUST Administration ( Via VP Prof. Yasuura )• Double Degree Program ( Master Program )

    日本エジプト科学技術連携センターCenter for Japan‐Egypt Cooperation 

    in Science and Technology E‐JUST Center2010.8.1‐2014  (Opening Ceremony 9.15 @Kyushu U.)

  • 5

    ・ Analog Integrated CircuitsResearch RF-CMOS front-end (LNA, PA, Mixer, VCO, AD/DA), Miniaturized

    antenna (UHF, 3G, .11a, b & g, UWB)Co-Ad. Profs. Yoshida , Kanaya, Pokharel, Jia, Yoshitomi Access http://yossvr0.ed.kyushu-u.ac.jp/

    • Digital Signal Processing Research Hardware/Software Co-Design, Ultra Low Power Design,

    Parallel computing/processing, Architecture/Hardware ModelingCo-Ad. Profs. Murakami, Victor, Inoue, Ishihara, Farhad

    ( VP Prof. Yasuura )Access http://www.slrc.kyushu-u.ac.jp/ & http://www.i.kyushu-u.ac.jp/

    • Digital and Data Communications Research Wireless Mesh Network, MIMO-MESH, Wireless Multihop

      Co-Ad. Profs. Furukawa, MutaAccess http://mobcom.is.kyushu-u.ac.jp/~furuhiro/index.html

    Co- Advisors from Kyushu University in Core Fields@Dep. of Electronics & Communication Eng.

  • 6

    Yoshida Lab. Web Page

  • 7

    Yasuura Lab. Web Page

  • 8

    Murakami Lab. Web Page

  • 9

    Furukawa Lab. Web Page

  • 10

    Yoshida Lab Members

    http://yossvr0.ed.kyushu-u.ac.jp/english/ehp2.html

    in portal site :

    http://yossvr0.ed.kyushu-u.ac.jp

  • 11

    Block diagram of RF front-end for Wireless Communications

    digital

    proc.

    PHY

    Receiving part

    Transmitting part

    VCO, PLL

    Mixer

    Mixer

    LNA

    PA

    A/D

    D/A

    VGA

    Buff LPF

    LPF

    Research fields & subjects covered by Yoshida lab

    ~~~

    ~~~

    BPF

    Antenna

    ⇒ Development of RF front-end LSI Mixed Signal Chip with Planar Antennas for mobile wireless terminals

  • 12

    Research groups ( 2010 Yoshida lab@Kyushu univ. )

    Antenna + Filter RF-LSI

    D3Galal (UWB LNA, Low power)Abdelghany (MX, Low power)Murad (UWB PA)

    D2 Dong (UWB Pulse)

    D1Rohana (UWB PA)

    M2

    Kato(2.4G Widband oneside)Nagata (Dual band QTN)Koku (3D bottom chip)Liu(Onchip MMW BPF)

    Koirala(UWB notch LNA)Yano (LNA +MX)Hamada(Ring DCO)Lingala (Ring DCO)

    M1

    Kuwamoto (UWB BPF +LNA/PA)Hirabaru (Antenna+ Tag)Hayakawa (Dual band QTN)Ijiguchi (UWB Ant+BEF)

    Ishihara (Series LC DCO)

    B4(Liu's BPF) Ishida, Hirabe(UHF antenna) Kusuhara

    (Ring DCO) Hashimura(MEMS DCO) Yamashita(MX) Masumoto

    Oshima (Ternary DAC)Kubokawa(F. Series DAC)

    Hokazono (Ternary DAC)

    (Ternary DAC) Oshiro

    Mixed Signal LSITomar (F.Series, DAC, OSC)

    Ghazal (ADC)Nugroho (PLL)Anand (ADC)

  • 13

    Doctor Course Students (Yoshida Laboratory)

    Publication List

    1. “Linearization technique using bipolar transistor at 5 GHz low noise amplifier,” AEU - International Journal of Electronics and Communications.

    2. “An excellent gain flatness 3.0-7.0 GHz CMOS PA for UWB applications,” IEEE Microwave and component letter.

    3. “1-5GHz Wideband Low Noise Amplifier using Active Inductor Load,” IEEE International conference of Ultra-wideband (ICUWB) 2010.

    4. “Ultra-wideband low noise amplifier with shunt resistive feedback in 0.18µm CMOS process,” Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), 2010 , New Orleans, LA, USA, pp. 33-36.

    5. “Integrated design of UWB LNA with filter,” 2008 th IEEJ Kyushu-Branch Conference.6. “Comparison between bipolar and NMOS transistors in linearization technique at 5 GHz low noise amplifier,”

    APMC, Asia Pacific Microwave International Conference, Hong Kong, Dec.16-19, 2008. 7. “Design of flat gain and low noise figure LNA for 3.1-10.2 GHz band UWB applications in 0.18um CMOS

    process,” 2008 IEEJ International Workshop on AVLSI, Istanbul, Turkey, July 30-August 1, 2008.8. “Development of low noise RF front-end for ultra-wideband (UWB) systems on 0.18µm CMOS technology,”

    EJISST 2008 Egypt-Japan International Symposium on Science and Technology, Tokyo, Japan, June 8-10, 2008.

    9. A low flicker noise direct conversion receiver for the IEEE 802.11a wireless LAN standard,” APMC2009, Asia Pacific Microwave International Conference, Singapore, 2009.

    Ahmed Ibrahim Ahmed Galal, EgyptDoctor course: D3Research subject : Development of low power, low noise RF front end for Ultra-wideband systems.

  • 14

    1. M. A. Abdelghany, R. K. Pokharel, H. Kanaya, and K. Yoshida, “A Low Flicker-Noise High Conversion Gain RF-CMOS Mixer with Differential Active Inductor,” Proc. 2009 Korea-Japan Micro Wave Conference, pp. 141-144, April 2009.

    2. M. A. Abdelghany, A.I.A. Galal, R. K. Pokharel, H. Kanaya, and K. Yoshida, "A Low Flicker Noise Direct Conversion Receiver for the IEEE 802.11a Wireless LAN Standard," Asia-Pacific Microwave Conference Proceedings, pp. 1568-1571, December 2009.

    3. H. Kanaya, N. Koga, M. A. Abdelghany, R. K. Pokharel, K. Yoshida, “Low Flicker-Noise and Low Leakage Direct Conversion CMOS Mixer for 5GHz Application,” Asia-Pacific Microwave Conference Proceedings, pp 1515-1518, December 2009.

    4. N. Koga, M. Abdelghany, R. K. Pokharel, H. Kanaya, and K. Yoshida, “ Discussion on Improvement of Linearity and Flicker Noise of a Down-Conversion Mixer for 5.2GHz Band Direct Conversion Receiver,” IEICE Technical Report, Vol. MW2009-137, pp 53-56, November 2009.

    Publication

    Mahmoud Ahmed Abdelghany Khalil, EgyptDoctor Course: D3Research subject: Low flicker noise RF mixer, Low power front-end, Active Inductors, and Meta-materials

    2.00

    E-0

    8

    4.00

    E-0

    8

    6.00

    E-0

    8

    8.00

    E-0

    8

    1.00

    E-0

    7

    1.20

    E-0

    7

    1.40

    E-0

    7

    1.60

    E-0

    7

    1.80

    E-0

    7

    2.00

    E-0

    7 0

    5

    10

    15

    20

    25

    30

    4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6

    Frequency, GHz

    Vol

    tage

    Gai

    n, d

    B

    0

    5

    10

    15

    20

    25

    30

    0 25 50 75 100 125 150Frequency, MHz

    Volta

    ge G

    ain,

    dB

    -80

    -70

    -60

    -50

    -40

    -30

    -20

    -10

    0

    10

    20

    -40 -30 -20 -10 0 10Pin, dBm

    Pout

    , dBm

    Front-end Chip Measurements Results Mixer with Active Inductor Chip

    Active InductorChip

    Doctor Course Students (Yoshida Laboratory)

  • 15

    Doctor Course Students (Yoshida Laboratory)

    Ghazal A. Fahmy, EgyptDoctor course: D1Research subject : Spectrum-Sensing, Reconfigurable Σ∆ ADC For Multiple Standards Receivers

    Latched Comparator

    Folded cascode Amplifier

    Folded cascodeamplifier

    •DC gain 83dB

    •UGB 183MHz

    Latched Comparator

    •Fmax 1GHz

    •Offset voltage 1mV

  • 16

    Doctor Course Students (Yoshida Laboratory)

    Publications1.“Design of 1.1 GHz Highly Linear Digitally-Controlled Ring Oscillator with Wide Tuning range,” IEEE RFIT

    2007,Singapore, pp. 82- 85  2. “Design of Highly Linear, 1GHz 8-bit Digitally Controlled Ring Oscillator with Wide Tuning Range in 0.18 um CMOS

    Process,”IEEE CJMC 2008,Nanjing, China, pp. 623 – 626 3. 3. “Design of digitally controlled LC oscillator with wide tuning range in 0.18um TSMC CMOS technology,” IEEE APMC

    2008, Hongkong, China, pp. 1- 4 4. “Low phase noise 10 bit 5 GHz DCO using on-chip CPW resonator in 0.18 µm CMOS technology,” IEEE AH-ICI 2009,

    Kathmandu, Nepal, pp. 1–45. “10 bit 2/5GHz dual band digitally-controlled LC-oscillator in 0.18 um CMOS,”IEEE APMC 2009, Singapore, pp. 2284 -

    2287 6. “Low phase noise 18 kHz frequency tuning step 5 GHz DCO using tiny capacitors based on transmission lines,”Silicon

    Monolithic Integrated Circuits in RF Systems (SiRF), 2010 , New Orleans, LA, USA, pp. 8-11.7. “Low phase noise, 18 kHz frequency tuning step, 5 GHz, 15 bit digitally controlled oscillator in 0.18 um CMOS

    technology,” IEICE Trans. on Electronics, Vol. E93-C, No. 7, pp. 1007-1013. 8. “Digitally Controlled Ring Oscillator for Multi-Standard GHz Applications,” International Conference on Solid State

    Devices and Materials (SSDM2010),Tokyo,Japan.(Accepted)9. “A Wide Tuning Range -163 FOM CMOS Quadrature Ring Oscillator for Inductorless Reconfigurable PLL,” IEEE ISSE,

    2010, Nanjing, China. (Nominated for Student best paper award competition) (Accepted)10. “Modeling of Non-Linearity in Digitally Controlled Oscillator on 0.18 um CMOS Technology,” IEICE Trans. on

    Electronics. (Accepted)

    Abhishek Tomar, IndiaDoctor course: D3Research subject : Development of Digitally Controlled CMOS Oscillators for Next Generation Wireless Systems

  • 17

    Doctor Course Students (Yoshida Laboratory)

    Publication List1. “An excellent gain flatness 3.0-7.0 GHz CMOS PA for UWB applications,” IEEE Microwave and Wireless components

    letters. 2. “A 2.4-GHz 0.18-µm CMOS Class E single-ended switching power amplifier with a self-biased cascode,” AEU -

    International Journal of Electronics and Communications, Vol. 64, pp. 813-118, Sept. 2010.3. “A 2.4 GHz 0.18-µm CMOS Class E single-ended power amplifier without spiral inductors”, IEEE 2010 10th Topical

    Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SIRF 2010), 11-13 Jan, 2010, Page(s): 25 – 28.4. “A 3.0–7.5 GHz CMOS UWB PA for group 1~3 MB-OFDM application using current-reused and shunt-shunt

    feedback”, International Conference on Wireless Communications & Signal Processing, 2009. WCSP 2009, 13-15 Nov. 2009 Page(s):1 – 4

    5. “A 3.1 - 4.8 GHz CMOS UWB Power Amplifier Using Current Reused Technique”, 5th International Conference on Wireless Communications, Networking and Mobile Computing, 2009, WiCom '09. 24-26 Sept. 2009 Page(s):1 – 4.

    Sohiful Anuar Bin Zainol Murad, MalaysiaDoctor course: D3Research subject : Development of CMOS power amplifier for wireless and UWB applications.

    2.4 GHz CMOS Class E PA 3-5 GHz CMOS UWB PA 3-7 GHz CMOS UWB PA

  • 18

    Doctor Course Students (Yoshida Laboratory)

    Publication List

    1. “An UWB Bandpass Filter with Large Notch Suppression” APMC2009, Asia Pacific Microwave International Conference, Singapore, 2009.

    Ruibing Dong, ChinaDoctor course: D2Research subject : Ultra-Wideband Impulse Generator ( UWB TX )

  • 19

    Doctor Course Students (Yoshida Laboratory)

    Thesis Summary

    Injection Locking is a new techniques to achieve high performance circuits in some applications, such as Frequency Divider, Quadrature Output Generation and Finer Phase Separation Oscillator. This Thesis will study the advantages of injection locking in Ring Oscillator Topology in designing High Performance Frequency Divider and Quadrature Output Oscillator for PLL application in CMOS Wireless Communication based on TMSC 0.18 micron technology.Wide locking range 2.5 GHz Injection Locked Ring Oscillator Frequency Divider using Direct Injection Techniques is designed at the beginning, continued by designing High performanceQuadrature Output Injection Locked Ring Oscillator that is injected by wide tuning differential LC Oscillator. Next, other Injection techniques and topologies will be studied and designed.

    Prapto NUGROHO, IndonesiaDoctor course: D1Research subject : Injection Locked Frequency Divider and Quadrature Ring Oscillator

  • 20

    Doctor Course Students (Yoshida Laboratory)

    Thesis Summary

    Rohana Binti Sapawi , Malaysia Doctor course: D1Research subject : Design of Full-band Power Amplifier for UWB Applications

    Ever since the FCC allocated 7.5Ghz (from 3.1Ghz to 10.6Ghz) for UWB technology, interest has been renewed in both academic and industrial circles to exploit this vast spectrum for short range, high data rate wireless applications. The great potential of UWB lies in the fact that it can co-exist with already licensed spectrum users and can still pave the way for wide range of application. The radio frequency (RF) power amplifier (PA) is an important component of any wireless transmitter. Their function is to amplify the signal and generate the required RF power that allows transmissions of the signal over the appropriate range. In all of the RF front end components, the integration of CMOS power amplifier remains a difficult challenge. Because of the breakdown voltage, low transconductance capacity and poor passive devices in CMOS process, it is challenging to design a fully integrated CMOS PA with high output power, efficiency, broadband input matching, high power gain and linearity at such high frequencies and wide bandwidth. Even though expensive technologies like SiGe or GaAs have been used for transceiver realization, the ultimate goal is to have a single chip, low cost solution which can only be achieved by using CMOS technology. Therefore, I have a great interest to solve these problems in my Doctorate research by designing CMOS power amplifier for full-band UWB applications. This design will be implemented, fabricated in TSMC 0.18µm and tested on deep-submicron CMOS process.

  • 21

    Lab Introduction

    Key Words of Our Research

    Miniaturization & Low Power⇒ ① SoC (System on Chip)⇒ ② Antenna

    Tr. Amp. Digital Ckt.

    Receiving RF Ckt

    Receiving IF Ckt

    Intersil 2.4GHz PCMCIA Card (PRISM 2.5)

    Antennas

  • 22

    Research (CMOS)

    •Power Amp. (IEEE .11a, IEEE .11b, UWB)•LNA (IEEE .11a, IEEE .11b, UWB)•VCO & DCO (IEEE .11a, 10GHz)•Down converter (IEEE .11b)•Ring Oscillator (UWB)•DAC/ADC•On chip bandpass filter (60GHz)

  • 23

    Research (Antenna & Filter )

    •One-sided directional antenna300MHz, UHF, 2.4GHz (.11b), MIMO (.11a), UWB

    •Electrically small antenna with matching circuitUHF, 2.4GHz, 5GHz•Dual band antennaPDC + 3G (800MHz + 2GHz)•UWB off chip bandpass filter

  • 24

    Previous Design

    TSMC 0.18um tech.5mm x 5mm12th TEG

  • 25

    Previous Design (Chip name)

    front_end_FULL _frontEndEmergencySvcox30 vcoX0

    dcoXstd dcoXstd52

    stdar RING_DCO_11

    uwbpa_lowerband1

    uwbpa_lowerband

    uwbpa_fullband

    Mix_DAI UWBLNA

    Mixer_Ds_layout

    inductors_test12p2comparator_final_7Series_6bitDAC stdar_kibou

    P5DCO12ALNA_Mixer_layout

    LNA_Active_inductor

    vcoX15P1DAC10

    12th_DCO_15bit3

    _DACcr2A3

    diff_AI_layout

  • 26

    Previous Design (Chip photo)

  • 27

    PCB designcircuit

    PCB layout

    VDD, GND,SMA connector,Pass condensor,Digital input pin,50W strip line,Same line length

  • 28

    PCB fabrication and bonding

  • 29

    Final PCB

    Digital pin DC, Bias & GND RF (SMA connector)

  • 30

    Experimental Results

  • 31

    VCO (Voltage controlled Osc.) with TML

    4.8

    5

    5.2

    5.4

    5.6

    5.8

    6

    6.2

    6.4

    0 0.4 0.8 1.2 1.6Fr

    eque

    ncy

    (GH

    z)

    DC Control Voltage (V)

    TML VCO

    LC VCO

    100µm

    TML VCO= -112dBc/Hz @1MHzLC VCO= -110dBc/Hz @1MHz

    TSMC0.18µm CMOS process

  • 32

    LC-DCO (Digitally controlled OSC)

    4.5

    4.6

    4.7

    4.8

    4.9

    5

    5.1

    0 200 400 600 800 1000Fr

    eque

    ncy

    (GH

    z)

    control word (10bit)

    V1

    V2

    V3

    V4

    V7

    V5

    V6

    C C 2C2C4C 4C

    8C 8C

    Cvar Cvar

    Cvar Cvar

    CvarCvar

    Cvar

    Cvar

    Cvar

    Cvar

    CvarCvar

    CvarCvar

    V8

    V9

    V10

    32C 16C16C 64C64C 32C

    TML Capacitor

    TSMC0.18µm CMOS process

    On-Off

    LC VCO= -119dBc/Hz @1MHz

  • 33

    LNACPWMatching circuit

    (50Ω)

    Down conversion mixer

    VCOLayout (LNA + Mixer)

    Matching circuit

    Size

    480μm×250μm

    TML

    600μm×300μm

    Lumped element

    (約14.0nH @2.45GHz )

    RF_IN

    Chip Size3.3mm×2.0mm

    LO

    LO

    LNA + Mixer (Down converter)

    CPWMatching circuit

  • 34

    LNA + Mixer (Down converter)

    Mixer LNA

    K-inverters andCPW lines

    Input-matching circuit

    Matching circuit between LNA and mixer

    Mixer LNAInput-matching circuit

    Matching circuit between LNA and mixer

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    1 2 3 4

    Inpu

    t Im

    peda

    nce

    [ O

    hm]

    Frequency [ GHz ]

    SimulationMeasured

    Real parts

    Imaginary parts

    Input Impedance

    Output by Oscilloscope(Base band freq.=10MHz)

  • 35

    Ring-Oscillator

    WLAN(.11a,.11b), WCDMA, GPS, PHS, GSM, IMT2000 …

    ●Reconfigureable RF circuit.●Multi-standard systems in one terminal.

    MobileTerminal     

    Tel.

    WLAN

    Bluetooth

    TV

    RFID

    UWB

    GPSFM

    DTV

    Demand of Wideband Systems

    ⇒Wide band oscillator

  • 36

    I1

    I3 I4

    I2Q270

    Q90

    Q180

    Q0Vdd

    VssW180

    Q90Q180

    Q270

    M4

    M3

    M1

    M2

    Additional transition-assistance pair

    pMOS

    nMOS

    Proposed Quadrature Ring OscillatorChip photo

    TSMC 0.18um CMOS Process

    Size:0.30 mm2 with bonding pads.Size: 0.01 mm2 without bonding pads.

  • 37

    Measurement results

    Time-Domain Tuning Range

    Tuning Sensitivity = 2.9 MHz/mVTuning range = 1.7 GHz ~5.5 GHzFOM= -162.2 dBc/Hz

    Figure of Merit: ⎟⎠⎞

    ⎜⎝⎛++⎟

    ⎟⎠

    ⎞⎜⎜⎝

    ⎛−=

    001.0log10log20 diss

    off

    osc PPNFFFOM

  • 38

    DAC

    xi0xi1xi2xi3xi4xE

    xi5xi6xi7xi8xi9

    setV

    ddV

    ssV

    db2

    VdgVd

    Vdg2Vs

    VoutVoutb

    INL:±0.065[LSB]DNL: :±0.075[LSB]SFDR:63.5[dBc@1MHz]

    INL:±1.22[LSB]DNL: :±0.74[LSB]SFDR:60.0[dBc@1MHz]Power:14.94[uW]

    2:Measured data (DNL)

    1:Designed parameter

    3:Measured summary

  • Bandpass filter@60GHz Liu

    Designed parameter

    Center frequency: 60GHzInsertion loss: 2.9dBReturn loss: 25dB

    Measured data

    Measured summary

    Center frequency: 59.7GHzInsertion loss: 3.3dBReturn loss: 22dB

    gnd

    gnd

  • 40

    Research (Antenna & Filter )

    •One-sided directional antenna300MHz, UHF, 2.4GHz (.11b), MIMO (.11a), UWB

    •Electrically small antenna with matching circuitUHF, 2.4GHz, 5GHz•Dual band antennaPDC + 3G (800MHz + 2GHz)•UWB off chip bandpass filter

  • 41

    Antenna fabrication

    PCB

    Printed board making equipmentHigh-frequency Milling Cutter

  • 42

    Photograph of measurement system

    Tx. Ant..

    Turn table

    Rx. antRx. ant.

    Tx. ant.

    Proposed ant.

    Anechoic Chamber

    Yoshitomi Lab. in Kyusyu Univ.

  • 43

    -50

    -40

    -30

    -20

    -10

    0

    2 2.2 2.4 2.6 2.8 3

    Ret

    urn

    Loss

    [dB]

    Frequency [GHz]

    Measured

    EM Sim.

    Band widthJ-Inverter

    (Inter digital gap)

    Photographs of the antenna19.3mm

    Experimental results of the one-sided directional ESA with CPW matching circuit

  • 44

    Antenna

    PC

    Reader-Writer

    RF-ID Card @2.45GHz (IMS band)

    Experimental results of the one-sided directional ESA with CPW matching circuit

    @ Toppan printing Co.

  • 45

    Patch antenna #245mm□×t1.6mm

    ESA39×19×t0.8mm

    Patch antenna #175mm□×t5mm

    Comparison of the sizes of the one-sided directional antenna

  • 46

    Patch #2 ESAPatch #10

    50

    100

    150

    200

    250

    300

    350

    FrontBack

    Com

    mun

    icat

    ion

    dist

    ance

    (mm

    )

    102

    103

    104

    105

    Antenna size [m

    m3]

    81% reduced !

    GtGrWtd

    Wr ⎟⎠⎞

    ⎜⎝⎛=πλ

    4

    2

    TX RX

    dGt Gr

    Power received by the RX antenna

    Friis' Transmission Formula

    Measured communication distance and antenna size of the patch antenna and ESA

  • 47

    UWB High Band one-sided directional antenna

    y

    -35

    -30

    -25

    -20

    -15

    -10

    -5

    0

    6.5 7 7.5 8 8.5 9 9.5 10 10.5

    Ret

    urn

    Loss

    [dB

    ]

    Frequency [GHz]

    Exp.

    Sim.

    Three resonance—broad band

    7.25GHz 8.25GHz 9.25GHz

    θφ =0°

    φ =90°

  • 48

    Photo of the UWB High Band receiver

    Router

    Client

    Proposed UWB antenna

  • 49

    UHF visiting-card size one-sided directional antenna

    -30

    -25

    -20

    -15

    -10

    -5

    0

    800 850 900 950 1000

    |S11

    | (dB

    )

    Frequency (MHz)

    -50

    -25

    0

    25

    50

    75

    800 850 900 950 1000

    Re [Zin]Im [Zin]

    Inpu

    t Im

    peda

    nce

    (Ω)

    Frequency (MHz)

    x-z面

    y-z面 F/B:8dB

    y

    (Sim.)

    Human body or metal surface like auto mobile.

  • 50

    ESA1

    9mm

    Sensor & CPU

    @ NEC Microsystems Co.

    2.4GHz sensor node

  • 51

    UHF 2GHz44mm

    FOMA (NTT docomo) data module@ Kyushu Ten Co.

    UHF & 2GHz dual band antenna

  • 52

    Back bone network

    Wire lineBase

    Wireless access

    PC

    Internet phone

    Wireless access

    MESH point

    MESH node

    Multi hop

    Knowledge Cluster Initiative implemented by Ministry of Education, Culture, Sports, Science and Technology (MEXT)Prof. Furukawa @ Kyushu Univ.

    New national project; MESH Network project

  • 53

    Fix

    Large

    Small

    Portability

    ・B・T ・S

    ★MIMO-MESH

    ・Sensor node

    ★Pico-MESH

    Conventional MESH Device

    MESH Network system

    MESH Point

    One-sided directional planar antennas

    MIMO-MESH, Pico-MESH

    More than 10kgLimitation= 2~3 hubs

    RF front end + IP Core

  • 54

    New Antenna22mm×28mm5dBi (One-sided directional)

    MESH Antenna @5GHz

    X

    Z

    Y

    Z

    XY

    ConventionalH:15.7mm×D:1.1mm5dBi

    F/B:10 dB

  • 55

    Node A Node B

    点線上でノード B の位置を変化

    100m

    42m

    Ath0 : 192.168.0.*/24

    Ath1 : 192.168.1.*/24

    Ath0 : 192.168.0.2

    Ath1 : 192.168.1.2

    Ath0 : 192.168.0.1

    Ath1 : 192.168.1.1

    Node A Node B

    Node PhotoNode

    Field: Building

    ※Speed:36Mbps, Frequency:52ch(5.26GHz), Amp. output:17dBm(50mW)

    W2,8F

    ←Scan→  

    Measurement system of communication distance

    1st. version: lunch box

  • 56

    0

    5

    10

    15

    20

    25

    0 50 100 150 200 250

    スル

    ープ

    ット[M

    bps]

    ノード間の距離[m]

    金谷研アンテナ put

    金谷研アンテナ get

    黒アンテナ put

    黒アンテナ get

    Our antenna: putOur antenna: get

    Conventional: getConventional: put

    communication distance > 200m

    Measured communication distance

    Thro

    ugh

    put [

    Mbp

    s]

    Node distance [m]

  • 57

    9.4cm

    5.8cm

    A1 A2 A4A3

    A5 A6 A7 A8

    Antenna plate (8 antenna)

  • 58

    2nd version: Shell

    200mm

    @ prof. Furukawa

    Antenna plate

    RF module

    Ant

    8cm

    5.5cm

    48 antennas !!

  • 59

    Publications download

    RFIC Japan

    http://yossvr0.ed.kyushu-u.ac.jp/english/idxe.html

  • 60

    Thank you for your attention !

    Any Questions or comments ?


Recommended