+ All Categories
Home > Documents > Introduction to FEM-2

Introduction to FEM-2

Date post: 08-Aug-2018
Category:
Upload: aswith-r-shenoy
View: 215 times
Download: 0 times
Share this document with a friend

of 31

Transcript
  • 8/22/2019 Introduction to FEM-2

    1/31

    Transient Thermal Analysis

    = neglecting radiation and q

    = Applying Galerkin weighted residual method

    = 0

    x

    x = 0

    Rearranging and removing ^ for convenience

    =

    x

    x = 0 (1)

  • 8/22/2019 Introduction to FEM-2

    2/31

    Transient Thermal Analysis

    =

    = = 6 2 11 2

    =

    = = kA

    1 1 11 1

    6 2 11 2

    =

    =

  • 8/22/2019 Introduction to FEM-2

    3/31

    Transient Thermal Analysis (thermal) ) + = 1 1 +

    Determine the temperatures

    Heat removal rate and efficiency

    Of the pin (Home Work)

    If the density c are 8900/And 375 respectively find theTemperatures at the middle and end

    With a time step of 0.1 s and

    =

  • 8/22/2019 Introduction to FEM-2

    4/31

    Transient Thermal Analysis (thermal)

    clear all;

    clc;

    clf;

    stiff_mat;

    fun;

    T0=25*ones(1,nnode)';

    dt=0.05;

    k1=C+alpha*dt*K;

    k2=C-(1-alpha)*K*dt;

    f1=k1*T0;

    k11=k1;

    k11(1,1)=1;

    f11=f1;

    f11(1)=85;

    f11(2)=f11(2)-k11(2,1)*f11(1);k11(1,2)=0;

    k11(2,1)=0;

    T=k11\f11;

    T1(1)=T(1);

    T2(1)=T(2);

    T3(1)=T(3);

    F';

    for i=1:60;

    k1=C+alpha*dt*K;

    k2=C-(1-alpha)*K*dt;

    f1=k2*T+F'*dt;

    T=k1\f1;

    T=[85

    T(2:nnode)];

    T1(1+i)=T(1);

    T2(1+i)=T(2);

    T3(1+i)=T(3);t=dt+i*dt;

    hold on;

    plot(t,T(1),'+ -', t,T(2),'+ -',t,T(3),'+ -')

    end

    hold off;

  • 8/22/2019 Introduction to FEM-2

    5/31

    Transient Thermal Analysis-(stiff_mat)

    a=0;b=0.02;nelem=2;

    nnode=nelem+1;

    h=b/nelem;

    gnode=zeros(1,2);elenode=zeros(2,2);

    elenode1=zeros(2,2);

    k_mat=zeros(nnode,nnode);

    m_mat=zeros(nnode,nnode);

    global hx kx rho c alpha p A;

    hx=150;kx=400;

    rho=8900;

    c=375;

    alpha=2/3;

    A=pi*.004^2/4;

    p=pi*.004;count=1;

    for i=1:nelem

    count=count+1;

    z=i;

    gnode(1)=z;

    gnode(2)=gnode(1)+1;for j=1:2

    for k=1:2

    elenode(j,k)=dN(j,k,0,h);

    elenode1(j,k)=N(j,k,0,h);

    end

    endfor j=1:2

    for k=1:2

    kk=elenode(j,k);

    mm=elenode1(j,k);

    m=gnode(j);n=gnode(k);

    k_mat(m,n)=k_mat(m,n)+kk;

    m_mat(m,n)=m_mat(m,n)+mm;

    end

    end

    end

    K=k_mat*kx*A+hx*p*m_mat;

    C=rho*c*A*m_mat;

  • 8/22/2019 Introduction to FEM-2

    6/31

    Transient Thermal Analysis-Time discretization

    = = lim ()

    ()

    Substituting for in = ( = )

    () K a ( ) = f

    + = + = a f

    Forward difference scheme

  • 8/22/2019 Introduction to FEM-2

    7/31

    Transient Thermal Analysis-Time discretization

    ( ) Substituting for in = ( = ) ( )

    K a ( ) = f

    Backward difference scheme

    ( ) = ()Multiplying with and re-arranging

    = f

    It can be re-written as

    = f

    + = f+

  • 8/22/2019 Introduction to FEM-2

    8/31

    Transient Thermal Analysis-Time discretization

    Central difference Scheme

    = ()2 = ()2

    () However instead of evaluating the other terms at time , Use the average values

    We have

    () K ()2 = ()2 Multiplying through by isolating the terms containing ()

    2 =

    2 ()[ ]

    2

  • 8/22/2019 Introduction to FEM-2

    9/31

    Transient Thermal Analysis-Time discretization

    In terms of subscript notation

    2 + = 2 + 2 The three recurrence formulae can be combined into

    ) + = 1 1 +

    When = 0 or 1 the above equation reduces to forward difference formulaCentral difference formula or backward difference formula

  • 8/22/2019 Introduction to FEM-2

    10/31

    Time discretization- FEM

    The time domain is discretized from

    time

    = ++Applying Galerkin method with weight function

    = 0

    = + + =

    1 = 0 + = =

    = + =

    If we take = 1

    = 1

    ; =

    1

  • 8/22/2019 Introduction to FEM-2

    11/31

    Time discretization- FEMIf we take = 1

    = 1 1 1

    + 1

    + 1

    +

    = 0

    + 12 12 + 12 12 + = 0

    2 + =

    2 + 2

    ) + = 1 1 + When = 0 or 1 the above equation reduces to forward difference formulaCentral difference formula or backward difference formula

  • 8/22/2019 Introduction to FEM-2

    12/31

    Vibration- FEM

  • 8/22/2019 Introduction to FEM-2

    13/31

  • 8/22/2019 Introduction to FEM-2

    14/31

  • 8/22/2019 Introduction to FEM-2

    15/31

  • 8/22/2019 Introduction to FEM-2

    16/31

    Vibration-Example

  • 8/22/2019 Introduction to FEM-2

    17/31

    Vibration-Example

    =

    = , = = 32.2 12 /

    = 0.28332.212 =7.32410

  • 8/22/2019 Introduction to FEM-2

    18/31

    Vibration-Example

  • 8/22/2019 Introduction to FEM-2

    19/31

    Vibration-Example

  • 8/22/2019 Introduction to FEM-2

    20/31

    Vibration-Example: mode shapes(2

    elements)

  • 8/22/2019 Introduction to FEM-2

    21/31

    Vibration-Example: first three mode shapes(20

    elements) of a straight bar

  • 8/22/2019 Introduction to FEM-2

    22/31

    Matlab code-stiff_mat.m

    a=0;b=0.10;nelem=20;

    nnode=nelem+1;

    h=b/nelem;

    gnode=zeros(1,2);

    elenode=zeros(2,2);

    elenode1=zeros(2,2);k_mat=zeros(nnode,nnode);

    m_mat=zeros(nnode,nnode);

    global E A rho;

    E=200e9;

    A=pi*.10^2/4;

    rho=7800;

    for i=1:nelem

    z=i;

    gnode(1)=z;

    gnode(2)=gnode(1)+1;for j=1:2

    for k=1:2

    elenode(j,k)=dN(j,k,0,h);

    elenode1(j,k)=N(j,k,0,h);

    end

    end

    for j=1:2

    for k=1:2

    kk=elenode(j,k);

    mm=elenode1(j,k);

    m=gnode(j);n=gnode(k);

    k_mat(m,n)=k_mat(m,n)+kk;

    m_mat(m,n)=m_mat(m,n)+mm;

    end

    end

    end

    K=k_mat*E*A;

    M=rho*A*m_mat;

  • 8/22/2019 Introduction to FEM-2

    23/31

    Matlab code-vibration.mclear all;

    clc;

    clf;

    stiff_mat;

    M1=M(2:nnode,2:nnode);

    K1=K(2:nnode,2:nnode);

    y1=zeros(nelem,1);

    y2=zeros(nelem,1);

    y3=zeros(nelem,1);

    y4=zeros(nelem,1);

    y5=zeros(nelem,1);

    [c d]=eig(K1,M1);

    for j=1:nelem

    y1(j)=c(j,1);

    y2(j)=c(j,2);

    y3(j)=c(j,3);

    endy1=[0 y1']';

    y2=[0 y2']';

    y3=[0 y3']';

    x=linspace(a,b,nnode);

    plot(x,y1,x,y2,x,y3)

    Other prograns N.m, dN.m and

    functions are the same as the

    general 1D program

  • 8/22/2019 Introduction to FEM-2

    24/31

    Higher order elements: 1D quadraticIn formulating the truss element and the one-dimensional heat conduction element,

    only line elements having a single degree of freedom at each of two nodes are

    considered. While quite appropriate for the problems considered, the linear element is

    by no means the only one-dimensional element that can be formulated for a given

    problem type. Figure depicts a three-node line element in which node 2 is an interior

    node. The interior node is notconnected to any other node in any other element in the

    model. Inclusion of the interior node is a mathematical tool to increase the order of

    approximation of the field variable. Assuming that we deal with only 1 degree of

    freedom at each node, the appropriate polynomial representation of the field variable

    is

  • 8/22/2019 Introduction to FEM-2

    25/31

    Higher order elements: 1D quadratic

    Applying the general procedure outlined previously in the context of thebeam element, we apply the nodal (boundary) conditions to obtain

    from which the interpolation functions are obtained via the following

    sequence

  • 8/22/2019 Introduction to FEM-2

    26/31

    Higher order elements: 1D quadratic

    clear all;

    syms Uu1u2u3a0a1a2xL;

    U=[u1;u2;u3];

    C=[1 0 0; 1 L/2 L^2/4; 1 L L^2];

    a=inv(C)*U;

    N=[1 x x^2]*a;

    N=collect(N,u1);

    u2=0;u3=0;p=eval(coeffs(expand(N), u1));

    N1=p(1,2);

    syms u2;

    u1=0;u3=0;

    p=eval(coeffs(expand(N), u2));

    N2=p(1,2);syms u3;

    u1=0;u2=0;

    p=eval(coeffs(expand(N), u3));

    N3=p(1,2);

    N=[N1 N2 N3];

    >> N.'

    ans =

    (2*x^2)/L^2 - (3*x)/L + 1

    (4*x)/L - (4*x^2)/L^2(2*x^2)/L^2 - x/L

    Higher order elements: 1D quadratic natural

  • 8/22/2019 Introduction to FEM-2

    27/31

    Higher order elements: 1D quadratic- natural

    coordinates

    =

    varies from -1 to 1

    = 1 = = = 0 = = = 1 = =

    = 1 1 11 0 01 1 1

    = 1 1 11 0 0

    1 1 1

    = 1 . N1= r^2/2 - r/2

    N2= 1 - r^2

    N3= r^2/2 + r/2

    clear all;

    syms Uu1u2u3a0a1a2xLr;

    U=[u1;u2;u3];

    C=[1 -1 1; 1 0 0; 1 1 1];

    a=inv(C)*U;

    N=[1 r r^2]*a;

    N=collect(N,u1);

    u2=0;u3=0;

    p=eval(coeffs(expand(N), u1));

    N1=p(1,2);

    syms u2;

    u1=0;u3=0;

    p=eval(coeffs(expand(N), u2));

    N2=p(1,2);

    syms u3;

    u1=0;u2=0;p=eval(coeffs(expand(N), u3));

    N3=p(1,2);

    N=[N1 N2 N3];

  • 8/22/2019 Introduction to FEM-2

    28/31

    Higher order elements: 1D quadratic- natural coordinates

    If the end node are numbered 1 and 2 and the middle node as 3 the shape functions

    are as shown below

    N1= r^2/2 - r/2N2= r^2/2 + r/2

    N3= 1 - r^2

    = 12 1 = 12 1 = ( 1 ) ( 1 )

    Or

    = 12 1 = 12 1 = ( 1 ) ( 1 )

  • 8/22/2019 Introduction to FEM-2

    29/31

    Higher order elements: 1D quadratic- natural coordinates

  • 8/22/2019 Introduction to FEM-2

    30/31

    Higher order elements: 1D quadratic-

    clear all;

    syms U u1 u2 u3 a0 a1 a2 x L;

    hx=30; kx=168;A=.005*.001;p=2*(.005+.001);

    U=[u1;u2;u3];

    N1=((2*x^2)/L^2 - (3*x)/L + 1);

    N2=((2*x^2)/L^2 - x/L);

    N3=((4*x)/L - (4*x^2)/L^2);

    N=[N1 N2 N3]; dN=diff(N);

    K1=kx*A*int(dN.'*dN,0,L)+hx*p*int(N.'*N,0,L);

    K2=kx*A*int(dN.'*dN,0,L)+hx*p*int(N.'*N,0,L);

    ff1=hx*p*20*int(N.',0,L);

    ff2=hx*p*20*int(N.',0,L);

    L=0.04;

    K1=eval(K1);

    K2=eval(K2);f1=eval(ff1);f2=eval(ff2);K11=ex_rows(K1,2,3);K11=ex_cols(K11,2,3);

    K22=ex_cols(K2,2,3);K22=ex_rows(K22,2,3);

    f11=ex_rows(f1,2,3);f22=ex_rows(f2,2,3);

    K11=[K11 zeros(3,2);zeros(2,5)];

    K22=[zeros(2,5);zeros(3,2) K22];

    Kg=K11+K22;

    f11=[f11;zeros(2,1)]; f22=[zeros(2,1);f22];

    fg=f11+f22;

    Kg(1,1)=1;Kg(1,2)=0;Kg(1,3)=0;fg(1)=100;Kg(5,5)=Kg(5,5)+hx*A;

    fg(5)=fg(5)+hx*A*20;

    T=Kg\fg;

    x=[0 .02 .04 .06 .08];

    m=sqrt(hx*p/(kx*A));

    T0=20;Tw=100;L=0.08;T1=T0+(Tw-T0)*cosh(m*(L-x))/cosh(m*L);

    TT=[T T1'];

    display(TT);

    plot(x',T,'rd-',x',T1','b+-')

  • 8/22/2019 Introduction to FEM-2

    31/31

    Higher order elements: 1D quadratic- natural coordinates

    Exact Quadratic Linear

    100 100 100

    75.2737 75.2269 75.0387

    60.1591 60.0864 59.7901

    52.0278 51.8858 51.5633

    49.4659 49.2468 48.9064

    0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.0840

    50

    60

    70

    80

    90

    100

    Length

    Temperature

    quadratic

    exact

    linear


Recommended