+ All Categories
Home > Documents > introduction to fem ppt

introduction to fem ppt

Date post: 04-Apr-2018
Category:
Upload: pavan-kishore
View: 237 times
Download: 3 times
Share this document with a friend

of 21

Transcript
  • 7/29/2019 introduction to fem ppt

    1/21

    Introduction to the Finite Element MethodLecture 18

    P.S. Koutsourelakis

    [email protected] Hollister Hall

    November 22 2010

    Last Updated: November 22, 2010

    [email protected] Lecture 18

  • 7/29/2019 introduction to fem ppt

    2/21

    Higher-order isoparametric elements

    In many problems there might be a need to increase the numberof shape functions (without increasing the number of elements)and/or represent more accurately the boundary of the domain.

    We discuss some higher order isoparametric elements thatachieve this goal.

    There is no free lunch! Every time you increase the number ofshape functions you will also increase the number of unknownsand the size of the system you need to solve.

    [email protected] Lecture 18

  • 7/29/2019 introduction to fem ppt

    3/21

    Serendipity Elements

    e

    (xe1 , ye1 ) (xe2 , y

    e2 )

    (xe3 , ye3 )

    (xe4 , ye4 )

    (xe5 , ye5 )

    (xe6, ye

    6)

    (xe7 , ye7 )

    (xe8 , ye8 )

    x

    y

    (1,1) (1,1)

    (1, 1)(1, 1)

    (0,1)

    (1, 0)

    (0, 1)

    (1, 0)

    x = x()

    = (x)

    11 22

    334

    4

    55

    66

    77

    88

    [email protected] Lecture 18

  • 7/29/2019 introduction to fem ppt

    4/21

    Serendipity Elements

    Serendipity elements consist of additional nodes along the

    boundaryObserve the numbering!

    Let the mapping be defined as follows:

    x(, ) =

    8a=1 Na(, )x

    ea

    y(, ) = 8a=1 Na(, )yea x() =

    8

    a=1 Na()xea

    To obtain the functions Na we first assume a form:x(, ) = b0 + b1 + b2 + b3 + b4

    2 + b52 + b6

    2 + b72

    y(, ) = c0 + c1 + c2 + c3 + c42 + c5

    2 + c62 + c7

    2

    where the parameters b and c should be determined by satisfying:

    x(a, a) = xea

    y(a, a) = yea

    for a= 1, . . . , 8

    [email protected] Lecture 18

  • 7/29/2019 introduction to fem ppt

    5/21

    Serendipity Elements

    We obtain the following shape functions:

    N1 =14

    (1 )(1 ) 12

    (N8 + N5)N2 =

    14

    (1 + )(1 ) 12

    (N5 + N6)

    N3 =14

    (1 + )(1 + ) 12

    (N6 + N7)

    N4 =14

    (1 )(1 + ) 12

    (N7 + N8)

    N5 =

    1

    2 (1

    2

    )(1

    )N6 =12

    (1 + )(1 2)N7 =

    12

    (1 2)(1 + )

    N8 =12

    (1 )(1 2)

    Note that N1 arises from the linearshape function of the 4-nodequad (which is equal to 1/2 at nodes 5 and 8) by subtracting1/2 N5 and 1/2 N8 in order to become zero at nodes 5 and 8.

    Similarly for N2, N3, N4.

    [email protected] Lecture 18

  • 7/29/2019 introduction to fem ppt

    6/21

    Serendipity Elements

    [email protected] Lecture 18

  • 7/29/2019 introduction to fem ppt

    7/21

    Serendipity Elements

    To find the local stiffness matrix ke:

    ke =

    e

    (Be)T D Be d

    =

    11

    11

    (Be(, ))T D Be(, ) j(, ) dd

    The strain displacement matrix Be:

    31

    =B

    e316

    de

    161=

    Be

    dex,1dey,1.

    .dex,16dey,16

    [email protected] Lecture 18

    S di i El

  • 7/29/2019 introduction to fem ppt

    8/21

    Serendipity Elements

    Lets break Be in two parts:

    =

    uxxuyyuxy

    +uyx

    = 1

    j(, )

    y, y, 0 0

    0 0 x, x,x, x, y, y,

    uxuxuyuy

    or:

    = Be1

    uxuxuy

    uy

    [email protected] Lecture 18

    S di it El t

  • 7/29/2019 introduction to fem ppt

    9/21

    Serendipity Elements

    and the second part:

    uxuxuyuy

    =

    N1, 0 . . . . . . N9, 0

    N1, 0 . . . . . . N9, 0

    0 N1, . . . . . . 0 N9,0 N1, . . . . . . 0 N9,

    de

    or:

    uxuxuyuy

    = B

    e2 d

    e

    Hence:B

    e316

    = Be134

    Be2

    416

    [email protected] Lecture 18

    S di it El t

  • 7/29/2019 introduction to fem ppt

    10/21

    Serendipity Elements

    When is the Jacobian determinant not zero?

    acceptable position for node 5L/4L/4

    12

    3

    4

    5

    6

    7

    8

    [email protected] Lecture 18

    S di it El t

  • 7/29/2019 introduction to fem ppt

    11/21

    Serendipity Elements

    Example: Find local force vector

    q3q4

    1 2

    34

    5

    6

    7

    8

    [email protected] Lecture 18

    Lagrange Elements

  • 7/29/2019 introduction to fem ppt

    12/21

    Lagrange Elements

    (xe2 , ye2 )

    x

    y

    x = x()

    = (x)

    11 22

    334

    4

    55

    66

    77

    88 99

    [email protected] Lecture 18

    Lagrange Elements

  • 7/29/2019 introduction to fem ppt

    13/21

    Lagrange Elements

    Lagrange elementsconsist of additional nodes in the interior ofthe element

    Observe the numbering!

    Lagrange polynomials. Suppose one is given npairs of values

    (i, i = (i)). The the function can be approximated as follows:

    L11 + L22 + . . . + Lnn

    where:L1 =

    (2)(3)...(n)(21)(31)...(n1)

    L2 =(1)(2)...(n)

    (12)(33)...(n3)

    . . .

    Ln =(1

    )(2

    )...(n1

    )(1n)(2n)...(n1n)

    Note: Li(j) = i,j

    [email protected] Lecture 18

    Lagrange Elements

  • 7/29/2019 introduction to fem ppt

    14/21

    Lagrange Elements

    For example, for n = 2, 1 = 1, 2 = +1:

    L(2)1 =

    (2)(21)

    = 12

    (1 )

    L(2)2 =

    (1)(12)

    = 12

    (1 + )

    For n = 3 and 3 = 0:

    L(3)1 =

    (2)(3)(21)(31)

    = 12(1 )

    L(3)2 =

    (1)(3)(12)(32)

    = 12(1 + )

    L(3)3 = (1

    )(2

    )(13)(23) = 12 (1 2)

    [email protected] Lecture 18

    Lagrange Elements

  • 7/29/2019 introduction to fem ppt

    15/21

    Lagrange Elements

    1 2

    34

    5

    6

    7

    89

    To generate the shape functions for plane isoparametric elements, it

    suffices to multiply the Lagrange polynomials w.r.t. to and of

    appropriate order. For example, for the 9 node element:

    N1(, ) = L(3)1 () L

    (3)1 () =

    14

    (1 )(1 )

    N6(, ) = L(3)

    2 () L(3)

    3 () =1

    4 (1 + )(1

    2

    )

    or :

    N9(, ) = L(3)2 () L

    (3)2 () = (1

    2)(1 2) bubble function

    [email protected] Lecture 18

    Lagrange Elements

  • 7/29/2019 introduction to fem ppt

    16/21

    Lagrange Elements

    [email protected] Lecture 18

    Lagrange Elements

  • 7/29/2019 introduction to fem ppt

    17/21

    Lagrange Elements

    Naturally, we could derive the same shape functions if we follow the

    procedure discussed for serendipity elements and use interpolating

    functions of the form:

    b0 + b1 + b2 + b3 + b42 + b5

    2 + b62

    + b72

    + b82

    2

    Conversely, we can use the Lagrange polynomials to re-derive the

    shape functions of the isoparametric elements we have seen before.

    For example, the 4-node quadrilateral:

    N1(, ) =1

    4(1 )(1 ) = L

    (2)1 ()L

    (2)1 ()

    Or the shape functions of lateral nodes of the 8-node serendipity

    element, e.g.:

    N5(, ) = L(3)3 ()L

    (2)1 () =

    1

    2(1 2)(1 )

    One has to be more careful for the shape functions of the corner nodes!

    [email protected] Lecture 18

    Isoparametric Quadrilateral Elements with Variable

  • 7/29/2019 introduction to fem ppt

    18/21

    Isoparametric Quadrilateral Elements with Variable

    Number of nodes

    [email protected] Lecture 18

    Isoparametric Quadrilateral Elements with Variable

  • 7/29/2019 introduction to fem ppt

    19/21

    Isoparametric Quadrilateral Elements with Variable

    Number of nodes

    5-node quadrilateral:

    x

    y

    x = x()

    = (x)

    11 22

    33 44

    55

    [email protected] Lecture 18

    Isoparametric Quadrilateral Elements with Variable

  • 7/29/2019 introduction to fem ppt

    20/21

    Isoparametric Quadrilateral Elements with Variable

    Number of nodes

    The shape function of lateral nodecan be found from Lagrange

    polynomials:

    N5 = L(3)3 () L

    (2)1 () =

    1

    2(1 2)(1 )

    To find the shape functions of the corner nodeswe use the onesfrom the 4-node quadrilateral and subtract 1/2N5 IF NEEDED sothat they become 0 at all other nodes. Hence:

    N1 =14

    (1 )(1 ) 12

    N5N2 =

    1

    4

    (1 + )(1 ) 1

    2

    N5

    and:N3 =

    14

    (1 + )(1 + )

    N4 =14

    (1 )(1 + )

    [email protected] Lecture 18

    Summary of Shape functions for Isoparametric

  • 7/29/2019 introduction to fem ppt

    21/21

    Summary of Shape functions for Isoparametric

    Quadrilateral Elements

    i = 5 i = 6 i = 7 i = 8 i = 9N1 =

    14

    (1 )(1 ) 12

    N5 12

    N814

    N9N1 =

    14

    (1 )(1 ) 12

    N5 12

    N614

    N9N1 =

    14

    (1 )(1 ) 12

    N6 12

    N714

    N9N1 =

    14

    (1 )(1 ) 12

    N7 12

    N814

    N9

    N5 = 12 (1 2)(1 ) 12 N9N5 =

    12

    (1 + )(1 2) 12

    N9N5 =

    12

    (1 2)(1 + ) 12

    N9N5 =

    12

    (1 )(1 2) 12

    N9

    N9 = (1 2)(1 2)

    The shape functions in columns i = 5 9 are activated only if therespective node appears in the element and they are added tothe appropriate shape function in the first column.

    [email protected] Lecture 18


Recommended