+ All Categories
Home > Documents > Introduction to Global Games - Economics · 2008. 9. 2. · Global Games: A First Look Model of...

Introduction to Global Games - Economics · 2008. 9. 2. · Global Games: A First Look Model of...

Date post: 10-Feb-2021
Category:
Upload: others
View: 0 times
Download: 0 times
Share this document with a friend
56
Introduction to Global Games Hyun Song Shin Princeton University Lecture at University of Western Ontario 5th September 2008
Transcript
  • Introduction to Global Games

    Hyun Song ShinPrinceton University

    Lecture at University of Western Ontario5th September 2008

  • Global Games: A First Look

    Model of self-ful�lling currency attack.

    Net bene�t to govt. of holding peg is B(+

    �;�`), where

    � is underlying strength of economy (reserves)

    ` is proportion of speculators who attack

    For concreteness,B (�; `) = � � `

    So, peg abandoned if and only if

    � < `

    ) Potential for multiple equilibria

    1

  • � When � < 0, peg fails irrespective of speculators' actions

    � When � � 1, peg survives irrespective of speculators' actions

    � When 0 < � � 1, the peg is \ripe for attack". Outcome depends onaggregate actions of speculators.

    The model can alternatively be interpreted as a \creditor grab race" whereindividual secured creditors can seize assets of a distressed �rm.

    Fears that others would seize assets (and hence derail the �rm) justi�esseizing assets oneself.

    2

  • � Elements of model{ Speculators, indexed by [0; 1]{ Two actions: attack, refrain.{ Payo� to `refrain' is zero{ Cost of attack is t, but pro�t from collapse of peg is 1.

    The cost of attack can be interpreted as the interest di�erential betweendollars and the target currency.

    Payo� to `attack' depends on state �, proportion ` of creditors who attack

    v (�; `) =

    �1� t if ` > ��t if ` � �

    Coordination problem when � 2 (0; 1). There are two equilibria for each �- \all attack", and \all refrain".

    3

  • Global GameNow suppose that � is not common knowledge. Instead, � uniformlydistributed over an interval that includes [0; 1].

    Rather than knowing � for sure, speculator i observes noisy signal

    xi = � + si

    where si uniformly distributed over [�"; "], where " > 0 is small.

    Now, strategies must be conditional on the signal xi, rather than �. Hence,strategy is mapping

    xi 7�! fAttack, Refraing

    Posterior density over � conditional on xi is uniform over

    [xi � "; xi + "]

    4

  • As a �rst step, restrict attention to switching strategies.�attack if xi < x

    refrain if xi � x�

    Let \failure point" �� be the threshold value of � where the peg just fails.

    � Failure point �� depends on switching point x�

    � Switching point x� depends on failure point ��

    5

  • Failure point �� solves � = `. If all follow x�-switching, ` is the proportionwhose signal is below x� when the true state is ��.

    ` =x� � (�� � ")

    2"

    So, �� = ` if and only if

    �� =x� � (�� � ")

    2"

    This gives a linear relationship between the switching point x� and thefailure point ��.

    x� = (1 + 2") �� � " (Eq 1)

    This equation gives �� as a function of x�.

    6

  • Now, consider reasoning of speculators. At switching point x�, speculatoris indi�erent between `attack' and `refrain'.

    Pr (peg failsjx�) (1� t) + Pr (peg staysjx�) (�t)= Pr (peg failsjx�)� t= 0

    Peg fails i� � < ��. So Pr(� < ��jx�) = t, or

    �� � (x� � ")2"

    = t

    This gives another linear relationship between x� and ��. This time, thisrelationship gives x� as a function of ��.

    x� = �� + " (1� 2t) (Eq 2)

    7

  • *x

    1

    ε21+

    Two linear equations in two unknowns: ��; x�. There is a unique crossingpoint, as long as " > 0, however small. Solving,

    ��� = 1� tx� = 1� t� " (2t� 1)

    8

  • As a �nal check, we need to show that:�when xi � x�, speculator wants to attackwhen xi > x

    �, speculator wants to refrain

    Say xi < x�.

    Pr (peg failsjxi) =�� � (xi � ")

    2"

    >�� � (x� � ")

    2"

    = Pr (peg failsjx�)

    and conversely for when xi > x�.

    So, switching strategy around x� is an equilibrium. In fact, we've shownthat it's the only equilibrium in switching strategies.

    9

  • As " ! 0, x� ! ��. So, the limit as noise tends to zero still gives us aunique switching equilibrium.

    Three questions

    � Where did all the other equilibria disappear to?

    � Can we say more than simply that we have unique equilibrium whenrestricted to switching strategies?

    � What's happening in the limit as "! 0 to give us discontinuity?

    10

  • Dominance Solvability

    *0x

    ( )** xθ ( )** θxdominanceregion

    no attack

    11

  • After two rounds of deletion, we have

    *0x

    ( )** xθ ( )** θxdominanceregion(iterated)

    no attack(after two rounds)

    *1x

    12

  • Iterated deletion converges to switching equilibrium threshold

    *0x

    ( )** xθ ( )** θxdominanceregion(iterated)

    no attack(after iterated deletion)

    *1x

    *∞x

    But there is an exactly symmetric argument \from below". Switchingequilibrium is dominance solvable (hence unique equilibrium).

    13

  • Recapping the Story So Far...

    In unique equilibrium of currency attack model,

    �� = 1� tx� = 1� t� " (2t� 1)

    Note that as "! 0, we have x� ! ��.

    Fundamental uncertainty (i.e. uncertainty about �) disappears as " ! 0.However, there is still uniqueness of equilibrium. So, there is a discontinuityof the equilibrium correspondence in the limit as "! 0.

    Why?

    14

  • Strategic/Fundamental Uncertainty

    A speculator's reasoning takes account of:

    � uncertainty over true state �

    � uncertainty over incidence of attack, `.

    The fact that I am indi�erent between attacking and not attacking suggeststhat I hold certain beliefs about the the incidence of attack. What arethese beliefs?

    Uncertainty over incidence of attack ` is over actions of others - i.e. it isstrategic uncertainty.

    What happens to strategic uncertainty as "! 0?

    15

  • Density Over Incidence of Attack

    Consider the following question.

    (*) Question. My signal is exactly x�. What is the probability thatproportion z or less of the speculators are attacking the currency?

    The answer to this question gives the cumulative distribution function overthe proportion who attack, conditional on x�, evaluated at z. Denote it by

    G (zjx�)

    If we can obtain G (zjx�), we can di�erentiate it to obtain density overproportion who attack.

    16

  • Two steps to answer question (*).

    Step 1. If the true state � is higher than some benchmark level �0, then theproportion of speculators receiving signal lower than x� is z or less. Thisbenchmark state �0 satis�es:

    x� � (�0 � ")2"

    = z

    Or�0 = x

    � + "� 2"z

    17

  • ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .....

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .....

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .....

    .......

    .......

    .......

    .......

    .......

    ....... x

    z

    G (zjx�)

    �0 � " �0x�

    �0x� x� + "

    ...................................................................................................... ...................

    ........................................................................................

    ...................

    Figure 1: Deriving G (zjx�)

    18

  • Step 2. So, the answer to question (*) is given by the probability that thetrue state is higher than �0; conditional on signal x

    �. This is,

    (x� + ")� �02"

    =(x� + ")� (x� + "� 2"z)

    2"= z

    The cumulative distribution function over the incidence of attack is theidentity function ) density function over the incidence of attack is uniformover [0; 1].

    As " ! 0, the uncertainty concerning � dissipates, but the strategicuncertainty is very severe.

    19

  • Back to Currency Attack Model Once More

    In unique equilibrium of currency attack model, �� = 1 � t. This nowmakes sense, since density over ` is uniform.

    l0 1

    0

    payoff toattack

    t−1

    t−1

    t−

    20

  • Finite Example

    Two players (e.g. Thai importer, Thai property developer)

    Sell Baht Hold BahtSell Baht �w;�w 0;�2wHold Baht �2w; 0 r; r

    (w > 0; r > 0)

    � Both (Sell, Sell) and (Hold, Hold) are equilibria.

    � (Sell, Sell) risk-dominant if w > r:

    � (Hold, Hold) risk-dominant if w < r:

    21

  • Fundamentals, equally likely ex ante.

    � � � � � � � � � � � � �0 1 2 3 � � � � � � N � 1 N N + 1

    Fundamental 0 is \extremely bad". The game at 0 is

    Sell Baht Hold BahtSell Baht �w;�w 0;�2wHold Baht �2w; 0 �w;�w

    Fundamental N + 1 is \extremely good". The game at N + 1 is

    Sell Baht Hold BahtSell Baht 0; 0 0; rHold Baht r; 0 r; r

    22

  • Information Structure

    fundamental 0 1 2 3 � � � N � 1 N N + 1� � � � � � � � � �#& #& #& #& � � � #& #& #� � � � � � � � � �

    signal 0 1 2 3 � � � N � 1 N N + 1

    Pair (i; j): fundamental i, signal j

    Prob (i; j) =

    �12Prob (i) if i = j or j = i+ 10 otherwise

    unless i = N + 1, when

    Prob (N + 1; N + 1) = Prob (N + 1)

    23

  • Case 1 (w < r)

    \Hold" is risk-dominant

    Player 1's signal has no noise, but player 2's signal is noisy

    0 1 2 3 � � � N � 1 N N + 1� � � � � � � � � � Player 1#& #& #& #& � � � #& #& #� � � � � � � � � � Player 20 1 2 3 � � � N � 1 N N + 1

    Solution concept is iterated deletion of strictly interim dominated strategies.

    24

  • Case 2 (w > r)

    \Sell" is risk-dominant, and same information structure as case 1.

    0 1 2 3 � � � N � 1 N N + 1� � � � � � � � � � Player 1#& #& #& #& � � � #& #& #� � � � � � � � � � Player 20 1 2 3 � � � N � 1 N N + 1

    Solution concept is iterated deletion of strictly interim dominated strategies.

    25

  • State Space

    N + 1 � �N � �

    Signal ... � � � ...3 � �2 � �1 � �0 �

    0 1 2 3 � � � N N + 1Fundamental

    26

  • Event GG = f(i; j)jmiddle game is played at (i; j)g

    N + 1 � �N � �

    Signal ... � � � ...3 � �2 � �1 � �0 �

    0 1 2 3 � � � N N + 1Fundamental

    27

  • Event K2 (G)

    K2 (G) = f(i; j)j 2 knows G at (i; j)g

    N + 1 � �N � �

    Signal ... � � � ...3 � �2 � �1 � �0 �

    0 1 2 3 � � � N N + 1Fundamental

    28

  • Event K1K2 (G)

    K1K2 (G) = f(i; j)j 1 knows K2 (G) at (i; j)g

    N + 1 � �N � �

    Signal ... � � � ...3 � �2 � �1 � �0 �

    0 1 2 3 � � � N N + 1Fundamental

    29

  • Event E is common knowledge at ! if

    ! 2\i

    Ki (E)

    and

    ! 2\i

    Ki

    \i

    Ki (E)

    !and

    ! 2\i

    Ki

    \i

    Ki

    \i

    Ki (E)

    !!...

    Event G is never common knowledge.

    30

  • Public Good Contribution Gameaka Larry Summers Game

    Continuum of players indexed by [0; 1]

    Action set fContribute, Opt outg

    � is proportion who contribute, but there is critical threshold �̂ necessaryto produce public good

    Common cost of contribution c

    Payo� to Contribute is �1� c if � � �̂�c if � < �̂

    Payo� to Opt out is zero.

    31

  • Intuitions

    In the benchmark case where c is common knowledge, there are twoequilibria for each c 2 (0; 1).

    \all contribute" and \all opt out" are both equilibria for c 2 (0; 1). Bothequilibria are strict (trembling hands will not a�ect them).

    Ostensibly, c is common knowledge, but behavior (say, in experiments)betrays lack of con�dence in this proposition.

    Larry Summers's thought experiment

    \Reverberant doubt"

    32

  • Intuitition suggests we can draw a (possibly fuzzy) boundary betweensuccessful provision and failure.

    1 failure

    c

    success0 �̂ 1

    Boundary should be downward sloping.

    Suggestive of switching strategy around c�, but where c� depends on �̂.

    33

  • \Private Values" Global Game

    Depart from benchmark model by introducing small heterogeneity in thecosts of provision (hence \private values" global game).

    There are two components in the cost of provision - a population-wide term�, and idiosyncratic term si. Player only knows his own cost, and not �and si separately.

    ci = � + si

    �, uniform

    si � U [�"; "], i.i.d.

    34

  • Look for equilibrium in switching strategies around common c�.�contribute if ci � c�not contribute if ci > c

    Denote G (�̂jc�) = Pr (� < �̂jc�). Expected payo� to contribute is

    �c�G (�̂jc�) + (1� c�) (1�G (�̂jc�))= (1� c�)�G (�̂jc�)= 0

    So G (�̂jc�) = 1 � c�. We can solve for switching equilibrium if we knowG (�̂jc�).

    35

  • Suppose all players use switching strategy around c�:

    Question: \My cost is c�. What is the probability that � is less than z?"In other words, what is G (zjc�)?

    Answer: G (zjc�) = z.

    ) Density over � is uniform. As " ! 0, density over � stays uniform.Then

    1� c� = G (�̂jc�)= �̂

    So, we can solve for switching point c� as function of �̂.

    c� = 1� �̂

    36

  • .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ...

    .........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ..................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    c�

    �̂00 1

    1

    1=3

    2=3

    Figure 2: c� as function of �̂

    37

  • In Larry Summers's thought experiment, investor stakes 10 dollars, andeither gets 11 dollars or loses the whole stake.

    ) normalized cost: c = 10=11

    ) �̂ = 2=3 is too stringent.

    Prediction is that there will be failure to provide public good. In general,

    � There is large region of ine�ency: the whole upper triangle is regionwhere successful provision is feasible, but does not happen.

    � Presumption (common in corporate �nance) that outcomes are alwayse�cient at the ex post stage may be too strong

    { bargaining may not be a good modelling tool{ gets worse as decisions become decentralized

    38

  • Uniform Density - How Restrictive?

    A Gaussian example

    ci = � + si

    � � N (y; 1=�)

    si � N (0; 1=�)

    Question (*) once again. My cost is exactly c�. What is the probabilitythat proportion z or less contribute?

    Let �0 be the such that, when � = �0 the proportion of players with costlower than c� is exactly z.

    ��p

    � (c� � �0)�= z

    39

  • or

    �0 = c� � �

    �1 (z)p�

    Next, what is the probability that � lies above �0 conditional on my costbeing exactly c�? Answer gives G (zjc�)

    G (zjc�) = 1� ��p

    �+ ���0 � �y+�c

    �+�

    ��= �

    �p�+ �

    ��y+�c�

    �+� � �0��

    = ��p

    �+ ���y+�c�

    �+� � c� + �

    �1(z)p�

    ��= �

    ��p�+�

    (y � c�) +q

    �+�� �

    �1 (z)

    �6= z

    40

  • So, density is not uniform in the Gaussian case. But note that

    G (zjc�)! z as � !1

    In the limit as heterogeneity disappears, density over proportion whocontribute is uniform. Uniform density over proportion who contributeis a robust result.

    Logistic approximation: � (x) ' 11 + e�mx

    G (zjc�) ' 1

    1 +�1�zz

    �q�+�� exp

    �m�p�+�

    (c� � y)�

    41

  • 0

    0.2

    0.4

    0.6

    0.8

    1

    G(z|c*)

    0.2 0.4 0.6 0.8 1z

    � = 1; � = 3, y = 0:2 (dark), y = 0:8 (faint)

    42

  • Densities

    0

    0.2

    0.4

    0.6

    0.8

    1

    1.2

    g(k|c*)

    0 1k

    � = 1; � = 3, y = 0:2 (dark), y = 0:8 (faint)

    43

  • Solve c� as a function of �̂ from indi�erence condition: 1� c� = G (�̂jc�)

    �̂ ' 11+�

    c�1�c� exp

    �m�p�+�

    (y�c�)��r �

    �+�

    44

  • 0

    0.2

    0.4

    0.6

    0.8

    1

    c*

    0.2 0.4 0.6 0.8 1k^

    Plot of c� (�̂) for y = 0:2 (dark),y = 0:8 (faint)

    45

  • Liquidity Black Holes

    1987 crash, 1998 crisis...

    � Not merely rapid adjustment of prices

    � Feedback process

    � Endogenous shortening of horizons: agency problems, bankruptcy andmargin constraints

    � Severity depends on residual demand curve

    46

  • Global Game Model

    � Asset trades at date 1 and date 2

    � Liquidation value is v + z

    { v common knowledge at date 1{ z � N

    �0; �2

    �� Two groups of traders:

    { Risk-neutral traders, with loss limits fqig{ Risk averse, long-horizon traders (exponential utility)

    ) residual demand curve for asset where s is proportion of risk-neutraltraders who sell

    p = v � cs

    47

  • Loss limit for trader iqi = � + �i

    where� � U

    ��; ���; �i � U [�"; "]

    Strategy is mapping(v; qi) 7�! fhold, sellg

    Three cases:v � c � qi Hold is dominantv < qi Sell is dominantqi � v < qi + c Intermediate region

    48

  • Payo�s

    Payo� when loss limit is breached is zero.

    If trader i sells when aggregate sale is s, his place in queue is uniformlydistributed over [0; s].

    Let ŝi be largest aggregate sale that does not breach trader i's loss limit.That is, ŝi is de�ned as

    qi = v � cŝior

    ŝi =v � qic

    Probability of no breach in loss limit

    ŝi=s

    49

  • Expected payo� to sell is

    w (s) =

    8>>>:v � 12cs if s � ŝi

    ŝis

    �v � 12cŝi

    �if s > ŝi

    Expected payo� to hold is

    u (s) =

    �v if s � ŝi0 if s > ŝi

    Payo� di�erence u (s) � w (s) is non-monotonic in s. Hence, strategiccomplementarity fails, and dominance solvability cannot be guaranteed.

    50

  • .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ..

    ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ....

    .............................................................................................................................................................................................

    ...................................................................................................................................................................................................................................................................................................................................................................................................................

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    s

    v

    0

    qi

    1bsi

    p = v � cs

    u(s)

    w(s)

    Figure 3: Payo�s

    51

  • Solving for Switching Equilibrium

    Trader i uses switching strategy

    (v; qi) 7�!�hold if v � v� (qi)sell if v < v� (qi)

    At switching point v� (qi), the density over aggregate sale s is uniform overthe unit interval [0; 1].

    Solve for switching point from

    Z 10

    [u (s)� w (s)] ds = 0

    52

  • .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ..

    ...............................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    ...................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .....................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    .......

    ....

    .............................................................................................................................................................................................

    ...................................................................................................................................................................................................................................................................................................................................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

    s

    v� (qi)

    0 1

    qi

    bsi

    u(s)

    w(s)

    A

    B

    Figure 4: Expected Payo�s in Equilibrium

    53

  • Substituting out u (s), w (s) and noting ŝ = (v � q�) =c,

    12c

    Z v�q�c

    0

    sds =(v�q�)(v+q�)

    2cs

    Z 1v�q�c

    1

    sds

    or

    v � q� = 2 (v + q�) log cv � q�

    Theorem 1. There is an equilibrium in threshold strategies where thethreshold v� (qi) for trader i is given by the unique value of v that solves

    v � qi = c exp�

    qi � v2 (v + qi)

    54

  • There is no other threshold equilibrium.

    c0 1 2 3 4 5

    v

    0

    1

    2

    3

    4

    5

    .............................................................................................................................................................................................................................................................................................................................................................................................

    ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. ............. .........................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................

    v � c = qi

    v = qi

    v�hold dominant

    sell dominant

    Figure 5: v� as a function of c. qi = 1

    55


Recommended