+ All Categories
Home > Documents > Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1...

Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1...

Date post: 09-Jun-2020
Category:
Upload: others
View: 15 times
Download: 0 times
Share this document with a friend
47
1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department of Materials Engineering, KU Leuven, Belgium 2 Outline Introduction Principles of phase field modeling Quantitative ‘thin-interface’ models Application examples: Phase-field simulations of grain growth and recrystallization Summary
Transcript
Page 1: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

1

Introduction to phase-field modeling of

microstructure evolution

Nele Moelans

Department of Materials Engineering, KU Leuven, Belgium

2

Outline

• Introduction

• Principles of phase field modeling

• Quantitative ‘thin-interface’ models

• Application examples: Phase-field simulations of grain growthand recrystallization

• Summary

Page 2: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

2

3

Microstructures

50 µµµµm

50 µµµµm 25 µµµµm

Fe-C:

a) Ferrite (wt% C < 0.022)

b) Ferrite + cementite (wt%

C = 0.4, slowly cooled)

c) Ferrite + cementite (wt%

C = 0.4, faster cooled)

d) Martensite (wt% C =

1.4, quenched)

250 µµµµm

a) b)

d)c)

4

Role of microstructures in materials

science

Chemical composition+

Temperature, pressure, cooling rate,…

MicrostructureShape, size and orientation of the grains, mutual distribution of the phases

Material properties

Strength, deformability, hardness, toughness,fatigue…

Page 3: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

3

Principles of phase field modeling

• Diffuse interface concept

• Phase field variables

• Thermodynamic free energy functional

• Evolution equations -- Onsager

N. Moelan, B. Blanpain, P. Wollants, Comp. Coupling of Phase Diagrams and Thermochemistry, CALPHAD, 32, p268 (2008)

6

Diffuse-interface description

• van der Waals, Cahn-Hilliard (1958), Ginzburg-Landau (1950)

• Microstructure evolution since ± 20 years

• Quantitative ‘thin interface’ models since ± 10 years

• Results independent of ℓ

• Continuous variation in properties

• Avoids numerical interface

tracking

• Complex morphologies feasible

Page 4: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

4

7

Representation of microstructures

• Phase-field variables: continuous functions in space and time

• Local composition

• Local structure and orientation

Binary alloy A-B

•Phase αααα: ηηηη = 0

•Phase ββββ: ηηηη = 1Antiphase boundary

( , ), ( , )B Bx r t c r t� �

( , )r tη�

( , )r tφ�

8

Polycrystalline structures

1 2

1 2

, ,..., ( , ),...,

, ,...

i

p

r tα α α

β β

η η η

η η η

• Single phase

• Grain i of matrix-phase

• 2-phase

• Grains

• Composition

1 2( , ,..., ,..., ) (0,0,...,1,...,0)

i pη η η η =

1 2, ,..., ( , ),...,

i pr tη η η η�

Grain i Grain j

1i

η =

0j

η = 0i

η =

1j

η =

1, ( , ),...,A B Cx x r t x −

Page 5: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

5

9

Thermodynamics for heterogeneous

systems

10

Thermodynamics

• Free energy functional

2 2

0

1 1

( , , ) ( ) ( )2 2

p C

bulk surface i k k i

k iV

F F F f x T x dVκ ε

η η= =

= + = + ∇ + ∇∑ ∑∫

Homogeneous free energy

(chemical, elastic, …)

Gradient free energy

(→ diffuse interfaces)

4 2

0 0 max4( )4 2

f fη η

= ∆ −

0 max( )fκ∝ ∆

0 max( )f

κ∝

Interface energy

Interface width

Page 6: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

6

11

Homogeneous free energy

• Binary two-phase system

( ) ( )01 (( ) ( , ) ),f h hf c T f c gT

β αφ φ ω φ= + − +

f0β f0

α

αααα

ββββ

( , ) m

m

Gf c T

V

ββ =with ( , ) ,m

m

Gf c T

V

αα = (CALPHAD)

12

Homogeneous free energy

• Binary two-phase system

( ) ( )0( , ) 1 ( , ) ( )h hf f c T f c T g

β α ωφ φφ= + − +

f0β f0

α

Interpolation function

Page 7: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

7

13

Homogeneous free energy

• Binary two-phase system

( ) ( )0( ( ), ) 1 ( , )f h f c T h f gc T

β αφ φ φω= + − +

f0β f0

α

Double well function

14

Solid-solid phase transitions

• Coupling with micro-elasticity theory →

• Effect of transformation and thermal strains, applied stress/strain

• Martensitic transformation, precipitate growth

chem int elastF F F F= + +

1( , ) ( , ) ( , )

2

el el

elast ijkl ij kl

V

F C x x x dVη ε η ε η= ∫

Page 8: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

8

15

Kinetics

• Onsager theory

• Non-conserved field variables

(→ Interface movement)

• Conserved composition fields

(→ Mass diffusion)

This image cannot currently be displayed.

1 1( ,..., , ,..., )( , )( ( , ))

( , )

C pk

k

F x xr tL r t

t r tη

η ηηξ

η

∂∂= − +

∂ ∂

��

1 1( ,..., , ,..., )1 ( , )( ( , ))

( , )

C pix

m i

F x xx r tM r t

V t x r t

η ηξ

∂∂= ∇ ⋅ ∇ +

∂ ∂

��� �� �

201 1

( ,..., , ,..., )C p k

k

fL x x η η κ η

η

∂= − − ∇

20i

i

fM x

∂= ∇ ⋅ ∇ − ∇

�� ��

16

Numerical implementation

• Numerical solution of partial differential equations

•Discretization

•Bounding box algortihm

•Sparse data structure

•Object oriented C++(L. Vanherpe et al., K.U.Leuven)

•Discretization (Finite differences, finite elements, Fourier-spectral method, …)

•Adaptive meshing (M. Dorr et al. AMPE, LLNL)

MICRESS, commercial software for phase-field coupled with CALPHAD

Page 9: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

9

Quantitative ‘thin-interface’ models

• What ? Why ?

• Decoupling bulk and interfacial energy

• Decoupling bulk and interfacial kinetics

• Heterogeneous interface properties

18

Quantitative ‘thin-interface’ models

• Purpose

• Results independent of interface width and interpolation function for ℓphys << ℓnum << Rgrain

• → realistic 3D simulations

• → straightforward relations for the model parameters

• Important work

• Diffusion controlled solidification in pure and dilute systems

– Karma and Rappel (1996), Karma (2001), Echebarria (2004), Folch-Plapp (2005)

• Multi-component systems

– Tiaden et al. (1996), Kim and Kim (1999), Kim and Kim

(2007)

• Polycrystalline and multi-phase structures

– Kazaryan et al. (2000), Moelans (2008), Moelans (2011)

Page 10: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

10

19

Decoupling bulk and interfacial energy

• Interface treated as mixture of 2 phases

• c-field for each phase

• Equal interdiffusion potential + conservation

• Bulk energy

Kim et al., PRE, 6 (1999) p 7186; Tiaden et al., Physica D, 115 (1998) p73

Similar altern. : Karma, PRL (2001); Floch,Plapp, PRE (2005), Echebarria et al., PRE (2004)

( ) ( )f c f c

c c

β β α α

β αµ

∂ ∂= =

∂ ∂ɶ

( ) ( )( ) ( )1chem

f ch ff chβ β α αφ φ⇒ = + −

( ) ( )1c h c h cβ αφ φ= + −

,c c cα β→

20

Decoupling bulk and interfacial

kinetics

• Jump in chemical potential accross interface

• Partial solution

•Dilute, DS=0: A.Karma, PRL, 87, 115701 (2001); B. Echebarria et al., PRE, 70, 061604

(2004)•Multi-comp, DS=0: S.G. Kim, Acta Mater. 55, p4391 (2007)

1

1

[1 ( )]| | | |

CLkkl l i

l

ch M

t t

φ φφ µ α

φ

=

∂ ∂ ∇= ∇ ⋅ − ∇ + ∇ ⋅

∂ ∂ ∇∑ ɶ

i

i nv

µ

µ

∆ ∝

∆ ∝

Solute trapping effect

Non-variational anti-trapping current

Page 11: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

11

21

Anisotropic grain growth model

• Phase fields

• With grain i

• Free energy

• For each grain boundary

• Inclination dependence

2 2

,0 ( )

i j i jη η κ η κ≠ ⇒ =

2 2 2

1 1

,

2( )

p p p p

i j i j

i

i j

j i i j i

κ η η ηκη η= < = <

=∑∑ ∑∑

( ) ( ) ( ), , , , , , ,, , ,| |

i j

i j i j i j i j i j i j i j

i j

Lη η

γ ψ κ ψ ψ ψη η

∇ − ∇=

∇ − ∇

4 2

2 2 2

1

,

1 1

1 ( )( )

4 2 4 2

p p p p

i iinterf i j i

i i

i j

j i iV

F dVmκ

ηγη η η

η η= = < =

= − + + + ∇

∑ ∑∑ ∑∫

1 2( , ,..., , ..., ) (0,0,...,1,...,0)i pη η η η =

1 2, ,..., ( , ),...,i pr tη η η η�

L.-Q. Chen and W. Yang, PRB, 50 (1994) p15752

A. Kazaryan et al., PRB, 61 (2000) p14275

22

Non-variational approach – equal

interface width

• Ginzburg-Landau type equations

• Non-variational with respect to ηηηη-dependence of κκκκ

• Similar to Monte Carlo Potts approach

• Definition ‘grain boundary width’

( ) 2

,

3 2( , )( )2i

i i i j i

j i

i j

r t

tL m

ηη η η η ηη γ κ η

∂= − − + − ∇

∂ ∑

max max

1 1

| | | |num

i j

ld d

dx dx

η η= =

→High controllability of numerical

accuracy (lnum/R < 5)

Page 12: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

12

23

Grain boundary properties

• Grain boundary energy

• Grain boundary mobility

• Grain boundary width

• Iterative algorithm

,, , ,( )i jgb i j i jg mθγ γ κ=

,

,

, , 2

,( ( ))i j

i j

gb i j

i j

Lm g

θ

κµ

γ=

g(γi,j) calculated numerically

,

2

,

4

3 ( ( ))

i j

i j

lm g

κ

γ=

N. Moelans, B. Blanpain, P. Wollants, PRL, 101, 0025502

(2008); PRB, 78, 024113 (2008)

, , , , ,,[ ],[ ] ,[ ],[ ],[ ]gb gb gb i j i j i jm Lθ θγ µ κ γ→ℓ

24

Numerical validation

• Shrinking grain:

• Triple junction angles:

• Observations• Accuracy controlled by

• Diffuse interface effects for

• Angles outside [100°-140°] require larger for same accuracy

2dA

dt

ααβ αβπµ σ= −

dA

dt

ααγ αβµ σ= −

,αγ βγ αγ βγσ σ µ µ= =

/num

x∆ℓ

/ 5num

R >ℓ

/num x∆ℓ

Page 13: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

13

25

Rotation invariance of the model

• Mathematically, the model equations are invariant to rotation, but …

• the order parameters represent orientations in a fixed reference frame.

• The precision of αααα depends on the numerical setup,

• For the model to be rotational invariant in practice, lower limit of amount of order parameters p:

L

h∆≈∆

αα

cos

1

hn

Lp

∆>

π2

grid spacing ∆∆∆∆h

physical width of domain L

rotational symmetry n

J. Heulens and N. Moelans, Scripta Mat. (2010)

26

Phase-field modelling: summary

• Complex shapes

• Multi-grain, multi-phase structures

• Thermodynamic driving forces

• Multi-component

• Transport equations• Mass and heat diffusion/convection

• Implementation for realistic length scales

• Parameter choice

→ thin-interface models + coupling with atomistic approaches and efficient implementations

...chem int elast magn

F F F F F= + + + +

Strength

Difficulties

Page 14: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

14

Examples of applications

• Grain growth and Zener pinning

• Grain growth in thin films with fiber texture

28

Zener pinning

• Mechanism for controlling grain size

• E.g. NbC, AlN, TiN,... in HSLA-

steels

• Nano-grain structures

• Zener relation for limiting grain size

• Influence of

• Shape of the particle

• Interfacial properties of particles

• Initial distribution

• Evolution particles

lim 1b

V

RK

fr=

20 µµµµm

Fe-0.09 to 0.53 w% C-0.02 w% P with Ce2O3 inclusions (PhD. M. Guo)

Page 15: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

15

29

Representation of a polycrystalline

structure

• Extension grain growth model D. Fan and L.-Q. Chen

• Phase field variables:

• Particles: ΦΦΦΦ=1

• Grain i of matrix-phase: ΦΦΦΦ=0

1 2( , ,..., ,..., ) (0,0,..., 1,..., 0)

i pη η η η = ±

1 2( , ,..., ,..., ) (0,0,...,0,...,0)

i pη η η η =

1 2, ,..., ( , ),...,

i pr tη η η η�

30

Simulation results: Al thin films

• Thin films with CuAl2 - precipitates

Film preparation

33, 0.12, 21ar f l= = =

lim

0.5

11.28

a

R

fr=

(exp from H.P. Longworth and C.V. Thompson)

Page 16: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

16

31

Simulation results: effect of particle

shape and coarsening

• Ellipsoid particles • Evolving particles

lim 1

1a V

b

aKa

R r

s r f=

+ fV=0.12, L=10M

3, 0.05V

fε = =

L. Vanherpe, K.U. Leuven

3.7, 1, 3.1K b a= = =

Modified Zener relation

32

Comparison with Other Studies

Page 17: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

17

Application examples

• Grain growth in anisotropic systems with a fiber texture

34

Grain growth in columnar films with

fiber texture

• Grain boundary energy:

• Fourfold symmetry

• Extra cusp at θθθθ = 37.5°

• Read-shockley

• Discrete orientations

• Constant mobility

• Initially random grain orientation and grain boundary type distributions

White: θ = 1.5

Gray: θ = 3Red: θ = 37,5

Black: θ > 3, θ ≠ 37.5

1 2 60, , ..., ( , ), ..., 1.5

ir tη η η η θ⇒ ∆ = °�

2D simulation

<0 0 1>

Page 18: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

18

35

Simulations: 1 high-angle energy cusp

• High-angle grain boundaries form independent network

• Low-angle grain boundaries follow movement of high-angle grain boundaries → elongate

• No stable quadruple junctions

White: θ = 1.5θ = 1.5θ = 1.5θ = 1.5

Gray: θ = 3θ = 3θ = 3θ = 3

Black: θ > 3, θθ > 3, θθ > 3, θθ > 3, θ ≠ 37.5

Red: θθθθ = 37,5

36

Misorientation distribution function

(MDF)

• Area weigthed MDF

• Reaches a stead-state

• Low energy boundaries lengthen + their number increases

Read-Shockley + cusp at θ = 37.5°

Page 19: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

19

37

Grain growth kinetics

Read-Shockley (θθθθm=15°) + cusp at θθθθ=37.5°

• Grain growth exponent

• PFM: steady-state growth with

• Previous findings:

• Mean field analysis:

1n ≈

0.6...1n =

0

effn

effA A k t− =

,(0)

1eff

h

nkt

tA kt

= → ∞+

1 '/f

f

ef

efdA

d

kk

t N N=

+=

N. Moelans, F. Spaepen, P. Wollants,

Phil. Mag., 90 p 501-523 (2010)

38

3D simulations for wires with fiber

texture

6ϑ < °

Page 20: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

20

39

Summary

• Understanding microstructure evolution is important for material science, but processes can be very complex

• Phase-field technique + other models and experimental input

• Principles phase-field modeling

• Diffuse interface concept, conserved and non-conserved field variables

• Evolution equations derived following thermodynamic principles

• Quantitative aspects: ‘thin interface’ approach, parameter choice, specialized implementation techniques

• Applications

• Grain growth, recrystallization, coarsening, solidification, growth intermetallic phases, …

40

Thank you for your attention !

Questions ?

• Acknowledgements

• Research Foundation - Flanders (FWO-Vlaanderen)

• Flemish Supercomputing Center (VSC)

Page 21: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

1

New directions in phase-field modeling of

microstructure evolution in polycrystalline and

multi-component alloys

Nele Moelans

Department of Materials Engineering, KU Leuven, Belgium

2

Current state of phase-field modeling

• Modeling of microstructure evolution• Meso- & micro scale (nm - mm)

• Based on thermodynamic principles

• Growing field since 20 years; current topics• Quantitative aspects

• Realistic, complex, multi component systems

• Wide field of applications• Solidification, phase transitions, diffusion, grain growth,

deformation, crack formation, ferro-electric/magnetic domains, ….

Bulk grain structures

Thin filmsSynergetic growth of nanowires

Page 22: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

2

3

‘Quantitative’ phase-field models

• Properties bulk and interfaces are reproduced accurately in the simulations

• Effect model description and parameters

• Numerical issues

• => Insights in the evolution of complex morphologies and grain assemblies

• Effect of individual bulk and interface properties

• Predictive ?

• Depends on availability and accuracy of input data

– Requires composition and orientation dependence

4

Page 23: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

3

5

Parameter assessment

• Different kinds of input data • Bulk phase stabilities, bulk phase diagram information

– CALPHAD

• Interfacial energy and mobility

• Elastic properties, crystal structure, lattice parameters

• Diffusion mobilities/coefficients

– DICTRA mobilities

• Orientation and composition dependence• Anisotropy, segregation, solute drag

• Very important for microstructure evolution, but difficult to measure/calculate

6

Outline

• CALPHAD (CALculation of PHAse Diagrams) – method

• Quantitative phase-field model for multi-phase systems

• Coupling phase-field with thermodynamic databases, example for Ag-Cu-Sn

• Application examples

• Diffusion controlled growth in Cu/Cu-Sn solder joints

Page 24: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

4

CALPHAD (CALculation of PHAse Diagrams)

– method

•Computational thermodynamics: The Calphad Method, H.L. Lukas, S.G. Fries and B. Sundman, Cambridge 2007, ISBN 978-0-521-86811-2

•Thermo-Calc : www.thermocalc.se

•Calphad : www.calphad.org

8

What ?

• Phase diagrams and thermodynamic Gibbs energies are combined

• Mission: develop a technique for calculating/predicting phase diagrams for multi-component multi-phase materials

Phase diagram Free energies

Page 25: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

5

9

What ?

10

What ?

• STEP 1: Determine G(T,p,x) expressions for all phases

• Choice of a thermodynamic model

• Determination of the parameters based on experimental and theoretical (a.o. ab-initio) input,

– Such as phase equilibria, heat of formation, vapor pressures, ….

• STEP 2: Minimization of the total Gibbs energy of a multi-phase system

• → Phase diagrams

• → Thermodynamic quantities: chemical potential, heat of transformation, reaction, …

• → Input for diffusion and microstructure simulations

Page 26: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

6

11

Pyramidal approach

• E.g. Gibbs energies for ternary system

• Pure elements, Al, Mg, Si

• Binary systems, Al-Mg, Al-Si, Mg-Si

• Ternary system, Al-Mg-Si

12

Pure elements

• Choice of a standard element reference state (SER) for each element (reference structure, temperature and pressure)

• Temperature dependence Gibbs energy

– a,b,c,d,… fitted to experiments, ab-initio data

• Also models for magnetic ordering, effect of pressure

2 31ln( )G HSER a bT cT T dT e fT

T− = + + + + +

2

2

12 2 6 ...pC c dT e fT

T⇒ = − − − − +

Page 27: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

7

13

Binary substitutional alloys

• General expression

• Mechanical mixing of pure elements

• Ideal mixing (Raoults solution)

• Redlich-Kister expression for excess interactions

– T-dependenc of LABv

– LABv from experiments

ref id ex physG G G G G− = + +

,

( )ex

v v

A B AB A BG x x L x x

α

= −

2 31ln( )v

ABL a bT cT T dT e fTT

= + + + + +

ln( ) ln( )id

A A B BG x x x x= +

, 0, 0,A B

ref

A BG x G x Gα α α= +

14

Regular solution model

, 0,ex LL

A B ABG x x L=

Page 28: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

8

15

Illustration Redlich-Kister

contributions

,

( )ex v v

A B AB A BG x x L x x

α

= −T cte=

16

Illustration Redlich-Kister

contributions

,

( )ex v v

A B AB A BG x x L x x

α

= −

T cte=

Page 29: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

9

17

Extrapolation to higher-order systems

18

Extrapolation models

• Extrapolation schemes

• Redlich-Kister-Muggianu

0 1 2( )

ex ex ex ex

AB AC BC A B C A ABC B ABC C ABCG G G G x x x x L x L x L= + + + + +

Page 30: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

10

19

Ternary substitutional alloys

• General expression

• Mechanical mixing of pure elements

• Ideal mixing (Raoults solution)

• Excess interactions, Redlich-Kister-Muggianu

– T-dependence

– GexAB from binary optimizations

– LABCv from experiments

0 1 2( )ex ex ex ex

AB AC BC A B C A ABC B ABC C ABCG G G G x x x x L x L x L= + + + + +

ref id ex physG G G G G− = + +

ln( ) ln( ) ln( )id

A A B B C CG x x x x x x= + +

, 0, 0, 0,A B

ref

A B C CG x G x G x Gα α α α= + +

v

ABCL a bT= +

20

Sublattice models

• Phases with ordering• Mixing only allowed within certain sublattices,

represented as (A,B)a1(A,Va)a2

– Intermetallic compound, FeTi →(%Fe,Ti)(Fe,%Ti), Fe2Ti →(%Fe,Ti)2(Fe,%Ti), B2Ti →(B)2(Ti)

– Interstitial phases, (Cr,Fe,Ni,…)a1(C,N,H,Va,…)a2

• Molar fraction → lattice fractions 1yA, 2yA, 1yB, 2yVa

Page 31: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

11

Quantitative and thermodynamically

consistent phase-field model for multi-phase

systems

22

Multi-grain and multi-phase structures

• Single phase-field models -> Multiple phase-field models

• Model extension

– Different types of interfaces

– Triple and higher order junctions

• Numerically

– Same accuracy for all interfaces and phases

– All interfaces within range of validity of the thin interface asymptotics

{ }1 2 3, , ,...,

pη η η η η→

2 2

1 2 3 1 2( , , ,...,| | , | | ,...)F η η η η η∇ ∇

num cte→ =ℓ

1 2( , ,..., , ..., ) (0,0,...,1,...,0)i pη η η η =

Grain i Grain j

1iη =

0j

η = 0i

η =

1jη =

Page 32: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

12

23

Multi-grain and multi-phase models:

major difficulties

• Third-phase contributions

• σσσσ12 = σσσσ13 = 7/10 σσσσ12

• → Careful choice of multi-well function

and gradient contribution

• Interpolation function

• Zero-slope at equilibrium values of the

phase fields

• Thermodynamic consistency

3

1 2

ηηηη3

1 2 1 2

1 1

( , ,...) ( , ) ( , ,...) 1p p

i

chem i i

i i

f h f c T hη η η η= =

= ⇒ =∑ ∑

24

Multi-grain and multi-phase models

• Multi-phase-field model

• Phase fields

• Free energy

– Double obstacle, higher order terms, gradient term

non-variational

– Interpolation: zero-slope or thermodynamic

consistency

• Multi-order parameter models

• Order parameters

• Interfacial energy

1 2

1

, ,..., ( , ),..., , 1p

i p i

i

r tη η η η η=

1 2 3

1

, , ,... , 1p

p i

i

ϕ ϕ ϕ ϕ ϕ=

=∑

,

int

,

,

2

2

4| |

i

i j i j

i j

j i j

j

i

f φ φ φφπ

σ η

η≠

= ∇ ⋅ ∇ +

Steinbach et al.

MICRESS phase-field code

H. Garcke, B.Nestler, B. Stoth, SIAM J. Appl. Math. 60 (1999) p 295.

,0 1

i jφ< <

( )4 22 2 2

int

1 1 1

,

1( )

4 2 4 2

p p p p

i ii j i

i i j i i

i jmf

η ηη η

κγ η

η

= = < =

= − + + + ∇

∑ ∑∑ ∑

L.-Q. Chen and W. Yang,

PRB, 50 (1994) p15752

A. Kazaryan et al., PRB,

61 (2000) p14275

Page 33: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

13

25

Multi-grain and multi-phase models

• Vector valued model• Orientation field ( ) and phase field ( )

• Free energy

• 2-phase solidification• Phase fields

• Fifth order interpolation functions gi(φφφφ1,φφφφ2,φφφφ3)

– Zero-slope and thermodynamic consistent

– Order gi increases with number of phase-fields

• Multi-order parameter + 4th order gradient terms

• Phase field crystal and amplitude equations

int ( , | |, | |)f f φ φ θ= ∇ ∇

φ R. Kobayashi, J.A. Warren, W.C. Carter, Physica D, 119 (1998) p415

3

1 2 3

1

, , , 1i

i

ϕ ϕ ϕ ϕ=

=∑

θ

R. Folch and M. Plapp, PRE, 72 (2005) n° 011602

I.M. McKenna, M.P. Gururajan, P.W. Voorhees, J. Mater. Sci., 44 (2009)p2206

26

Extension to multi-component multi-

phase alloys

• Phase field variables:

• Grains

• Composition

• Bulk energy:

• with

( , ) ( )bulk k i k

f c f cρ ρ

ρ ρρ

η φ=∑

1, ( , ),...,A B C

c c r t c −

1 2

1 2

, ,..., ( , ),...,

, ,...

i

p

r tα α α

β β

η η η

η η η

k kx xρ

ρρ

φ=∑

2

2

, ,...

i

i

i

i

ρ

ρ

ππ α β

ηφ

η=

=∑

∑ ∑and

( )( )...

k

k

kk

k

f cf c

c cα

α αβ β

β µ∂∂

= = =∂ ∂

ɶ

N. Moelans, Acta Mater. 2011.

Page 34: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

14

27

Extension to multi-component multi-

phase alloys

• Bulk and interface diffusion:

With and

• Interface movement:

• Between phase αααα and ββββ

( , )i i k

i

F xL

t

ρ ρ

ρ

η δ η

δη

∂= −

2

2k

k

m

k

DM

f

x

ρρ

ρ=∂

( )( )

2

int 22 2

2( , ) ( ) ( ) ( )

i ji L g f c f c c ct

α β α α β β α βα

α β

η ηηη η µ

η η

∂ = − ∇ + − − − ∂ +

Curvature driven Bulk energy driven

2 2

, ,

, ,

kk i j k

i j

xM

t

ρρ ρ σ

ρ ρ σ

φ η η µ≠

∂= ∇⋅ + ∇

∂ ∑ ∑

223

/

interf gb

interf mnumk

DM

f x

δ

δ

= ∂ ∂

28

Numerical validation for multi-

component multi-phase model

• Processes for which v(t)

• Conclusions for grain growth model remain

– Accuracy controlled by

– Diffuse interface effects for

– Angles outside [100°-140°] require larger resolution for

same accuracy

/num

x∆ℓ

/ 5num

R >ℓ

/num

x∆ℓ

•Growing sphere

•Coarsening

•Triple junction

•Intermediate phase

N. Moelans, Acta Mater. 2011.

Page 35: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

15

Coupling phase-field with thermodynamics

databases

30

Phase diagram

• Ternary Ag-Cu-Sn, T = 180 °C

x(A

G)

x(SN)

0.0

0.2

0.3

0.5

0.7

0.9

0.0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x(SN)

x(A

G)

CU

AG

SN

AG

SB

_O

RT

HO

+C

U6S

N5_P

+B

CT_

A5

CU

3S

N+C

U6S

N5_P

+A

GS

B_O

RT

HO

CU

3S

N+FC

C_A

1+FC

C_A

1

FC

C_A

1+FC

C_A

1

(Cu)

Cu6Sn5Cu3Sn

Ag3Sn

(Sn)

Page 36: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

16

31

Phase diagram

• Binary Cu-Sn

Annealing temperature:

180 °C

EutecticComposition:

Sn-2at%Cu

Cu Sn

32

Parabolic composition dependence

• Bulk energy

• Parabolic composition dependence

• Simplifies solution phase-field

equations

• No composition dependence

needed for D

• Difficult for higher order

systems and large

composition variations

( )2

,02

Sn Sn

Af x x C

ρρ ρ= − +

( )( , ) ( ) m Sn

bulk i Sn Sn

m

G xf x f x

V

ρ ρρ ρ

ρ ρρ ρ

η φ φ= =∑ ∑

2

2

Sn

D DM

f A

x

ρ ρρ

ρ ρ= =∂

S.Y. Hu, J. Murray, H. Weiland, Z.-K. Liu, L.-Q. Chen, Comp. Coupl. Phase Diagr. Thermoch., 31 (2007) p 303

Page 37: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

17

33

Coupling with thermodynamic

database

• Free energies over full composition range are needed in phase-field

• Stoichiometric phases

• Approximated as

• Choice of A requires ‘trial

and error’

– Numerics – Small shift in

phase equilibria

– Here: A = 1e6

( )2

,0

,0

2Sn Sn

stoich

Sn stoich

AG x x C

C G

x x

ρρ ρ

ρ

= − +

=

=

Cu-Sn

Gibbs energies from A. Dinsdale, A. Watson, A. Kroupa, J. Vřešt'ál, A. Zemanová, J. Vízdal COST 531-Lead Free Solders: Atlas of Phase Diagrams for Lead-Free Soldering, vols. 1,2 (2008) ESC-Cost office

34

Coupling with thermodynamic

database

3 3

2

( ' , ' )

( )2

Ag Sn Ag Sn

Ag Sn

Sh Cu

G G x x

Ax x

=

+ −

• Binary phases shifted into ternary, e.g.

With

1 6

0.001Sh

A e

x

=

=

' (1 )

' (1 )

Ag Sh Ag

Sn Sh Sn

x x x

x x x

= −

= −

Ag-Cu-Sn

x(A

G)

x(SN)

0.0

0.2

0.3

0.5

0.7

0.9

0.0 0.2 0.4 0.6 0.8 1.00 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

x(SN)

x(A

G)

CU

AG

SN

Ag3Sn + Cu6Sn5 + (Sn)

Ag

3S

n +

Cu3

Sn +

Cu6S

n5

FC

C_A

1 +

Cu3S

n +

FC

C_A

1

180 degree C

Cu6Sn5Cu3Sn

Ag3Sn

(Sn)

Page 38: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

18

35

Coupling with thermodynamic

database

Ag-Sn-0.001Cu Cu-Sn-0.001Ag

•Sublattice model + parabolic extension

•Cu6Sn5-H: (Cu).545:(Cu,Sn).122:(Sn).333

•Ag3Sn: (Ag).75(Ag,Sn).25

36

Coupling with thermodynamic

database

Ag-Sn-0.001Cu Cu-Sn-0.001Ag

•Sublattice model + parabolic extension

•Cu6Sn5-H: (Cu).545:(Cu,Sn).122:(Sn).333

•Ag3Sn: (Ag).75(Ag,Sn).25

Page 39: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

19

37

Coupling with thermodynamic

database

Ag-Sn-0.001Cu Cu-Sn-0.001Ag

•Sublattice model + parabolic extension

•Cu6Sn5-H: (Cu).545:(Cu,Sn).122:(Sn).333

•Ag3Sn: (Ag).75(Ag,Sn).25

→ Gρρρρ(xAg,xCu,xSn) over full composition range

Interdiffusion and intermetallic growth in

Cu/Sn-Cu solder joints

Page 40: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

20

39

System properties

( ) 25

3 16 2

6 5 15 2

( ) 12 2

10

5 10 m /s

10 m /s

10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

D

D

D

D

=

= ⋅

=

=

Annealing temperature:

180 °C

Eutectic Composition: Sn-2at%Cu

Cu Sn

20.25 J/m

gbγ =

•Equilibrium compositions • Interdiffusion coeffcients

• Interfacial energy

40

IMC-layer growth (1D)

• Effect of bulk diffusion coefficients

( ) 25 2

3 14 2

6 5 14 2

( ) 12 2

10 m /s

10 m /s

10 m /s

10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

D

D

D

D

=

=

=

=

6

3

6

6 5

0.0073 10

0.023 10

Cu Sn

Cu Sn

k

k

⇒ = ⋅

= ⋅

( ) ( )

,0 ,

3

,0

6 5

,0

( ) ( )

,0 ,

0.01( )

0.25

0.455

0.99( )

Cu Cu

Sn Sn eq

Cu Sn

Sn

Cu Sn

Sn

Sn Sn

Sn Sn eq

x x

x

x

x x

= <

=

=

= <

( )t s

( )h m

Diffusion coeffcients Initial composition

Page 41: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

21

41

IMC-layer growth (1D)

( ) 25 2

3 13 2

6 5 13 2

( ) 12 2

10 m /s

10 m /

10 m /s

10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

D

D s

D

D

=

=

=

=

( ) 25 2

3 13 2

6 5 13 2

( ) 14 2

10 m /s

10 m /

10 m /s

10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

D

D s

D

D

=

=

=

=

6

3

6

6 5

0.0301 10

0.0833 10

Cu Sn

Cu Sn

k

k

⇒ = ⋅

= ⋅

6

3

6

6 5

0.0306 10

0.0849 10

Cu Sn

Cu Sn

k

k

⇒ = ⋅

= ⋅

( ) 12 210 m /s

Sn

SnD

−=

( )t s

( )h m

42

Comparison with experimental data

T k_Cu3Sn k_Cu6Sn5

150 °C 0.0010 10-6 0.00032 10-6

180 °C 0.0032 10-6 0.0059 10-6

200 °C 0.0043 10-6 0.0071 10-6

( ) 25 2

3 15 2

6 5 15 2

( ) 12 2

10 m /s

10 m /s

10 m /s

10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

D

D

D

D

=

=

=

=

Parabolic growth constant experiments

Cu3Sn, T = 180 °C

Parabolic growth constant in

simulations with6

3

6

6 5

0.0023 10

0.0073 10

Cu Sn

Cu Sn

k

k

⇒ = ⋅

= ⋅

Cu6Sn5, T = 180 °C

Data from J. Janckzak, EMPA

Page 42: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

22

43

Effect of grain boundary diffusion

SnJ →�

Snx

grains

( ) 25 2

3 15 2

6 5 15 2

( ) 12 2

9 2

10 m /s

10 m /s

10 m /s

10 m /s

D 0.66 10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

surf

Sn

D

D

D

D

=

=

=

=

= ⋅ SnJ ↑�

1gb nmδ =

• 2D simulations

44

Effect of grain boundary diffusion

• 3D simulations

( ) 25 2

3 15 2

6 5 15 2

( ) 12 2

9 2

2 10 m /s

2 10 m /s

2 10 m /s

2 10 m /s

D 2 10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

interf

D

D

D

D

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅

SnJ ↑�

1gb

nmδ =

Page 43: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

23

45

Growth behavior Cu3Sn ?

( ) 25 2

3 15 2

6 5 15 2

( ) 12 2

12 2

2 10 m /s

2 10 m /s

2 10 m /s

2 10 m /s

D 2 10 m /s

Cu

Sn

Cu Sn

Sn

Cu Sn

Sn

Sn

Sn

surf

Sn

D

D

D

D

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅

Grain structure Composition: xSn

46

IMC growth in Sn-2at%Cu

•Initial compositions

• System size: 0.1µµµµmx0.5µµµµm

• Initially fV = 0.04

• For future work: compare with experiments for nanoparticle-reinforced solders for which the grain size is known (J. Janczak, EMPA)

( ) 25 2

6 5 16 2

( ) 12 2

10 m /s

10 m /s

10 m /s

Cu

Sn

Cu Sn

Sn

Sn

Sn

D

D

D

=

=

=

Page 44: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

24

47

Conclusions

• The phase-field implementation is able to reproduce thermodynamic and kinetic properties accurately

• Important to have realistic free energy functions and atomic diffusion mobilities for microstructure simulations

• But how to treat stoichiometric phases, binary phases ?

• Most general solution: Gibbs free energy over full composition range

• Powerful tool for the study of interdiffusion in joint materials

48

Thank you for your attention !

Questions ?

• Acknowledgements

• Research Foundation - Flanders (FWO-Vlaanderen)

• Flemish Supercomputing Center (VSC)

• OT/07/040

• CREA/12/012

Page 45: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

25

Application examples

• Coarsening of Al6Mn precipitates located on a recrystallization front in Al-Mn alloys

In collaboration with A. Miroux, E. Anselmino, S. van der Zwaag, T. U. Delft

50

Jerky motion during recrystallization in

Al-Mn alloy

• In-situ EBSD observation of recrystallization in AA3103 at 400 °C

• CamScan X500 Crystal Probe

FEGSEM

• Jerky grain boundary motion

• Stopping time: 15-25 s

• Pinning by second-phase

precipitates

– Al6(Fe,Mn), αααα-Al12(Fe,Mn)3Si

• Added to phase field model

• Grain boundary diffusion

• Driving force for recrystallization20µµµµm

Page 46: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

26

51

Phase field model

• Multiple order parameter representation:

• Mn composition field:

• Homogeneous driving pressure for recrystallization: md

• Bulk diffusion + Surface diffusion

,1 ,2 ,( , ), ( , ),..., ( , ),...m m p ir t r t r tη η η� � �

( , )Mn

x r t�

,1 ,2 ,( , ,..., ,...) (1,0,...,0,...), (0,1,...,0,...),...(0,0,...,1,...),...m m p i

η η η =

52

Material properties at 723K

Grain boundary energy high angle γh = 0.324 J/m2

Interfacial energy Al6Mn precipitates γpr = 0.3 J/m2

Mobility high angle grain boundary

At solute content 0.3w% Mn

Mh = 2.94·10-11 m2s/kg

(Miroux et al.,Mater. Sci. Forum,467-470,393(2004))

Equilibrium composition of matrix cMn,eq = 0.0524 w% (0.02456 at%)

(PhD thesis Lok 2005)

Actual composition of matrix (supersaturated)

cMn = 0.3 w% (0.1474 at%)

(PhD thesis Lok 2005)

Mn diffusion in fcc Al D0,bulk = 10-2 m2/s, Qbulk = 211 kJ/mol

→Dbulk = 5.5973·10-18 m2/s

Pipe diffusion high angle boundaries, precipitate/matrix interface

D0,p = D0,bulk, Qp = 0.65Qbulk

→Dp = 1.2195·10-12 m2/s

Bulk energy density: fρ = Aρ(x-xρ0)

2 Am = 6·1011; xm0 = 0.000258

Ap = 6·1012; xp0 = 0.1429

Page 47: Introduction to phase-field modeling of …nele.studentenweb.org/docs/combinedImecLecture.pdf1 Introduction to phase-field modeling of microstructure evolution Nele Moelans Department

27

53

Precipitate coarsening and unpinning

• PD < PZS (PD ≈ PZS)

• Pinning: PZS=3.6 MPa

• Rex: PD=3.1 MPa

• Unpinning mainly through surface diffusion around precipitates

0.9µm x 0.375µm

2 2

x yJ J J= +

6 s

7·10-10

54

Precipitate coarsening and unpinning

• PD <<< PZS

• Pinning: PZS = 3.6 MPa

• Rex: PD = 1.1 MPa

0.9µm x 0.375µm

• Unpinning through grain boundary diffusion

2 2

x yJ J J= +

8 s

1.7·10-10


Recommended