+ All Categories
Home > Documents > ITP (TU Vienna): Particle Physics Group - Sound modes and...

ITP (TU Vienna): Particle Physics Group - Sound modes and...

Date post: 27-Jan-2021
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
21
Madrid, January 17, 2014 1 Andreas Schmitt Institut f¨ ur Theoretische Physik Technische Universit¨ at Wien 1040 Vienna, Austria Sound modes and the two-stream instability in relativistic superfluids M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013) M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, arXiv:1310.5953 [hep-ph] A. Schmitt, arXiv:1312.5993 [hep-ph] two-fluid picture of a superfluid role reversal in first and second sound two-stream instability
Transcript
  • Madrid, January 17, 2014 1

    Andreas Schmitt

    Institut für Theoretische PhysikTechnische Universität Wien

    1040 Vienna, Austria

    Sound modes and the two-stream instability inrelativistic superfluids

    M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013)

    M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, arXiv:1310.5953 [hep-ph]

    A. Schmitt, arXiv:1312.5993 [hep-ph]

    • two-fluid picture of a superfluid• role reversal in first and second sound• two-stream instability

  • Madrid, January 17, 2014 2

    • Superfluid hydrodynamics: relevance for compact stars

    • r-mode instability• pulsar glitches• precession• asteroseismology• superfluid turbulence (?)

    Cas A, Chandra X-Ray Observatory

    • Superfluidity in dense matter

    Nuclear matter Quark matter

    neutrons (Tc . 10 keV) color-flavor locked phase (Tc ∼ 10 MeV)

    hyperons color-spin locked phase (Tc ∼ 10 keV)

  • Madrid, January 17, 2014 3

    • Two-fluid picture of a superfluid (liquid helium)London, Tisza (1938); Landau (1941)

    relativistic: Khalatnikov, Lebedev (1982); Carter (1989)

    • “superfluid component”:condensate, carries no entropy

    • “normal component”: excitations(Goldstone mode), carries entropy

    εp

    p

    phonon

    roton

    Hydrodynamic eqs. ⇒ two sound modes

    1st sound 2nd sound

    in-phase oscillation out-of-phase oscillation

    (primarily) density wave (primarily) entropy wave

  • Madrid, January 17, 2014 4

    • First and second sound in non-relativistic systems

    liquid helium

    K.R. Atkins et al. (1953)

    ultracold fermionic gas (exp.)

    L.A. Sidorenkov et al., Nature 498, 78 (2013)

    weakly interacting Bose gas

    H.Hu, et al., New Journ.Phys. 12, 043040 (2010)

    unitary Fermi gas

    E. Taylor et al., PRA 80, 053601 (2009)

  • Madrid, January 17, 2014 5

    • Goals

    How does the two-fluid picturearise from a microscopic field theory?

    M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, PRD 87, 065001 (2013)

    Compute sound modes in a relativistic superfluid(and in the presence of a superflow)

    M.G. Alford, S.K. Mallavarapu, A. Schmitt, S. Stetina, arXiv:1310.5953 [hep-ph]

    A. Schmitt, arXiv:1312.5993 [hep-ph]

  • Madrid, January 17, 2014 6

    • Lagrangian and superfluid velocity

    • starting point:complex scalar field

    L = (∂ϕ)2 −m2|ϕ|2 − λ|ϕ|4

    • Bose condensate 〈ϕ〉 = ρ eiψ spontaneously breaks U(1)

    • zero temperature: single-fluid systemField theory Hydrodynamics

    current jµ(∂ψ)2

    λ∂µψ nvµ

    stress-energy tensor T µν −gµνL + (∂ψ)2

    λ∂µψ∂νψ (� + P )vµvν − gµνP

    • superfluid velocity vµ = ∂µψ

    µµ = |∂ψ|

  • Madrid, January 17, 2014 7

    • Relativistic two-fluid formalism (page 1/2)• write stress-energy tensor as

    Tµν = −gµνΨ + jµ∂νψ + sµΘν

    • “generalized pressure” Ψ:– Ψ = P⊥ in superfluid and normal-fluid rest frames,– Ψ depends on momenta ∂µψ, Θµ

    Ψ = Ψ[(∂ψ)2,Θ2, ∂ψ · Θ]

    • “generalized energy density” Λ ≡ −Ψ + j · ∂ψ + s · Θ– Λ is Legendre transform of Ψ,

    – Λ depends on currents jµ, sµ

    Λ = Λ[j2, s2, j · s]

  • Madrid, January 17, 2014 8

    • Relativistic two-fluid formalism (page 2/2)

    jµ =∂Ψ

    ∂(∂µψ)= B ∂µψ +AΘµ

    sµ =∂Ψ

    ∂Θµ= A ∂µψ + C Θµ

    B = 2 ∂Ψ∂(∂ψ)2

    , C = 2 ∂Ψ∂Θ2

    A = ∂Ψ∂(∂ψ · Θ)

    “entrainment coefficient”

    • compute A, B, C from microscopic physics

    B

    C

    A

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.5

    1.0

    1.5

    2.0

    2.5

    TTc

    A,B

    ,C@Μ

    2 Λ

    D

    all temperatures

    2PIEntrainment coefficient A

    OHT5LOHT3L

    0.000 0.001 0.002 0.003 0.004

    0

    1

    2

    3

    4

    TTc

    106

    ´A

    @Μ2

    ΛD

    (very) small temperatures

  • Madrid, January 17, 2014 9

    • Microscopic calculation for arbitrary T (page 1/2)

    • effective action density in the 2PI formalism (CJT)

    Γ[ρ, S] = −U(ρ)− 12

    Tr lnS−1 − 12

    Tr[S−10 (ρ)S − 1]− V2[ρ, S]

    • V2[ρ, S]: two-loop two-particle irreducible (2PI) diagrams

    • use Hartree approximation

    • impose Goldstone theorem by hand

    • solve self-consistency equations for condensate ρ and M , δM

  • Madrid, January 17, 2014 10

    • Microscopic calculation for arbitrary T (page 2/2)

    •microscopic calculation done in normal-fluid rest frame

    • identify effective action density with generalized pressure

    Γ[µ, T,∇ψ] = Ψ

    • restrict to weak coupling → no dependence onrenormalization scale

    • consider uniform superflow v

    • neglect dissipation → thermodynamics with (µ, T,v)

    • compute entrainment coefficient, sound velocities etc.

  • Madrid, January 17, 2014 11

    • Results I: critical velocity

    • instability at v = vc• negative energies in Goldstone

    dispersion �k(v) < 0

    v =0.5

    3> 0.29

    T=0T=0.5 Tc HvLT=T

    c HvL

    -1.0 -0.5 0.0 0.5

    0.0

    0.1

    0.2

    0.3

    0.4

    kÈÈΜ

    Ε kΜ

    • generalization to Landau’s original argument �k − k · v < 0

    non-superfluid

    uniform superfluid

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0

    0.2

    0.4

    0.6

    0.8

    1.0

    TTc

    v

    • dashed line: withoutbackreaction of condensate

    • shaded region:dissipation, turbulence?

    • similar phase diagram for holographic superfluid I. Amado, D. Arean,A. Jimenez-Alba, K. Landsteiner, L. Melgar and I. S. Landea, arXiv:1307.8100 [hep-th]

  • Madrid, January 17, 2014 12

    • Results II: sound speeds and mixing angleultra-relativistic (towards) non-relativistic

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    soun

    dsp

    eed

    u

    u1

    u2u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0 0.02 0.04 0.06

    0.46

    0.48

    0.50

    0.52

    0.54

    pure T wave

    pure Μ wave

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTc

    mix

    ing

    angl

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTc

    α = arctan δTδµ role reversal in first and second sound!

  • Madrid, January 17, 2014 13

    • Sound speeds and mixing anglewith superflow

    coupling

    superflow

    ultra-relativistic (towards) non-relativistic

    anti-parallelparallel

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    u

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

    Α

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

  • Madrid, January 17, 2014 13

    • Sound speeds and mixing anglewith superflow

    coupling

    superflow

    ultra-relativistic (towards) non-relativistic

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    u

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

    Α

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

  • Madrid, January 17, 2014 13

    • Sound speeds and mixing anglewith superflow

    coupling

    superflow

    ultra-relativistic (towards) non-relativistic

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    u

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

    Α

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

  • Madrid, January 17, 2014 13

    • Sound speeds and mixing anglewith superflow

    coupling

    superflow

    ultra-relativistic (towards) non-relativistic

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    u

    u1

    u2

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

    Α

    Α1

    Α2

    0.0 0.2 0.4 0.6 0.8 1.0-

    Π

    2

    4

    0

    Π

    4

    Π

    2

    TTcHvL

  • Madrid, January 17, 2014 14

    • Results III: two-stream instability

    • compute sound speed close toLandau’s critical velocity

    non-superfluid

    uniform superfluid

    0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.40.0

    0.2

    0.4

    0.6

    0.8

    1.0

    TTc

    v

    T = 0.4TcΘ = Π

    0.988 0.989 0.990 0.991 0.992 0.993 0.994 0.995 0.9960.0

    0.2

    0.4

    0.6

    0.8

    1.0

    vvcHTL

    ReH

    uL

    T = 0.4TcΘ = Π

    0.988 0.989 0.990 0.991 0.992 0.993 0.994 0.995 0.996-0.10

    -0.05

    0.00

    0.05

    0.10

    vvcHTL

    ImHu

    L

    • complex sound speeds → one mode damped, one mode explodesplasma physics: O. Buneman, Phys.Rev. 115, 503 (1959); D.T. Farley, PRL 10, 279 (1963)

    general two-fluid system: L. Samuelsson, C. S. Lopez-Monsalvo, N. Andersson, G. L. Comer,

    Gen. Rel. Grav. 42, 413 (2010)

    relevance for superfluids: N. Andersson, G. L. Comer, R. Prix, MNRAS 354, 101 (2004)

  • Madrid, January 17, 2014 15

    • All directions

    v = 0

    -1.0 -0.5 0.5 1.0

    -1.0

    -0.5

    0.5

    1.0v = 0.5vcHTL

    -1.0 -0.5 0.5 1.0

    -1.0

    -0.5

    0.5

    1.0v = 0.967vcHTL

    -1.0 -0.5 0.5 1.0

    -1.0

    -0.5

    0.5

    1.0

    v = 0.994vcHTL

    -1.0 -0.5 0.5 1.0

    -1.0

    -0.5

    0.5

    1.0v = 0.995vcHTL

    -1.0 -0.5 0.5 1.0

    -1.0

    -0.5

    0.5

    1.0v = 0.996vcHTL

    -1.0 -0.5 0.5 1.0

    -1.0

    -0.5

    0.5

    1.0

    (superflow pointing to the right)

  • Madrid, January 17, 2014 16

    • Instability window in phase diagram

    uniformsuperfluid

    0.0 0.2 0.4 0.6 0.8 1.00.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    TTc

    v

    0.575 0.585

    0.462

    0.468

    u > 1

    ImHuL ¹ 0uniform superfluid

    0.0 0.2 0.4 0.6 0.8

    0.975

    0.980

    0.985

    0.990

    0.995

    1.000

    TTc

    vv c

    HTL

    • tiny window for weak coupling λ = 0.05(varying λ shows that the window grows with λ)

    • region with u > 1: problem in the formalism?(Hartree? enforced Goldstone theorem?)

    • very small T : qualitatively different angular structure of instability

  • Madrid, January 17, 2014 17

    • Summary

    • a superfluid is a two-fluid system, and this can be derived frommicroscopic physics

    • the two sound modes in a (weakly coupled, relativistic) superfluidcan reverse their roles (in terms of density and entropy waves)

    • at large relative velocities of the two fluids, there is a dynamicalinstability (“two-stream instability”)

  • Madrid, January 17, 2014 18

    • Outlook• start from fermionic theory

    D. Müller, A. Schmitt, work in progress

    • behavior beyond critical velocity• sound modes (role reversal):

    – predictions for 4He or ultracold gases?

    – apply to compact starsneutron superfluid & ion lattice: N. Chamel, D. Page and S. Reddy, PRC 87, 035803 (2013)

    • two-stream instability:– instability more prominent at strong coupling?

    holographic approach: C.P.Herzog and A.Yarom, PRD 80, 106002 (2009); I.Amado,

    D.Arean, A.Jimenez-Alba, K.Landsteiner, L.Melgar, I.S.Landea, arXiv:1307.8100 [hep-th]

    – time evolution of instabilityI. Hawke, G. L. Comer and N. Andersson, Class. Quant. Grav. 30, 145007 (2013)

    – relevance for compact stars, e.g., pulsar glitchesN. Andersson, G. L. Comer, R. Prix, MNRAS 354, 101 (2004)


Recommended