+ All Categories
Home > Documents > January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf ·...

January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf ·...

Date post: 25-Apr-2020
Category:
Upload: others
View: 7 times
Download: 0 times
Share this document with a friend
55
January 13, 2006 IEEE C802.20-06/01 Submission page 1 625k-MC (625kiloHertz-spaced MultiCarrier) is previously known as BEST-WINE: Broadband MobilE SpaTial Wireless InterNet AccEss Project IEEE 802.20 Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/20/ > Title MBTDD 625k-MC MODE Performance Report 2 Date Submitted 2006-JAN-13 Authors(s) Radhakrishna Canchi KYOCERA Telecom.Research.Corp. 2480 N. First Street, Suite#280 San Jose, CA 95131 Kazuhiro Murakami KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN Minako Kithara KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN Voice: +1-408-952-4701 Fax: +1-408-954-8709 Email: [email protected] Voice: +81-45-943-6130 Fax: +81-45-943-6175 Email: [email protected] Voice: +81-45-943-6102 Fax: +81-45-943-6175 Email: [email protected] Re: MBWA Call for Proposal Abstract This document presents the Technology Performance and Evaluation Criteria Report 2 of the Technology Proposal MBTDD 625k-MC * (BEST-WINE) for IEEE 802. 20 MBWA Purpose To discuss and Adopt MBTDD 625k-MC for Draft Specifications of IEEE802.20 MBWA Notice This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20. Patent Policy The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual <http://standards.ieee.org/guides/opman/sect6.html#6.3 > and in Understanding Patent Issues During IEEE Standards Development <http://standards.ieee.org/board/pat/guide.html >.
Transcript
Page 1: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

January 13, 2006 IEEE C802.20-06/01

Submission page 1

∗ 625k-MC (625kiloHertz-spaced MultiCarrier) is previously known as BEST-WINE: Broadband MobilE SpaTial

Wireless InterNet AccEss

Project IEEE 802.20 Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/20/>

Title MBTDD 625k-MC∗ MODE Performance Report 2 Date Submitted

2006-JAN-13

Authors(s) Radhakrishna Canchi KYOCERA Telecom.Research.Corp.2480 N. First Street, Suite#280 San Jose, CA 95131 Kazuhiro Murakami KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN Minako Kithara KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN

Voice: +1-408-952-4701 Fax: +1-408-954-8709 Email: [email protected] Voice: +81-45-943-6130 Fax: +81-45-943-6175 Email: [email protected] Voice: +81-45-943-6102 Fax: +81-45-943-6175 Email: [email protected]

Re: MBWA Call for Proposal Abstract This document presents the Technology Performance and Evaluation Criteria Report 2

of the Technology Proposal MBTDD 625k-MC* (BEST-WINE) for IEEE 802. 20 MBWAPurpose To discuss and Adopt MBTDD 625k-MC for Draft Specifications of IEEE802.20 MBWA Notice This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for

discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.

Patent Policy

The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual <http://standards.ieee.org/guides/opman/sect6.html#6.3> and in Understanding Patent Issues During IEEE Standards Development <http://standards.ieee.org/board/pat/guide.html>.

Page 2: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 2 R. Canchi et.al KYOCERA

1 2 3 4 5 6 7 8 9 10 11 12

MBTDD 625k-MC∗ 13

(BEST-WINE) 14

Performance Report 2 15

16 17 18 19 20

∗ 625k-MC (625kiloHertz-spaced MultiCarrier) is Previously known as BEST-WINE: Broadband MobilE SpaTial

Wireless InterNet AccEss

Page 3: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 3 R. Canchi et.al KYOCERA

1

1 Executive Summary 2 3

This document MBTDD 625kHz MC Mode Performance Report 2 reports the 4 performance of the 625k-MC(BEST-WINE) based on the evaluation methodology 5 defined in IEEE802.20 Evaluation Criteria document [5]. The channel models of 6 IEEE802.20 Channel Model document [4] were used. 7 8 9 10 11 12 13 14

15 16 17 18

Page 4: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 4 R. Canchi et.al KYOCERA

Table of Contents 1

1 Executive Summary.........................................................................................3 2

2 References ......................................................................................................7 3

3 Definitions........................................................................................................8 4

4 Abbreviations and acronyms ...........................................................................9 5

5 Introduction....................................................................................................11 6

5.1 Purpose of This Report ............................................................................11 7

5.2 Key Technologies.....................................................................................11 8

5.3 System Model ..........................................................................................11 9

5.3.1 Cell layout: 19BS / 3sector ................................................................11 10

5.3.2 Channel models.................................................................................12 11

6 Link Level Simulations...................................................................................13 12

6.1 3 km/hr Pedestrian A................................................................................13 13

6.1.1 Uplink.................................................................................................13 14

6.1.2 Downlink ............................................................................................14 15

6.2 30km/hr Pedestrian A...............................................................................15 16

6.2.1 Uplink.................................................................................................15 17

6.2.2 Downlink ............................................................................................16 18

6.3 120 km/hr Pedestrian A............................................................................17 19

6.3.1 Uplink.................................................................................................17 20

6.3.2 Downlink ............................................................................................18 21

6.4 30 km/hr Vehicular A................................................................................19 22

6.4.1 Uplink.................................................................................................19 23

6.4.2 Downlink ............................................................................................20 24

6.5 120 km/hr Vehicular A..............................................................................21 25

6.5.1 Uplink.................................................................................................21 26

6.5.2 Downlink ............................................................................................22 27

6.6 250 km/hr Vehicular A..............................................................................22 28

6.6.1 Uplink.................................................................................................22 29

6.6.2 Downlink ............................................................................................23 30

6.7 3 km/hr Pedestrian B................................................................................24 31

6.7.1 Uplink.................................................................................................24 32

6.7.2 Downlink ............................................................................................25 33

6.8 30 km/hr Vehicular B................................................................................26 34

Page 5: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 5 R. Canchi et.al KYOCERA

6.8.1 Uplink.................................................................................................26 1

6.8.2 Downlink ............................................................................................27 2

6.9 120 km/hr Vehicular B..............................................................................28 3

6.9.1 Uplink.................................................................................................28 4

6.9.2 Downlink ............................................................................................28 5

6.10 250 km/hr Vehicular B..............................................................................29 6

6.10.1 Uplink.................................................................................................29 7

6.10.2 Downlink ............................................................................................30 8

7 System Level Simulations .............................................................................31 9

7.1 Traffic model Performance .......................................................................31 10

7.1.1 Traffic Model Calibration....................................................................31 11

7.1.2 VoIP Performance .............................................................................37 12

7.1.3 VoIP and HTTP user performance.....................................................39 13

7.1.4 FTP And HTTP ..................................................................................40 14

7.1.5 TCP – HTTP ......................................................................................41 15

7.2 Traffic mix.................................................................................................42 16

7.3 Mobility Model ..........................................................................................45 17

7.3.1 Handover procedure ..........................................................................45 18

7.3.2 Mobility direction ................................................................................45 19

7.3.3 Handover distance.............................................................................46 20

7.3.4 Handover Delay .................................................................................49 21

7.4 Overhead Channels .................................................................................50 22

7.4.1 PCH Transmission.............................................................................50 23

8 Practical System Results...............................................................................52 24 25

Page 6: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 6 R. Canchi et.al KYOCERA

List of Tables 1 Table 5-1 Link level simulation channel models and associated spatial parameters 12 2

Table 5-2 Sub-path spatial parameters AoD and AoA offset ....................................13 3

Table 7-1 Traffic model parameters ..........................................................................31 4

Table 7-2 Traffic mix: percentage of different Traffic Types......................................42 5

Table 7-3 System level simulation parameters .........................................................43 6

Table 7-4 Suburban macro channel mix ...................................................................43 7

Table 7-5 Urban micro channel mix ..........................................................................43 8

Table 8-1 Date rate and spectrum efficiency test results ..........................................54 9 10

Page 7: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 7 R. Canchi et.al KYOCERA

1

2 References 2 [1] ATIS-PP-0700004*-2005, High Capacity-Spatial Division Multiple Access (HC-3

SDMA), September 2005 4

a. *The copyright of this document is owned by the Alliance for 5 Telecommunications Industry Solutions. Any request to reproduce this 6 document, or portion thereof, shall be directed to ATIS, 1200 G Street, NW, 7 Suite 500, Washington, DC 20005. 8

b. *For Electronic Downloads, Paper Copy or CD-ROM please follow the link 9 https://www.atis.org/atis/docstore/doc_display.asp?ID=3617 10

[2] IEEE 802.20 PD-2.doc: Mobile Broadband Wireless Access Systems: Approved PAR 11 (02/12/11): 12

[3] IEEE 802.20 PD-06r1.doc: IEEE 802.20 System Requirement Document (V 1.0) 13

[4] IEEE_802.20-PD-08.doc: IEEE 802.20 Channel Models (V 1.0) 14

[5] IEEE_802.20-PD-09.doc: IEEE 802.20 Evaluation Criteria (V 1.0) 15

[6] IEEE_802.20-PD-10.doc: IEEE 802.20 Technology Selection Process (V 1.0) 16

[7] X.P0011-001-D on 3gpp2 TSG-X specification 17

[8] IEEE_802.20-06/04: MBFDD and MBTDD: Proposed Draft Air Interface 18 Specification 19

[9] IEEE_802.20-05-77r1.doc: MBTDD 625k-MC Mode Revised Performance Report 1 20

21

22

23

Page 8: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 8 R. Canchi et.al KYOCERA

3 Definitions 1 2

As defined in the References [1],[2],[3] 3 4

Page 9: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 9 R. Canchi et.al KYOCERA

4 Abbreviations and acronyms 1 2 AA Access Assignment AAA Adaptive Antenna Array ACLPR Adjacent Channel Leakage Power Ratio ACS Adjacent Channel Selectivity AM Acknowledged Mode API Application Programming Interface ARQ Automatic Repeat Request BCH Broadcast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol i-TAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 Tunneling Protocol L3 Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LLC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet PSS Packet Services Switch

Page 10: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 10 R. Canchi et.al KYOCERA

QoS Quality of Service RA Request Access RACH Random Access Channel RSA Rivest, Shamir, Adleman RF Radio Frequency RLC Radio Link Control RM Registration Management RMU RLC Message Unit RRC Radio Resource Control or Root Raised Cosine RSSI Received Signal Strength Indicator SDMA Space Division Multiple Access SDU Service Data Unit SINR Signal-to-Interference plus Noise Ratio SN Slot Number SNR Signal to Noise Ratio TCH Traffic Channel TDD Time Division Duplex TDMA Time Division Multiple Access TWAN Transport Wide Area Network UM Unacknowledged Mode UT User Terminal 1

Page 11: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 11 R. Canchi et.al KYOCERA

5 Introduction 1 By this document, Kyocera team respectfully submits Technology Performance and 2 Evaluation Report 1 for the proposed TDD technology tilted MBTDD 625k-MC 3 (BEST-WINE) (Broadband MobilE SpaTial Wireless InterNet AccEss), which is 4 an enhanced air interface based on “ATIS-PP-0700004-2005, High Capacity-5 Spatial Division Multiple Access (HC-SDMA), 6

This Evaluation Report 2 report presents both the link level performance and system 7 level Technology Performance results obtained from simulations by following the 8 methodologies specified in the Evaluation Criteria Document [5] while using the 9 channel models defined in Channel Model document [4]. 10

5.1 Purpose of This Report 11 This Evaluation Report 2 serves as the basis for comparing with other technology 12 proposals. 13

5.2 Key Technologies 14 Key technologies of the MBTDD 625k-MC (BEST-WINE) system are 15

Adaptive Antenna Array Processing 16 Spatial Division Multiple Access 17 Link Adaptation with Modulation and Coding 18

5.3 System Model 19

5.3.1 Cell layout: 19BS / 3sector 20 The system layout consists of 19 cells with each cell split into 3 sectors as shown in Figure 21 5-1. Inter BS separation is 1.73 km and the cell radius is 1km. 22 Each cell is divided into 3 sectors, characterized by the antenna direction of each sector. The 23 sectors are numbered counter-clock wise as 0, 1 and 2, respectively, where the respective 24 antenna direction is 0: θ=0°, 1: θ=120°, 3: θ=240°; θ is the local polar angle of the cell. 25 Following this convention, the first sector of the center cell is indexed (0, 0), while the last 26 sector is indexed (18,2). Mobiles are uniformly dropped in each sector excluding an area of 27 radius 35 meters around the cell center. 28

Page 12: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 12 R. Canchi et.al KYOCERA

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

1 Figure 5-1 Cell definition in the Cartesian coordination system and the 2

numbering of cells 3 4

5.3.2 Channel models 5 The channel models used are as specified in [4]. The channel model and the associated spatial 6 parameters are summarized in Table 5.1. The subpath spatial parameters are shown in Table 7 5.2. 8

Table 5-1 Link level simulation channel models and associated spatial 9 parameters 10

11 Models case-i case-ii case-iii case-Iv PDP Pedestrian-A Vehicular-A Pedestrian-B

(Phase I)

Vehicular-B (Phase I)

Number of Paths

4

6 6 6

0 0 0 0 0 0 -2.5 0

-9.7 110 -1.0 310 -0.9 200 0 300 -19.2 190 -9.0 710 -4.9 800 -12.8 8900 -22.8 410 -10.0 1090 -8.0 1200 -10.0 12900 -15.0 1730 -7.8 2300 -25.2 17100

Rel

ativ

e Pa

th p

ower

(d

B)

Del

ay (n

s)

-20.0 2510 -23.9 3700 -16.0 20000

Speed (km/h) 3, 30, 120 30, 120, 250 3, 30, 120, 250

M o Topology 0.5λ 0.5λ 0.5λ 0.5λ

Page 13: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 13 R. Canchi et.al KYOCERA

PAS 1) LOS on: Fixed AoA for LOS component, remaining power has 360 degree uniform PAS.

2) LOS off: PAS with a Laplacian distribution, RMS angle spread of 35 degrees per path

RMS angle spread of 35 degrees per path with a Laplacian distribution Or 360 degree uniform PAS

RMS angle spread of 35 degrees per path with a Laplacian distribution

RMS angle spread of 35 degrees per path with a Laplacian distribution Or 360 degree uniform PAS

DoT (degrees)

0 22.5 -22.5 22.5

AoA (degrees)

22.5 (LOS component) 67.5 (all other paths)

67.5 (all paths) 67.5 (all paths) 67.5 (all paths)

Topology Reference: ULA with

0.5λ-spacing or 4λ-spacing or 10λ-spacing PAS Laplacian distribution with RMS angle spread of

2 degrees or 5 degrees,

per path depending on AoA/AoD

Bas

e St

atio

n

AoD/AoA

(degrees) 50ο for 2ο RMS angle spread per path

20ο for 5ο RMS angle spread per path

1

Table 5-2 Sub-path spatial parameters AoD and AoA offset 2 Sub-path # (m) Offset for a 2 deg AS at BS

(Macrocell) AoDmn ,,∆ (degrees)

Offset for a 35 deg AS at MS AoAmn ,,∆ (degrees)

1, 2 ± 0.0894 ± 1.5649 3, 4 ± 0.2826 ± 4.9447 5, 6 ± 0.4984 ± 8.7224 7, 8 ± 0.7431 ± 13.0045

9, 10 ± 1.0257 ± 17.9492 11, 12 ± 1.3594 ± 23.7899 13, 14 ± 1.7688 ± 30.9538 15, 16 ± 2.2961 ± 40.1824 17, 18 ± 3.0389 ± 53.1816 19, 20 ± 4.3101 ± 75.4274

3 4

6 Link Level Simulations 5 The link level simulation results for the Pedestrian A, Pedestrian B, Vehicular A and 6 Vehicular B channels are presented for both uplink and downlink. The FER and throughput 7 results for ModClasses 0-10 [8] and [9] are plotted in Fig. 6-1 to 6-40. 8

6.1 3 km/hr Pedestrian A 9

6.1.1 Uplink 10 11

Page 14: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 14 R. Canchi et.al KYOCERA

UplinkPedestrian-A-3km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

3km/h mod103km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

1 Figure 6-1 FER for 3km/hr Pedestrian A (Uplink) 2

3 Uplink

Pedestrian-A-3km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Throughput[kbps]

3km/h mod103km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

4 Figure 6-2 Throughput for 3km/hr Pedestrian A (Uplink) 5

6.1.2 Downlink 6 Downlink

Pedestrian-A-3km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

3km/h mod103km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

7 Figure 6-3 FER for 3km/hr Pedestrian A (Downlink) 8

9

Page 15: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 15 R. Canchi et.al KYOCERA

DownlinkPedestrian-A-3km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Throughput[kbps]

3km/h mod103km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

1 Figure 6-4 Throughput for 3km/hr Pedestrian A (Downlink) 2

6.2 30km/hr Pedestrian A 3

6.2.1 Uplink 4 Uplink

Pedestrian-A-30km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

5 Figure 6-5 FER for 30km/hr Pedestrian A (Uplink) 6

7 Uplink

Pedestrian-A-30km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Throughput[kbps]

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

8

Page 16: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 16 R. Canchi et.al KYOCERA

Figure 6-6 Throughput for 30km/hr Pedestrian A (Uplink) 1 2

6.2.2 Downlink 3

DownlinkPedestrian-A-30km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

4 Figure 6-7 FER for 30km/hr Pedestrian A (Downlink) 5

6 Downlink

Pedestrian-A-30km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Throughput[kbps]

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

7 Figure 6-8 Throughput for 30km/hr Pedestrian A (Downlink) 8

Page 17: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 17 R. Canchi et.al KYOCERA

6.3 120 km/hr Pedestrian A 1

6.3.1 Uplink 2 Uplink

Pedestrian-A-120km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

3 Figure 6-9 FER for 120km/hr pedestrian A (Uplink) 4

5 Uplink

Pedestrian-A-120km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut [k

bps]

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

6 Figure 6-10 Throughput for 120km/hr pedestrian A (Uplink) 7

Page 18: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 18 R. Canchi et.al KYOCERA

6.3.2 Downlink 1

DownlinkPedestrian-A-120km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

2 Figure 6-11 FER for 120km/hr Pedestrian A (Downlink) 3

4 Downlink

Pedestrian-A-120km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut[k

bps]

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

5 Figure 6-12 Throughput for 120km/hr Pedestrian A (Downlink) 6

Page 19: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 19 R. Canchi et.al KYOCERA

6.4 30 km/hr Vehicular A 1

6.4.1 Uplink 2

Uplink FER charactristicsVehicular-A-30km/h

0.001

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

sinr [dB]

fer

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

3 Figure 6-13 FER for 30km/hr Vehicular A (Uplink) 4

5 Uplink Maximum Data Rate

Vehicular-A-30km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30sinr [dB]

kbps

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

6 Figure 6-14 Throughput for 30km/hr Vehicular A (Uplink) 7

8

Page 20: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 20 R. Canchi et.al KYOCERA

6.4.2 Downlink 1 Downlink FER charactristics

Vehicular-A-30km/h

0.01

0.1

1

-5 0 5 10 15 20 25 30

sinr [dB]

fer

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

2 Figure 6-15 FER for 30km/hr Vehicular A (Downlink) 3

4 Downlink Maximum Data Rate

Vehicular-A-30km/h

0

200

400

600

800

1000

1200

1400

1600

-5 0 5 10 15 20 25

sinr[dB]

kbps

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

5 Figure 6-16 Throughput for 30km/hr Vehicular A (Downlink) 6

Page 21: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 21 R. Canchi et.al KYOCERA

6.5 120 km/hr Vehicular A 1

6.5.1 Uplink 2

Uplink Maximum Data RateVehicular-A-120km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

sinr [dB]

kbps

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

3 Figure 6-17 FER for 120km/hr Vehicular A (Uplink) 4

5 Uplink FER charactristics

Vehicular-A-120km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

sinr [dB]

fer

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

6 Figure 6-18 Throughput for 120km/hr Vehicular A (Uplink) 7

8

Page 22: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 22 R. Canchi et.al KYOCERA

6.5.2 Downlink 1

Downlink FER charactristicsVehicular-A-120km/h environment

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

sinr [dB]

fer

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

2 Figure 6-19 FER for 120km/hr Vehicular A (Downlink) 3

4 Downlink Maximum Data Rate

Vehicular-A-120km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

sinr[dB]

kbps

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

5 Figure 6-20 Throughput for 120km/hr Vehicular A (Downlink) 6

6.6 250 km/hr Vehicular A 7

6.6.1 Uplink 8 9

Page 23: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 23 R. Canchi et.al KYOCERA

Uplink FER charactristicsVehicular-A-250km/h

0.01

0.1

1

-5 0 5 10 15 20 25 30

sinr [dB]

fer

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

1 Figure 6-21 FER for 250km/hr Vehicular A (Uplink) 2

3 Uplink Maximum Data Rate

Vehicular-A-250km/h

0

100

200

300

400

500

600

-5 0 5 10 15 20 25 30

sinr [dB]

kbps

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

4 Figure 6-22 Throughput for 250km/hr Vehicular A (Uplink) 5

6

6.6.2 Downlink 7 8

Downlink FER charactristicsVehicular-A-250km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

sinr [dB]

fer

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

9

Page 24: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 24 R. Canchi et.al KYOCERA

Figure 6-23 FER for 250km/hr Vehicular A (Downlink) 1 2

Downlink Maximum Data RateVehicular-A-250km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

sinr[dB]

kbps

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

3 Figure 6-24 Throughput for 250km/hr Vehicular A (Downlink) 4

6.7 3 km/hr Pedestrian B 5

6.7.1 Uplink 6

UplinkPedestrian-B-3km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

3km/h mod103km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

7 Figure 6-25 FER for 3km/hr Pedestrian B (Uplink) 8

Page 25: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 25 R. Canchi et.al KYOCERA

UplinkPedestrian-B-3km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut[k

bps

3km/h mod10 3km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

1 Figure 6-26 Throughput for 3km/hr Pedestrian B (Uplink) 2

3

6.7.2 Downlink 4

DownlinkPedestrian-B-3km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

3km/h mod103km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

5 Figure 6-27 FER for 3km/hr Pedestrian B (Downlink) 6

7 Downlink

Pedestrian-B-3km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut[k

bps

3km/h mod103km/h mod93km/h mod83km/h mod73km/h mod63km/h mod53km/h mod43km/h mod33km/h mod23km/h mod13km/h mod0

8 Figure 6-28 Throughput for 3km/hr Pedestrian B (Downlink) 9

10

Page 26: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 26 R. Canchi et.al KYOCERA

6.8 30 km/hr Vehicular B 1

6.8.1 Uplink 2

UplinkVehicular-B-30km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut[k

bps]

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

3 Figure 6-29 FER for 30km/hr Vehicular B (Uplink) 4

5 Uplink

Vehicular-B-30km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

6 Figure 6-30 Throughput for 30km/hr Vehicular B (Uplink) 7

8

Page 27: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 27 R. Canchi et.al KYOCERA

6.8.2 Downlink 1

DownlinkVehicular-B-30km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

2 Figure 6-31 FER for 30km/hr Vehicular B (Downlink) 3

4 Downlink

Vehicular-B-30km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut[k

bps]

30km/h mod1030km/h mod930km/h mod830km/h mod730km/h mod630km/h mod530km/h mod430km/h mod330km/h mod230km/h mod130km/h mod0

5 Figure 6-32 Throughput for 30km/hr Vehicular B (Downlink) 6

Page 28: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 28 R. Canchi et.al KYOCERA

6.9 120 km/hr Vehicular B 1

6.9.1 Uplink 2

Uplink FERVehicular-B-120km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

3 Figure 6-33 FER for 120km/hr Vehicular B (Uplink) 4

5 Uplink

Vehicular-B-120km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Trou

gthp

ut[k

bps]

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

6 Figure 6-34 Throughput for 120km/hr Vehicular B (Uplink) 7

8

6.9.2 Downlink 9 10

Page 29: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 29 R. Canchi et.al KYOCERA

DownlinkVehicular-B-120km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

1 Figure 6-35 FER for 120km/hr Vehicular B (Downlink) 2

3 Downlink

Vehicular-B-120km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut[k

bps]

120km/h mod10120km/h mod9120km/h mod8120km/h mod7120km/h mod6120km/h mod5120km/h mod4120km/h mod3120km/h mod2120km/h mod1120km/h mod0

4 Figure 6-36 Throughput for 120km/hr Vehicular B (Downlink) 5

6.10 250 km/hr Vehicular B 6

6.10.1 Uplink 7

Uplink FERVehicular-B-250km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

8

Page 30: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 30 R. Canchi et.al KYOCERA

Figure 6-37 FER for 250km/hr Vehicular B (Uplink) 1 2

UplinkVehicular-B-250km/h

0

100

200

300

400

500

600

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ughp

ut[k

bps]

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

3 Figure 6-38 Throughput for 250km/hr Vehicular B (Uplink) 4

6.10.2 Downlink 5 6

Downlink FERVehicular-B-250km/h

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

7 Figure 6-39 FER for 250km/hr Vehicular B (Downlink) 8

9 10

Page 31: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 31 R. Canchi et.al KYOCERA

DownlinkVehicular-B-250km/h

0

200

400

600

800

1000

1200

1400

1600

-10 -5 0 5 10 15 20 25 30SINR[dB]

Throughput[kbps]

250km/h mod10250km/h mod9250km/h mod8250km/h mod7250km/h mod6250km/h mod5250km/h mod4250km/h mod3250km/h mod2250km/h mod1250km/h mod0

1 Figure 6-40 Throughput for 250km/hr Vehicular B (Downlink) 2

7 System Level Simulations 3

7.1 Traffic model Performance 4

7.1.1 Traffic Model Calibration 5 This section constitutes the calibration of the traffic models as required by the evaluation 6 criteria document. Traffic was generated for a length of time such that 106 instances of each 7 parameter occurred. The statistics for these parameter were then measured. The considered 8 traffic models are: HTTP, FTP, VoIP and near real time video. 9 10 Table 7-1 shows the parameters to consider and the measured mean compared to the expected 11 theoretical value. Figure 7-1 to Figure 7-11 show the cumulative density function (cdf) of all 12 the random parameters involved in the generation of the different traffic models. 13

Table 7-1 Traffic model parameters 14

Parameter TheoreticalMeasured

(from 1x106 samples)HTTP Main File Object size (bytes) Mean 10710 10734 Embedded Object size (bytes) Mean 7758 7821 No Embedded Objects per page Mean 5.64 5.628 Reading Time (sec) Mean 30 29.94 Parsing Time (sec) Mean 0.13 0.1301 FTP File Size (bytes) Mean 2x 106 2x106 Reading Time (sec) Mean 180 179.9065 NRTV Packet (Slice) size Mean 50 50.6658 Interarrival time Mean 6 5.9399 Network Delay Domestic Mean 10 10.001 International Mean 110 109.9995

15

Page 32: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 32 R. Canchi et.al KYOCERA

7.1.1.1 HTTP 1

7.1.1.1.1 HTTP Main File Object Size 2

0 2 4 6 8 10 12 14 16 18

x 104

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

size (bytes)

cdf

3 Figure 7-1 HTTP Main File Object size 4

5

7.1.1.1.2 HTTP Embedded Object Size 6

0 1 2 3 4 5 6 7

x 105

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

size (bytes)

cdf

7 Figure 7-2 HTTP Embedded Object size 8

9

Page 33: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 33 R. Canchi et.al KYOCERA

7.1.1.1.3 HTTP Number of Embedded Objects per Page 1 2

0 10 20 30 40 50 600.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Number of Embedded Objects

cdf

3 Figure 7-3 HTTP Embedded Object per Page 4

5 6

7.1.1.1.4 HTTP Reading Time 7

0 20 40 60 80 100 120 140 160

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(seconds)

cdf

8 Figure 7-4 HTTP Reading time 9

10 11

Page 34: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 34 R. Canchi et.al KYOCERA

7.1.1.1.5 HTTP Parsing Time 1

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(seconds)

cdf

2 Figure 7-5 HTTP Reading time 3

7.1.1.2 FTP 4

7.1.1.2.1 FTP File Size 5

0 1 2 3 4 5 6

x 106

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

size (bytes)

cdf

6 Figure 7-6 FTP file size 7

Page 35: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 35 R. Canchi et.al KYOCERA

7.1.1.2.2 FTP Reading Time 1

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

time(seconds)

cdf

2 Figure 7-7 FTP reading time 3

4

7.1.1.3 NRTV 5

7.1.1.3.1 NRTV Packet Size 6

20 40 60 80 100 120 1400.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packet Size (bytes)

cdf

7 Figure 7-8 NRTV packet size 8

9

Page 36: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 36 R. Canchi et.al KYOCERA

7.1.1.3.2 NRTV Inter-arrival Time 1

2 4 6 8 10 12 140

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Inter−arrival Time (msec)

cdf

2

Figure 7-9 NRTV inter-arrival time 3 4

7.1.1.4 Network Delay 5 The Domestic and International delay cdfs are shown in Figure 7-10 and Figure 7-11, 6 respectively. 7

8 9 10 11 12 13 14 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (msec)

cdf

8 Figure 7-10 Domestic network delay 9

Page 37: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 37 R. Canchi et.al KYOCERA

108 109 110 111 112 113 114 115 116

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Delay (msec)

cdf

1 Figure 7-11 International network delay 2

7.1.2 VoIP Performance 3 4 VoIP performance is presented by the R values generated as a result of simulating voice 5 traffic. R values are obtained for the forward and reverse links. 6 The R-value is computed as a function of delay and packet loss probability using the 7 following formula (as defined in G.107): 8

RMBWA = 93.2 – Id – Ie-eff 9 The quantity Id is defined as given below 10

Id = Idd 11 For mean delay Ta < 100 ms: 12

Idd=0 13 For mean delay Ta > 100 ms: 14

( )⎪⎭

⎪⎬

⎪⎩

⎪⎨

⎧+⎟

⎟⎠

⎞⎜⎜⎝

⎛⎥⎦⎤

⎢⎣⎡++= 2

313–125

61

6

61

6 XXIdd

15 with: 16

2lg100

lg ⎟⎠⎞

⎜⎝⎛

=

Ta

X 17

18 Further, Ie-eff is defined as shown below, with Ie=11 and Bpl = 19% (note that Bpl is measured 19 in percents based on random packet loss probability Ppl). 20

( )BplPpl

PplIeIeeffIe+

−+=− 95 21

22 The R-value when G.729 Codec is used are presented in Figures---. 23 24

Page 38: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 38 R. Canchi et.al KYOCERA

Figure 7-12 plots the R-value for the different received BCH level at the UT. Figure 7-13. 1 plots the R-value for different end-to-end delay. End to end delay is the sum of one-way 2 delay, packetization delay and jitter buffer delay. The packetization error (encode and 3 decode) is 25ms and the jitter buffer delay is 40ms. The BCH receive level is fixed at –4 65dBm. Figure 7-14 plots the R-value for various packet loss in the network. 5 6

BCH level vs. R Value

0

10

20

30

40

50

60

70

80

90

-120-110-100-90-80-70-60

BCH Level [dBm]

R V

alue

UplinkDownlink

7 Figure 7-12 R-value for different BCH level 8

Delay vs. R Value

0

10

20

30

40

50

60

70

80

90

0 200 400 600 800

Delay [ms]

R V

alue

UplinkDownlink

9

Figure 7-13 R-value for different delay 10

Page 39: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 39 R. Canchi et.al KYOCERA

Packet loss vs. R Value

0

10

20

30

40

50

60

70

80

90

0.00 5.00 10.00 15.00 20.00

Packet loss [%]

R V

alue

UplinkDownlink

1

Figure 7-14 R-value for different packet loss 2 3

7.1.3 VoIP and HTTP user performance 4 This section presents the performance when enhancements techniques are used in a system 5 with coexisting VoIP and HTTP users. 625k-MC allows 11 ModClasses giving a higher data 6 rate with higher ModClass. However, VoIP users need a much lower data rate. Hence it is 7 useful to limit the peak modulation class for VoIP sessions. Limiting peak modulation class 8 reduces transmit power (for non-cell edge users). This helps in reducing system interference 9 level for both uplink and downlink and increase the battery life on the uplink. Figure 7-15 10 plots the cdf of the data rate of the HTTP users, when the ModClass for VoIP is not restricted 11 (red dashed line) and restricted to 0 (blue solid line). 12

A prevalent voice coding scheme is G.729 with VAD/CNG and a common mode within this 13 scheme is 8kbps coded voice bit rate with two coded speech samples per RTP packet. Adding 14 in RTP/UDP/IP/625k-MC header, this results in a maximum voice stream bit rate of 25.2kbps. 15

16 Figure 7-15 HTTP user throughput in the presence of VoIP users 17

Page 40: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 40 R. Canchi et.al KYOCERA

1 Figure 7-16 and Figure 7-17 plot the percentile distribution results of uplink and downlink 2 voice quality for 24 users as HTTP users varies. The voice quality remains almost same 3 irrespective of the number of HTTP users. Network dealy is not considered. ModClass 4 restriction is used for VoIP users. 5 6

Uplink R values as a function of number of HTTP users(24 voice users)

0

10

20

30

40

50

60

70

80

90

32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

HTTP users

R v

alue

10 percentilemedian90 percentile

7 Figure 7-16 Uplink R-values for VoIP users 8

9 Downlink R values as a function of number of HTTP users

(24 voice users)

0

10

20

30

40

50

60

70

80

90

32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

HTTP users

R v

alue

10 percentilemedian90 percentile

10 Figure 7-17 Downlink R-values for VoIP users 11

7.1.4 FTP And HTTP 12 13 Figures 7-18 below present the aggregate BS downlink throughput as a function of the 14 number of users registered on the BS. Here, the throughput is defined in terms of data 15 delivered from the client TCP stack to the client FTP stack, i.e., in terms of useful FTP 16 application data delivered to the user. Figures 7-19 below present the aggregate BS downlink 17 throughput as a function of the number of FTP users registered on the BS when HTTP and 18 FTP users exist. In all of these simulations, for ease of presentation, there were exactly 4 19 HTTP users. The aggregate throughput results with mixed traffic look almost exactly like the 20 aggregate throughput results for the FTP-only traffic scenarios presented in Fig. 7-18. This is 21

Page 41: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 41 R. Canchi et.al KYOCERA

because the HTTP users have very bursty traffic but a very small average data rate when 1 compared with the FTP users. Therefore the HTTP users neither degrade nor contribute much 2 to the aggregate capacity in these mixed traffic scenarios. 3 4

Number of users

Tota

l Dow

nlin

k Th

roug

hput

in k

bps

0 20 40 60 80 100 120 140 160 180 200

0.25

0

0.5

0.75

1.0

1.25×104

FTP Traffic Scenario (3 traffic spatial channels per conventional channel)

Number of users

Tota

l Dow

nlin

k Th

roug

hput

in k

bps

0 20 40 60 80 100 120 140 160 180 200

0.25

0

0.5

0.75

1.0

1.25×104

Number of users

Tota

l Dow

nlin

k Th

roug

hput

in k

bps

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

0.25

0

0.5

0.75

1.0

1.25×104

FTP Traffic Scenario (3 traffic spatial channels per conventional channel)

5 Figure 7-18 Aggregate BS FTP data throughput for heavy downlink traffic 6

Number of FTP users0 20 40 60 80 100 120 140 160 180 200

Tota

l Dow

nlin

k Th

roug

hput

in k

bps

0.25

0

0.5

0.75

1.0

1.25×104

Mixed Traffic (FTP and HTTP) Scenario – (3 traffic spatial channels per conventional channel)

Number of FTP users0 20 40 60 80 100 120 140 160 180 200

Tota

l Dow

nlin

k Th

roug

hput

in k

bps

0.25

0

0.5

0.75

1.0

1.25×104

Number of FTP users0 20 40 60 80 100 120 140 160 180 200

Tota

l Dow

nlin

k Th

roug

hput

in k

bps

0.25

0

0.5

0.75

1.0

1.25×104

0 20 40 60 80 100 120 140 160 180 200 0 20 40 60 80 100 120 140 160 180 200

Tota

l Dow

nlin

k Th

roug

hput

in k

bps

0.25

0

0.5

0.75

1.0

1.25×104

Mixed Traffic (FTP and HTTP) Scenario – (3 traffic spatial channels per conventional channel)

7 Figure 7-19 Aggregate BS FTP data throughput for heavy downlink traffic 8

7.1.5 TCP – HTTP 9 Figures 7-20 and 7-21 below present the HTTP web page response time as a function of the 10 number of users registered on the BS for uplink and downlink. 11

Page 42: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 42 R. Canchi et.al KYOCERA

Number of users

Rela

tive

Upl

ink

TCP

Segm

ent D

elay

in m

illise

cond

s

0

5

10

15

0 100 200 300 400 500 600 700 800

HTTP scenario—(3 traffic spatial channels per conventional channel)

Number of users

Rela

tive

Upl

ink

TCP

Segm

ent D

elay

in m

illise

cond

s

0

5

10

15

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

HTTP scenario—(3 traffic spatial channels per conventional channel)

1 Figure 7-20 Relative uplink TCP segment delay 2

Rela

tive

Dow

nlin

k TC

P Se

gmen

t Del

ay in

mill

isec

onds

Number of users

5

0

10

15

20

0 100 200 300 400 500 600 700 800

25

30

35

HTTP scenario—(3 traffic spatial channels per conventional channel)

Rela

tive

Dow

nlin

k TC

P Se

gmen

t Del

ay in

mill

isec

onds

Rela

tive

Dow

nlin

k TC

P Se

gmen

t Del

ay in

mill

isec

onds

Number of users

5

0

10

15

20

0 100 200 300 400 500 600 700 800

25

30

35

HTTP scenario—(3 traffic spatial channels per conventional channel)

Number of users

5

0

10

15

20

0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800

25

30

35

HTTP scenario—(3 traffic spatial channels per conventional channel)

3 Figure 7-21 Aggregate BS FTP data throughput for heavy downlink traffic 4

7.2 Traffic mix 5 Traffic mix as shown in Table 7-2 is used. 6

Table 7-2 Traffic mix: percentage of different Traffic Types 7

Traffic Category Application Percentage ( % ) Best Effort FTP 30 Interactive Web browsing 30 Streaming Video streaming 30 Real-time VoIP 10

8 The simulation parameters for this evaluation are given in Table 7.3. The channel 9 model parameters are given in Table 5-1 and 5-2.. 10

Page 43: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 43 R. Canchi et.al KYOCERA

Table 7-3 System level simulation parameters 1

Number of antennas 12 BS antenna Antenna separation 0.5 λ Number of antennas 4 UT antenna Antenna separation 0.5 λ

Layout 19BS with 3sector each max Tx power at BS 39dBm/12ant max Tx power at UT 27dBm BS antenna gain 17dBi UT antenna gain 0dBi BS NF 5dB UT NF 10dB Temperature 15°C BS cable loss 3dB UT body loss 3dB Simulation bandwidth 2.5MHz (4 carriers)

(1 carrier= 625kHz) 2 The suburban macro 3km/hr, 120km/hr and the channel mix scenario are considered [5]. The 3 channel mix percentage is as specified in Table 7.4 and Table 7.5 [5]. 4

Table 7-4 Suburban macro channel mix 5 Channel PDP Models I II III IV User speed (km/h) 3 30 120 30 120 250 3 30 120 250Probability 0.20 0.12 0.08 0.12 0.08 0.0 0.20 0.12 0.08 0.0 6

Table 7-5 Urban micro channel mix 7 Channel PDP Models I II III IV User speed (km/h) 3 30 120 30 120 25

0 3 30 120 25

0 Probability 0.29 0.14 0 0.14 0 0 0.29 0.14 0 0 8 The per user average throughput and packet delay for the various application under the traffic 9 mix scenario are plotted in Figure 7-22 and Figure 7-23. There are 21 users in each sector. 10 11

Page 44: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 44 R. Canchi et.al KYOCERA

3km ped 120km veh sub mix urbmicro1

2

3

4

5

6

7

8

9

10x 10

4

Channel Type

Use

r T

hrou

ghpu

t (bp

s)

Mean User Throughput/Application versus Channel/Mix Type

HTTP

VoIP

NRTV

FTP

1 Figure 7-22 User throughput under traffic mix scenario 2

3km ped 120km veh sub mix urbmicro10

−2

10−1

100

101

102

Channel Type

Pac

ket D

elay

(se

cond

s)

Packet Delay/Application versus Channel/Mix Type

HTTP

VoIP

NRTV

FTP

3 Figure 7-23 Packet delay under traffic mix scenario 4

5

Page 45: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 45 R. Canchi et.al KYOCERA

The R-factor cdf for the VoIP user in a traffic mix scenario is plotted in Fig. 7-24. The R-1 value was found to be greater than 78. 2

72 73 74 75 76 77 78 79 80 81 82 830

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R factor

CD

F

3

Figure 7-24 R-value cdf 4

7.3 Mobility Model 5

7.3.1 Handover procedure 6 Handover is performed as described in Chapter 22 of [8] and a minimum of 6 frames will be 7 necessary for handover. The handover procedure for UT in connected state and UT in not-8 connected state is the same. UT continuously monitors the signal level from surrounding BSs. 9 When the UT finds signal level form a BS to which the UT is not currently registered to be 10 higher that the signal level from the BS to which it is registered, handover occurs. 11

7.3.2 Mobility direction 12 A 19 cell system is considered. Only one UT is assumed to be moving while the rest of the 13 UT are assumed stationary as specified in [5].The UT moving in the direction as shown in 14 Fig. 7.25 is considered. The UT is connected to the center BS. 15

Page 46: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 46 R. Canchi et.al KYOCERA

1 Figure 7-25 Mobility direction 2

7.3.3 Handover distance 3 The distance from the originating BS at which handover occurs is plotted in Fig. 7-26, 7-28 4 and Fig. 7-30 for UT velocity of 3km/hr, 30km/hr and 120km/hr, respectively. An edge loss 5 of 9dB was incurred around the distance where the maximum number of handover occurred. 6 The red line in Figs 7-27, 7-29 and 7-31 show the distance from the originating BS where the 7 9dB edge loss was enforced. When edge loss is enforced, probability of handover at the edge 8 loss location increases. In all the simulations performed there was no handover failure. 9 10

3km/h

0

10

20

30

40

50

60

70

80

90

100

859 861 863 865 867 869

Distance

cdf

11 Figure 7-26 Handover distance for 3km/hr 12

13

Page 47: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 47 R. Canchi et.al KYOCERA

3km/h 9dB EdgeLoss

0

10

20

30

40

50

60

70

80

90

100

859 861 863 865 867 869

Distance

cdf

1 Figure 7-27 Handover distance for 3km/hr with edge loss 2

3 4

30km/h

0

10

2030

40

50

60

7080

90

100

830 840 850 860 870 880 890

Distance

cdf

5 Figure 7-28 Handover distance for 30km/hr 6

7 30km/h EdgeLoss

0

10

20

30

40

50

60

70

80

90

100

830 840 850 860 870 880 890

Distance

cdf

8 Figure 7-29 Handover distance for 30km/hr with edge loss 9

Page 48: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 48 R. Canchi et.al KYOCERA

1

120km/h

0

10

20

30

40

50

60

70

80

90

100

770 820 870 920

Distance

cdf

2 Figure 7-30 Handover distance for 120km/hr 3

4

120km/h EdgeLoss

0

10

20

30

40

50

60

70

80

90

100

770 820 870 920

Distance

cdf

5 Figure 7-31 Handover distance for 120km/hr with edge loss 6

7 Figure 7.32 shows the distance from the handover start point over which the handover is 8 performed. For 3km/hr, 90% of the users perform handover within 10m. 9 10

Page 49: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 49 R. Canchi et.al KYOCERA

0

10

20

30

40

50

60

70

80

90

3km/hr 30km/hr 120km/hr

velocity

dist

ance

from

han

dove

r sta

rt po

sitio

n [m

]

10%50%90%

No. of users with handover performed

1 Figure 7-32 Handover range 2

7.3.4 Handover Delay 3 The handover delay shown in Fig. 7-33 is the cdf taken over all the velocities: 3km/hr, 4 30km/hr and 120km/hr. Minimum of 30ms (6 frames) is required for handover. However, due 5 to frame error, the handover delay increases and the probability of delay between 40 to 45 ms 6 was the highest. The average delay was found to be about 42ms. 7 8

Handover Delay

0

10

20

30

40

50

60

70

80

90

100

30 35 40 45 50 55 60 65

Delay(ms)

cdf(%)

9 Figure 7-33 Handover delay 10

Page 50: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 50 R. Canchi et.al KYOCERA

7.4 Overhead Channels 1 2 The UT receiver is expected to detect the desired page burst and reject undesired bursts 3 always. Undesired bursts include noise-only case and page bursts intended for other users. 4 Under certain channel conditions, UT can have a false detect or reject a valid page burst. 5 False alarm increases RA (Random Access) interference whereas failure to detect valid page 6 bursts increases latency. The UT receiver’s ability to maximize detection probability and 7 minimize false alarm rate (FAR) is an important performance measure. 8 625k-MC system has some mechanisms for improvement of data transmitting using overhead 9 channels as following. 10

7.4.1 PCH Transmission 11 In a fading channel, if the page burst gets deeply faded, detection probability drops drastically. 12 In order to improve the detection probability, it’s better to have multiple representations of 13 the burst with time diversity. Currently, 625k-MC supports two-slot selection diversity. Fig 14 7-34 shows the sub slots structure of PCH burst. PCH burst consist from implied resource and 15 diversity resource as shown in Fig. 7-34. 16 17

18 19

Figure 7-34 PCH physical burst structure 20 21 A page burst is detected if the normalized correlation between the received and the reference 22 page bursts exceed the detection threshold. The detection threshold is calculated to achieve a 23 fixed FAR. To achieve an FAR of 10-5, the detection threshold is set to 0.2362 for the 24 normalized correlation. 25 Desired page burst - single slot (0Hz Fading Channel) - Due to large spread in the 26 distribution of the correlation ratio, a fading channel requires more power than the AWGN 27 channel to achieve the same detection rate when only one slot is used. Figure 7-35 shows that 28 we can achieve more than 90% detection at -2dB SNR. 29 Desired page burst - two slot diversity (0Hz Fading Channel) - In order to improve the 30 detection probability in a fading channel, two-slot selection diversity is used in 625k-MC. 31 Figure 7-36. shows that we can achieve more than 90% detection at -8dB SNR. This result is 32 6 dB better than the case when we use a single slot. 33 34

Implied Burst Diversity Burst

Page 51: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 51 R. Canchi et.al KYOCERA

1 Figure 7-35 PCH detection statistics with one-slot diversity 2

3 Figure 7-36 PCH detection statistics with two-slot diversity 4

Page 52: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 52 R. Canchi et.al KYOCERA

1

8 Practical System Results 2 The proposed MBTDD 625k-MC (BEST-WINE)’s base system HC-SDMA [1] has been 3 implemented and tested in some countries. Few snapshots of experimental results from the 4 experimental set up in Yokohama, Japan are shown below. Figure 8-1 shows the average 5 throughput of 1Mbps for 21 users, communicating simultaneously. The FTP throughput when 6 the vehicle is moving at an average speed of 60km/hr and 100km/hr is shown in Figure 8-2. 7 The handover result for a vehicle is moving at an average speed of 60km/hr is shown in 8 Figure 8-3. A high average throughput is maintained in spite of the handover. 9 10

11 Figure 8-1 Data rate of 1Mbps for 21 simultaneously communicating users 12

13

14

Figure 8-2 Throughput for 60km/hr and 100km/hr 15

Page 53: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 53 R. Canchi et.al KYOCERA

1

48Km/h

1Mbps

48Km/h

1Mbps 2

Figure 8-3 Handover test 3 4 Traffic mix results from field tests: 5 6 A field test for traffic mix with the same percentage of each application as that for simulation 7 was performed. The conditions are as follows: 8 9 Carrier 4 (with 3 spatial channels) 10 BS 1 (2.5MHz) 11 UT 34 12 Load FTP 10 users 13

Video Streaming (Video) 10 users 14 Web browsing (HTTP) 10 users 15 VoIP 4 users 16

17 Video: 5 mins of content requiring a data rate more than 450kbps was repeated viewed using 18 real player. 19 Ftp: Data of 100Mbyte was continuously downloaded. 20 HTTP: The following 22 pages were viewed repeatedly. Each page was viewed for 6secs 21 after being displayed. 22

1. http://homepage.mac.com/jinjin/applescript/ 23 2. http://www.geocities.co.jp/SiliconValley/2627/ 24 3. http://www02.so-net.ne.jp/~oable/okui/unix_howto.html#ftp/ 25 4. http://www.atmarkit.co.jp/fnetwork/rensai/tcp05/01.html#5/ 26 5. http://www2s.biglobe.ne.jp/~hig/ppp/ppp.html#PPP_5/ 27 6. http://www.ne.jp/asahi/earth/stomomi/RFC/ 28 7. http://www.ipc.kobe-u.ac.jp/contents/Kouhou/mage/mage24/terashima/node12.html/ 29 8. http://www.allied-telesis.co.jp/library/nw_guide/index.html/ 30 9. http://www.dive-in.to/~hideto/mtu/ 31 10. http://www.yahoo.co.jp/ 32 11. http://www.msn.co.jp/home.armx/ 33 12. http://search.cqpub.co.jp/finder/Searchterm.asp?q1=ssi/ 34 13. http://news.yahoo.co.jp/ranking/ 35 14. http://homepage1.nifty.com/masawat/sen_html/pcdos.html/ 36 15. http://www.atmarkit.co.jp/fwin2k/win2ktips/044nat/nat.html/ 37 16. http://www.google.co.jp/ 38

Page 54: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 54 R. Canchi et.al KYOCERA

17. http://e-words.jp/ 1 18. http://e-words.jp/ 2 19. http://www.soi.wide.ad.jp/ 3 20. http://www.princeton.co.jp/ 4 21. http://www.kokuyo.co.jp/ 5 22. http://www.hagitec.co.jp/ 6

7 The result of the field test are presented in Fig. 8.4. From the experimental result it can be 8 observed that a stable throughput has been achieved for the VoIP users. The R-value for VoIP 9 was greater than 79. 10 11

sec

Throughput [bytes/sec]

FTP Video StreamWeb BrowsingVoIP Stream

sec

Throughput [bytes/sec]

sec

Throughput [bytes/sec]

FTP Video StreamWeb BrowsingVoIP Stream

FTP Video StreamWeb BrowsingVoIP Stream

12 Figure 8-4 Field test result for traffic mix 13

14 Overhead Channel: 15 16 Table 8.1 shows the throughput obtained from the field test with 24 UT continuously 17 downloading data.. Theoretically obtainable throughput can be calculated as follows: 18 Maximum obtainable downlink throughput: 1,061 kbps×24 CH = 24.9 Mbps 19 Maximum obtainable uplink throughput: 346 kbps×24 CH = 8.1 Mbps 20 21 The difference between the theoretical and field test throughput is due to the overhead 22 channel and the channel. The loss is seen to be less than 10% for both uplink and downlink. 23 Hence even for no loss in the channel, the loss due to overhead channels in a continuous 24 download condition is seen to be less than 10%. 25 26

Table 8-1 Date rate and spectrum efficiency test results 27

Data Flow Direction

Typical/Terminal Total Data Rates/Base

station

Spectrum Efficiency

(bit/sec/Hz/sector)

Downlink 942kbps 22.6Mbps 6.8

Page 55: January 13, 2006 IEEE C802.20-06/01grouper.ieee.org/groups/802/20/Contribs/C802.20-06-01.pdf · 2006-01-16 · 2006-JAN-13 IEEE C802.20-06/01 Submission Page 3 R. Canchi et.al KYOCERA

2006-JAN-13 IEEE C802.20-06/01

Submission Page 55 R. Canchi et.al KYOCERA

Uplink 290kbps 7.0Mbps 4.2

Total 1,232kbps 29.6Mbps 5.9

1


Recommended