+ All Categories
Home > Documents > January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page...

January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page...

Date post: 11-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
38
January 6, 2006 IEEE C802.20-05/77r1 Submission page 1 625k-MC(625kHz625kiloHertz-spaced MultiCarrier) is Previously known as BEST-WINE: BEST-WINE: Broadband MobilE SpaTial Wireless InterNet AccEss Project IEEE 802.20 Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/20/ > Title MBTDD 625k-MC MODE Performance Report 1 Date Submitted 2006-JAN-06 Authors(s) Radhakrishna Canchi KYOCERA Telecom.Research.Corp. 2480 N. First Street, Suite#280 San Jose, CA 95131 Kazuhiro Murakami KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN Minako Kithara KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN Voice: +1-408-952-4701 Fax: +1-408-954-8709 Email: [email protected] Voice: +81-45-943-6130 Fax: +81-45-943-6175 Email: [email protected] Voice: +81-45-943-6102 Fax: +81-45-943-6175 Email: [email protected] Re: MBWA Call for Proposal Abstract This document presents the Technology Performance and Evaluation Criteria Report 1 of the Technology Proposal MBTDD 625k-MC * (BEST-WINE) for IEEE 802. 20 MBWA Purpose To discuss and Adopt MBTDD 625k-MC * (BEST-WINE) for Draft Specifications of IEEE802.20 MBWA Notice This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein. Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20. Patent Policy The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual <http://standards.ieee.org/guides/opman/sect6.html#6.3 > and in Understanding Patent Issues During IEEE Standards Development <http://standards.ieee.org/board/pat/guide.html >.
Transcript
Page 1: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

January 6, 2006 IEEE C802.20-05/77r1

Submission page 1

∗ 625k-MC(625kHz625kiloHertz-spaced MultiCarrier) is Previously known as BEST-WINE: BEST-WINE: Broadband

MobilE SpaTial Wireless InterNet AccEss

Project IEEE 802.20 Working Group on Mobile Broadband Wireless Access <http://grouper.ieee.org/groups/802/20/>

Title MBTDD 625k-MC∗ MODE Performance Report 1 Date Submitted

2006-JAN-06

Authors(s) Radhakrishna Canchi KYOCERA Telecom.Research.Corp. 2480 N. First Street, Suite#280 San Jose, CA 95131 Kazuhiro Murakami KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN Minako Kithara KYOCERA 2-1-1 Kagahara, Tsuzuki-ku, Yokohama, KANAGAWA 224-8502, JAPAN

Voice: +1-408-952-4701 Fax: +1-408-954-8709 Email: [email protected] Voice: +81-45-943-6130 Fax: +81-45-943-6175 Email: [email protected] Voice: +81-45-943-6102 Fax: +81-45-943-6175 Email: [email protected]

Re: MBWA Call for Proposal Abstract This document presents the Technology Performance and Evaluation Criteria Report 1

of the Technology Proposal MBTDD 625k-MC* (BEST-WINE) for IEEE 802. 20 MBWA Purpose To discuss and Adopt MBTDD 625k-MC* (BEST-WINE) for Draft Specifications of

IEEE802.20 MBWA Notice This document has been prepared to assist the IEEE 802.20 Working Group. It is offered as a basis for

discussion and is not binding on the contributing individual(s) or organization(s). The material in this document is subject to change in form and content after further study. The contributor(s) reserve(s) the right to add, amend or withdraw material contained herein.

Release The contributor grants a free, irrevocable license to the IEEE to incorporate material contained in this contribution, and any modifications thereof, in the creation of an IEEE Standards publication; to copyright in the IEEE’s name any IEEE Standards publication even though it may include portions of this contribution; and at the IEEE’s sole discretion to permit others to reproduce in whole or in part the resulting IEEE Standards publication. The contributor also acknowledges and accepts that this contribution may be made public by IEEE 802.20.

Patent Policy

The contributor is familiar with IEEE patent policy, as outlined in Section 6.3 of the IEEE-SA Standards Board Operations Manual <http://standards.ieee.org/guides/opman/sect6.html#6.3> and in Understanding Patent Issues During IEEE Standards Development <http://standards.ieee.org/board/pat/guide.html>.

Page 2: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 2 R. Canchi et.al KYOCERA

1 2 3 4 5 6 7 8 9 10 11 12

MBTDD 625k-MC∗ 13

(BEST-WINE) 14

Performance Report 1 15

16 17 18 19 20

21

∗ 625k-MC(625kHz625kiloHertz-spaced MultiCarrier) is Previously known as BEST-WINE: BEST-WINE:

Broadband MobilE SpaTial Wireless InterNet AccEss

Page 3: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 3 R. Canchi et.al KYOCERA

1

1 Executive Summary 2 3

This document MBTDD 625kHz MC Mode Performance Report 1 reports the 4 performance of the 625k-MC(BEST-WINE) based on the evaluation methodology 5 defined in IEEE802.20 Evaluation Criteria document [5]. The channel models of 6 IEEE802.20 Channel Model document [4] were used. 7 8 9 10 11 12 13 14

15 16 17 18

19

Page 4: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 4 R. Canchi et.al KYOCERA

Table of Contents 1

1 Executive Summary ..........................................................................................3 2

2 References ........................................................................................................8 3

3 Definitions..........................................................................................................9 4

4 Abbreviations and acronyms...........................................................................10 5

5 Introduction......................................................................................................12 6

5.1 Purpose of This Report ..............................................................................12 7

5.2 Key Technologies ......................................................................................12 8

5.3 System Model ............................................................................................12 9

5.3.1 Cell layout: 19BS / 3sector ..................................................................12 10

5.3.2 Base Station & Mobile Station (User Terminals)................................13 11

5.4 RF parameters ...........................................................................................14 12

5.4.1 RF Parameters ....................................................................................14 13

5.4.2 Out-of-band emission ..........................................................................15 14

5.5 MBTDD 625k-MC (BEST-WINE) System’s PHY and MAC Layer 15 information .................................................................................................16 16

5.5.1 MBTDD 625k-MC (BEST-WINE) System Basic PHY/MAC layer 17 parameters Channel structure.............................................................16 18

5.5.2 MBTDD 625k-MC (BEST-WINE) Modulation classes.........................17 19

5.6 Link Budget ................................................................................................18 20

5.6.1 Suburban Macro Test Environment – Pedestrian B (3KMPH)............18 21

5.6.2 Suburban Macro Test Environment Vehicular B (120 KMPH)............19 22

6 Simulation environment...................................................................................20 23

6.1 Link – System Interface .............................................................................20 24

6.2 Link level simulation...................................................................................20 25

6.2.1 Link Level simulation Parameters .......................................................20 26

6.2.2 Channel models used in Link Level Simulations.................................20 27

6.3 System level simulation environment ........................................................21 28

6.3.1 System level simulation features.........................................................21 29

6.3.2 System level simulation parameters ...................................................21 30

6.3.3 System level simulation channel mode...............................................21 31

6.3.4 Traffic Model System Level Simulation ...............................................22 32

7 Simulation Results...........................................................................................22 33

7.1 Link level simulation...................................................................................22 34

Page 5: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 5 R. Canchi et.al KYOCERA

7.1.1 FER vs. SINR Performance ................................................................22 1

7.1.2 Throughput vs SINR Performance ......................................................24 2

7.2 System level simulation calibration result ..................................................26 3

7.2.1 System level simulation calibration condition and parameters ...........26 4

7.3 System Level Simulation Results ..............................................................28 5

7.3.1 User Date Rate CDF ...........................................................................28 6

7.3.2 120km/h User Date Rate CDF ............................................................28 7

7.3.3 Number of users vs Base station Separation......................................30 8

7.3.4 Aggregated Throughput vs. Base station Separation .........................33 9

7.4 Fairness criteria .........................................................................................35 10

8 Simulations Results Summary ........................................................................35 11

9 Practical System Results.................................................................................36 12 13

14

Page 6: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 6 R. Canchi et.al KYOCERA

List of Figures 1

Figure 5-1 Cell definition in the Cartesian coordination system and the numbering of 2 cells ..................................................................................................................... 13 3

Figure 5-2 Base station antenna pattern ................................................................... 13 4

Figure 5-3 UT positions ............................................................................................. 14 5

Figure 5-4a User Terminal mod 0.............................................................................. 15 6

Figure 5-5 Base Station 8 carriers............................................................................. 16 7

Figure 5-6 Channel configuration in a block assignment of 2.5 MHz........................ 17 8

Figure 7-1 Uplink (Vehicular B model) 120kmph....................................................... 23 9

Figure 7-2 Downlink (Vehicular B model) 120kmph.................................................. 23 10

Figure 7-3 Uplink (Pedestrian B model) 3kmph ........................................................ 24 11

Figure 7-4 Downlink (Pedestrian B model) 3kmph.................................................... 24 12

Figure 7-5 Uplink (Vehicular B model)120kmph........................................................ 25 13

Figure 7-6 Downlink (Vehicular B model) 120kmph................................................. 25 14

Figure 7-7 Uplink (Pedestrian B model) 3kmph ........................................................ 26 15

Figure 7-8 Downlink (Pedestrian B model) 3kmph.................................................... 26 16

Figure 7-9 User Terminal Location Map for Deterministic calibration ....................... 27 17

Figure 7-10 CDF for C/I with users at fixed locations................................................ 28 18

Figure 7-11 120kmph User Date Rate CDF ............................................................. 29 19

Figure 7-12 3km/h CDF of throughput vs SINR ........................................................ 30 20

Figure 7-13 Contours of constant Minimum Service Level at 3Kmph -Downlink...... 31 21

Figure 7-14 Contours of constant Minimum Service Level at 120Kmph -Downlink.. 31 22

Figure 7-15 Contours of constant minimum service level at 3Kmph - Uplink ........... 32 23

Figure 7-16 Contours of constant minimum service level at 120Kmph – Uplink....... 33 24

Figure 7-17 Contours of constant minimum service level at 3kmph –Downlink........ 33 25

Figure 7-18 Contours of constant minimum service level at 120Kmph – Downlink.. 34 26

Figure 7-19 Contours of constant minimum service level at 3kmph –Uplink ............ 34 27

Figure 7-20 Contours of constant minimum service level at 120kmph -Uplink ......... 35 28

Figure 9-1 25m-high Tower, User terminal and Sydney MAP................................... 37 29

Figure 9-2: Downlink Date Rate Results ................................................................... 37 30 31

32

Page 7: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 7 R. Canchi et.al KYOCERA

1 List of Tables 2

Table 5-1 BS and UT parameters.............................................................................. 14 3

Table 5-2 RF parameter table.................................................................................... 14 4

Table 5-3 MBTDD 625k-MC (BEST-WINE) PHY/MAC Basic Parameters ............... 16 5

Table 5-4 Modulation Classes and Maximum Data Rates ........................................ 17 6

Table 5-5 Link Budget (3km/h) .................................................................................. 18 7

Table 5-6 Link Budget (120km/h) .............................................................................. 19 8

Table 6-1 Link level simulation channel models and associated spatial parameters 20 9

Table 6-2 Sub-path spatial parameters AoD and AoA offset .................................... 21 10

Table 6-3 System level simulation parameters ......................................................... 21 11

Table 6-4 Suburban Macro Environment Parameters............................................... 21 12

Table 7-1 Suburban Pedestrian B Case.................................................................... 35 13

Table 7-2 Suburban Vehicular B Case ...................................................................... 35 14

Table 9-1 Date rate and spectrum efficiency test results of HC-SDMA in Australia . 37 15 16

17

Page 8: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 8 R. Canchi et.al KYOCERA

1

2 References 2 [1] ATIS-PP-0700004*-2005, High Capacity-Spatial Division Multiple Access (HC-3

SDMA), September 2005 4

a. *The copyright of this document is owned by the Alliance for 5 Telecommunications Industry Solutions. Any request to reproduce this 6 document, or portion thereof, shall be directed to ATIS, 1200 G Street, NW, 7 Suite 500, Washington, DC 20005. 8

b. *For Electronic Downloads, Paper Copy or CD-ROM please follow the link 9 https://www.atis.org/atis/docstore/doc_display.asp?ID=3617 10

[2] IEEE 802.20 PD-2.doc: Mobile Broadband Wireless Access Systems: Approved PAR 11 (02/12/11): 12

[3] IEEE 802.20 PD-06r1.doc: IEEE 802.20 System Requirement Document (V 1.0) 13

[4] IEEE_802.20-PD-08.doc: IEEE 802.20 Channel Models (V 1.0) 14

[5] IEEE_802.20-PD-09.doc: IEEE 802.20 Evaluation Criteria (V 1.0) 15

[6] IEEE_802.20-PD-10.doc: IEEE 802.20 Technology Selection Process (V 1.0) 16

[7] X.P0011-001-D on 3gpp2 TSG-X specification 17

18

19

20

Page 9: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 9 R. Canchi et.al KYOCERA

3 Definitions 1 2

As defined in the References [1],[2],[3] 3 4

5

Page 10: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 10 R. Canchi et.al KYOCERA

4 Abbreviations and acronyms 1 2 AA Access Assignment AAA Adaptive Antenna Array ACLPR Adjacent Channel Leakage Power Ratio ACS Adjacent Channel Selectivity AM Acknowledged Mode API Application Programming Interface ARQ Automatic Repeat Request BCH Broadcast Channel BS Base Station BSCC Base Station Color Code CA Certificate Authority CCH Configuration Channel CM Configuration Message CoS Class of Service CR Configuration Request CRC Cyclic Redundancy Check EUD End User Device FACCH Fast Associated Control Channel FEC Forward Error Control FER Frame Error Rate GPS Global Positioning System HC-SDMA High Capacity Spatial Division Multiple Access i-HAP Handshake and Authentication Protocol IMSI International Mobile Station Identifier IPPR Intermodulation Product Power Ratio i-SEC Secure Communications Protocol i-TAP Terminal Authentication Protocol IWAN Interconnection Wide Area Network L2 Layer 2 L2TP Layer 2 Tunneling Protocol L3 Layer 3 L3 CM L3 Connection Management L3 MMC L3 Mobility Management and Control L3 RM L3 Registration Management LLC Logical Link Control LDAP Lightweight Directory Access Protocol LFSR Linear Feedback Shift Register LNA Low Noise Amplifier LNS L2TP Network Server LSB Least Significant Bit MAC Medium Access Control MBWA Mobile Broadband Wireless Access MSB Most Significant Bit PA Power Amplifier PAR Project Authorization Requirements PCH Paging Channel PDCL Packet Data Conversion Layer PHY Physical Layer PID Paging Identity PPM Parts Per Million PPP Point to Point Protocol PPPoE PPP over Ethernet PSS Packet Services Switch

Page 11: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 11 R. Canchi et.al KYOCERA

QoS Quality of Service RA Request Access RACH Random Access Channel RSA Rivest, Shamir, Adleman RF Radio Frequency RLC Radio Link Control RM Registration Management RMU RLC Message Unit RRC Radio Resource Control or Root Raised Cosine RSSI Received Signal Strength Indicator SDMA Space Division Multiple Access SDU Service Data Unit SINR Signal-to-Interference plus Noise Ratio SN Slot Number SNR Signal to Noise Ratio TCH Traffic Channel TDD Time Division Duplex TDMA Time Division Multiple Access TWAN Transport Wide Area Network UM Unacknowledged Mode UT User Terminal 1

2

Page 12: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 12 R. Canchi et.al KYOCERA

5 Introduction 1 By this document, Kyocera team respectfully submits Technology Performance and 2 Evaluation Report 1 for the proposed TDD technology tilted MBTDD 625k-MC (BEST-3 WINE) (Broadband MobilE SpaTial Wireless InterNet AccEss), which is an enhanced air 4 interface based on “ATIS-PP-0700004-2005, High Capacity-Spatial Division Multiple 5 Access (HC-SDMA), (Pre Published American National Standard)”[1]. 6 This Evaluation Report 1 report presents both the link and system level Technology 7 Performance results obtained from simulations by following the methodologies specified in 8 the Evaluation Criteria Document [5] while using Suburban Macro Channel model and 9 related spatial parameters as defined in Channel Model document [4]. Both the link level and 10 system level performances are obtained at the User Terminal (UT) mobility speeds of 3kmph 11 and 120kmph. Also this report provides link budget calculation for each of the channel 12 models. 13

5.1 Purpose of This Report 14

15 This Evaluation Report 1 serves as the basis for comparing with other technology proposals. 16

5.2 Key Technologies 17

Key technologies of the MBTDD 625k-MC (BEST-WINE) system are 18 Adaptive Antenna Array Processing 19 Spatial Division Multiple Access 20 Link Adaptation with Modulation and Coding 21

5.3 System Model 22

5.3.1 Cell layout: 19BS / 3sector 23 The system layout consists of 19 cells with each cell split into 3 sectors as shown in Figure 24 5-1. Inter BS separation is 1.73 km and the cell radius is 1km. 25 Each cell is divided into 3 sectors, characterized by the antenna direction of each sector. The 26 sectors are numbered counter-clock wise as 0, 1 and 2, respectively, where the respective 27 antenna direction is 0: θ=0°, 1: θ=120°, 3: θ=240°; θ is the local polar angle of the cell. 28 Following this convention, the first sector of the center cell is indexed (0, 0), while the last 29 sector is indexed (18,2). Mobiles are uniformly dropped in each sector excluding an area of 30 radius 35 meters around the cell center. The unit of distance is meter. Each sector in each 31 base station employs antennas that has radiation pattern as shown in Figure 5-2 . 32

Page 13: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 13 R. Canchi et.al KYOCERA

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

1 Figure 5-1 Cell definition in the Cartesian coordination system and the 2

numbering of cells 3 4

3 Sector Antenna Pattern

-25

-20

-15

-10

-5

0

-120 -100 -80 -60 -40 -20 0 20 40 60 80 100 120

Azimuth in Degrees

Gai

n in

dB

.

5

Figure 5-2 Base station antenna pattern 6

5.3.2 Base Station & Mobile Station (User Terminals) 7 The BS and UT parameters are shown in Table 5-1. 8

9

10

Page 14: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 14 R. Canchi et.al KYOCERA

Table 5-1 BS and UT parameters 1 BS Cell radius 1Km BS separation 1.73Km Tx/rx antenna elements 12 Antenna separation 0.5λ UT Load users 86 Distribution Uniform in the 19BS area Rx. antenna 4 Tx. antenna 1 Antenna separation 0.5λ Sates Connected state

Not connected state 2

-5

-4

-3

-2

-1

0

1

2

3

4

5

-6 -4 -2 0 2 4 6

3 Figure 5-3 UT positions 4

5.4 RF parameters 5

5.4.1 RF Parameters 6 The RF parameters are shown in Table 5-2. 7

8

Table 5-2 RF parameter table 9

# RF Parameter (TDD System)

Base Value 1 MHz Channel

2.5 MHz (TDD System)

1 Transmitter Power -- BS 43 dBm/MHz +44 dBm

2 Transmitter Power -- MS 27 dBm +27 dBm

3 Out of Band emission limits – BS and MS (emission measured in 1 MHz resolution bandwidth)

Attenuation of the transmit power P by: 43

+10 log(P) dB

-13 dBm

Page 15: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 15 R. Canchi et.al KYOCERA

# RF Parameter (TDD System)

Base Value 1 MHz Channel

2.5 MHz (TDD System)

4 ACLR - Attenuation of emissions into an adjacent channel (same Ch BW) – BS

43 dB 50.2 dB

5 ACLR - Attenuation of emissions into an adjacent channel (same Ch BW) – MS

36.8 dB 35.4 dB

6 Receiver noise figure -- BS 5 dB 5 dB

7 Receiver noise figure -- MS 10 dB 10 dB

8 Receiver reference sensitivity (to be proposed by each technology)

Specify at BER of 0.1% See link budget

9 Receiver Selectivity -- BS Mod 0 to 10 : 30 dB 30 dB

10 Receiver Selectivity -- MS Mod 0 to 6 : 30 dB Mod 7 to 8 : 27 dB Mod 9 to 10 : 25 dB

30 dB 27 dB 25 dB

11 Receiver Blocking – BS (level of same technology blocking signal at frequency offset of 2 times Channel BW)

Mod 0 : -50.8 dBm Mod 7 : -36.8 dBm Mod 10 : -31.4 dBm

-50.8 dBm -36.8 dBm -31.4 dBm

12 Receiver Blocking – MS (level of same technology blocking signal at frequency offset of 2 times Channel BW)

Mod 0 : -58.5 dBm Mod 8 : - 42.6 dBm Mod 10 : - 39.1 dBm

-58.5dBm -42.6dBm -39.1dBm

1

5.4.2 Out-of-band emission 2 The spectral shape of the transmitted modulated carrier are shown in Figure 5-4 and Figure 3 5-5 for single carrier and multiple carriers, respectively. It can be observed that the out-of-4 band emission limit specified by the FCC is satisfied. 5

6

FCC Emission Limits

7

Figure 5-4a User Terminal mod 0 8

Page 16: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 16 R. Canchi et.al KYOCERA

FCC Emission Limits

1

Figure 5-4b User Terminal mod 7 2 3

Ref 35 dBm Att 35 dB

1 RMCLRWR

A

*

Offset 22 dB

LVL

*

EXT

Center 1.91 GHz Span 6.25 MHz625 kHz/

* RBW 10 kHz

VBW 100 kHz

SWT 5 s*

PRN

-60

-50

-40

-30

-20

-10

0

10

20

30

Comment A: M12B1Date: 27.MAY.2005 14:14:32

FCC Emission Limits

4 Figure 5-5 Base Station 8 carriers 5

6

5.5 MBTDD 625k-MC (BEST-WINE) System’s PHY and MAC Layer 7 information 8

5.5.1 MBTDD 625k-MC (BEST-WINE) System Basic PHY/MAC layer parameters 9 Channel structure 10

The basic PHY/MAC layer parameters are shown in Table 5-3. 11

Table 5-3 MBTDD 625k-MC (BEST-WINE) PHY/MAC Basic Parameters 12 Items Specification

Duplexing TDD Mutiple Access TDMA ・SDMA

Single Carrier Bandwidth 625 kHz Frame Length 5 ms

Symbol Duration 2usec Uplink Time Slot Slots 3

Length 545 us

Page 17: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 17 R. Canchi et.al KYOCERA

Payload 182 symbols Downlink Time Slot Slots 3

Length 1090 us Payload 494 symbols Symbol rate 500 ksps

1 For MBTDD 625k-MC (BEST-WINE) TDD system, block assignment size of 2.5MHz has 2 been assumed. So, this block assignment accommodates 4 carriers of 625kHz bandwidth as 3 shown in Figure 5-6. 4 5

2.5MHz

frequency

625kH

6 Figure 5-6 Channel configuration in a block assignment of 2.5 MHz 7

MBTDD 625k-MC (BEST-WINE) System employs Adaptive Antenna Array processing 8 using MMSE algorithm. Antenna array weights are calculated for the uplink transmissions 9 and the same weights are used for Downlink transmissions that follow. 10

5.5.2 MBTDD 625k-MC (BEST-WINE) Modulation classes 11 MBTDD 625k-MC (BEST-WINE) system supports 10 modulation classes, referred as 12 ModClass, which defines the modulation and coding scheme combination. There are 10 13 ModClasses as mentioned in the Table 5-4. The tiered multilevel modulation schemes 14 facilitate link adaptation. 8 different modulation schemes are incorporated, namely: BPSK, 15 QPSK, 8-PSK, 12QAM, 16QAM, 24QAM, 32QAM and 64QAM. The data rates per carrier 16 associated with these ModClasses are shown in the Table 5-4. 17 18

Table 5-4 Modulation Classes and Data Rates 19 Down Link(Kbps) Up Link(Kbps)

ModClass ModulationMethod Data Rate

/Slot Data Rate

/Carrier Data Rate

/Slot Data Rate

/Carrier

0 BPSK 35 106 6 19 1 BPSK 50 149 13 38 2 QPSK 82 245 26 77 3 QPSK 126 379 43 130 4 8PSK 162 485 58 173 5 8PSK 198 595 72 216 6 12QAM 262 787 98 293 7 16QAM 307 922 115 346 8 24QAM 354 1061 133 398 9 32QAM 378 1133 142 427

10 64QAM 498 1493 190 571 20 The data rate with 4 carrier aggregation is as follows: 21 Down Link : 1493kbps x 4 Carrier aggregation = 5.97 Mbps 22 Up Link : 571kbps x 4 Carrier aggregation = 2.28 Mbps 23

Page 18: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 18 R. Canchi et.al KYOCERA

5.6 Link Budget 1

Suburban macro-cell environment with Pedestrian B (3Kmph) and Vehicular B (120Kmph) 2 channel models are considered as mandated by [5]. The test environment parameters for the 3 two channel models are shown in Table 5-5 and Table 5-6 respectively. 4

5.6.1 Suburban Macro Test Environment – Pedestrian B (3KMPH) 5 6

Table 5-5 Link Budget (3km/h) 7

id/ii Item Downlink Uplink Test environment Suburban macro-

cell Suburban macro-

cell Operating frequency 1.9GHz 1.9GHz Test service full buffer full buffer Multipath channel class CaseIII Pedestrian

B) CaseIII Pedestrian

B) 1slot :32.3 dBm 1slot: 17.1 dBm 2slot: 35.3 dBm 2slot: 20.1 dBm

ii/id (a0) Average transmitter power per traffic channel

3slot: 37.0 dBm 3slot: 21.9 dBm id (a1) Maximum transmitter power per traffic channel dBm 39 27 id (a2) Maximum total transmitter power dBm/MHz 43 27 ii (b) Cable, connector, and combiner losses (enumerate sources)

[ dB] 3 0

Body Losses [dB] 0 3 ii (c) Transmitter antenna gain [dBi] 17 0 id (d1) Transmitter e.i.r.p. per traffic channel [ dBm] =a1-b+c 53 27 id (d2) Total transmitter e.i.r.p. =a2-b+c 57 27 Penetration Loss (Ref: 3GPP2) 10 dB (Vehicular) 0 0 ii (e) Receiver antenna gain [dBi] 0 17 ii (f) Cable and connector losses [dB] 0 3 Body Losses [dB] 3 0 ii (g) Receiver noise figure [ dB] 10 5

(h) Thermal noise density dBm/Hz -174 -174 ii (H) (linear units) mW/Hz 3.98×10–18 3.98×10–18 (i) Receiver interference density (NOTE 1) [dBm/Hz] -140.83 -159.06 id (I) (linear units) [mW/Hz] 8.25×10-15 1.24× -16 (j) Total effective noise plus interference density [dBm/Hz] id = 10 log (10((g + h)/10) + I)

-140.81 -158.64

I (k) Information rate (10 log (Rb)) [dB(Hz)] @mod0 53.98 53.98 Id (l) Required Eb/(N0 + I0) @mod0 1.81 4.01 Id [email protected]%point @mod0 -1.2 1.0 Id (m) Receiver sensitivity = (j + k + l) @mod0 -85.03 -100.06 id (n) Hand-off gain[ dB] 2 2 Id (o) Explicit diversity gain [dB] 6 0 Id (o’) Other gain [dB] 21.6 10.8 Id (p) Log-normal fade margin [dB] 10.4 10.4 Id (q) Maximum path loss = {d1–m+(e–f)+o+n+o’–p} [dB]

@mod0 154.23 144.06

id (r) Maximum range @mod0 3209.51 1643.95

Page 19: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 19 R. Canchi et.al KYOCERA

1

5.6.2 Suburban Macro Test Environment Vehicular B (120 KMPH) 2 3

Table 5-6 Link Budget (120km/h) 4 id/ii Item Downlink Uplink

Test environment Suburban macro-cell

Suburban macro-cell

Operating frequency 1.9GHz 1.9GHz Test service full buffer full buffer Multipath channel class CaseIV Vehicular

B Case IV Vehicular

B 1slot: 32.3dBm 1slot: 17.1 dBm 2slot: 35.3 dBm 2slot: 20.1 dBm

ii/id (a0) Average transmitter power per traffic channel

3slot: 37.0dBm 3slot: 21.9dBm id (a1) Maximum transmitter power per traffic channel dBm 39.0 27 id (a2) Maximum total transmitter power dBm/MHz 43 27 ii (b) Cable, connector, and combiner losses (enumerate sources)

[ dB] 3 0

Body Losses [dB] 0 3 ii (c) Transmitter antenna gain [dBi] 17 0 id (d1)Transmitter e.i.r.p. per traffic channel [dBm]=a1-b+c 53 27 id (d2) Total transmitter e.i.r.p =a2-b+c 57 27 Penetration Loss (Ref: 3GPP2) 10 dB (Vehicular) 10 10 ii (e) Receiver antenna gain [dBi] 0 17 ii (f) Cable and connector losses [dB] 0 3 Body Losses [dB] 3 0 ii (g) Receiver noise figure [ dB] 10 5

(h) Thermal noise density dBm/Hz -174 -174 ii (H) (linear units) mW/Hz 3.98×10–18 3.98×10–18 (i) Receiver interference density (NOTE 1) [dBm/Hz] -141.97 -165.31 id (I) (linear units) [mW/Hz] 6.35×10-15 2.94×10-17 (j) Total effective noise plus interference density [dBm/Hz] id = 10 log (10((g + h)/10) + I)

-141.94 -163.76

ii (k) Information rate (10 log (Rb)) [dB(Hz)] @mod0 53.98 53.98 id (l) Required Eb/(N0 + I0) @mod0 6.21 5.01

Id [email protected]%point @mod0 3.2 2.0 Id (m) Receiver sensitivity = (j + k + l) @mod0 -81.75 -104.78

id (n) Hand-off gain[ dB] 2 2 Id (o) Explicit diversity gain [dB] 3.7 0

Id (o’) Other gain [dB] 18.7 10.8 Id (p) Log-normal fade margin [dB] 10.4 10.4 Id q)Maximumpathloss {d1–m+(e–f)+o+n+o’–p}dB@mod0 135.75 138.18

id (r) Maximum range @mod0 952.07 1116.78 5

Page 20: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 20 R. Canchi et.al KYOCERA

6 Simulation environment 1

6.1 Link – System Interface 2

The simulations were divided into two steps, link level simulation and system level 3 simulation. The SINR versus FER characteristic were obtained by the link level simulation 4 for all the modulation classes. Based on this link level simulation results, system (network) 5 level simulations were carried out to obtain the performance of MBTDD 625k-MC (BEST-6 WINE) air interface in the defined suburban macro radio test environment. 7

6.2 Link level simulation 8

6.2.1 Link Level simulation Parameters 9 • TDD /TDMA system 10 • 3 timeslot structure 11 • Number of BS antenna: 12 12 • Number of UT antenna: 4 13

- Antennas used for transmission: 1 14 - Antennas used for receiving: 4 or 1 15

• Adaptive Array Antenna Algorithm: MMSE 16 • Equalizer: Receiver equalization is used. 17

6.2.2 Channel models used in Link Level Simulations 18 The channel models used are as specified in [4]. The channel model and the associated spatial 19 parameters are summarized in Table 6-1. The subpath spatial parameters are shown in Table 20 6-2. 21

Table 6-1 Link level simulation channel models and associated spatial 22 parameters 23

Models case-iii case-iv PDP Pedestrian-B (Phase I)

Vehicular-B (Phase I)

Number of Paths 6 6 0 0 -2.5 0

-0.9 200 0 300 -4.9 800 -12.8 8900 -8.0 1200 -10.0 12900 -7.8 2300 -25.2 17100 Rel

ativ

e Pa

th p

ower

(d

B)

Del

ay (n

s)

-23.9 3700 -16.0 20000 Speed (km/h) 3 120

Topology 0.5λ 0.5λ PAS RMS angle spread of 35 degrees per

path with a Laplacian distribution RMS angle spread of 35 degrees per

path with a Laplacian distribution DoT (degrees) -22.5 22.5 M

obile

St

atio

n

AoA (degrees) 67.5 (all paths) 67.5 (all paths)

Topology 0.5λ-spacing PAS Laplacian distribution with RMS angle spread of 2 degrees per path

depending on AoA/AoD

Bas

e St

atio

n

AoD/AoA (degrees)

50ο for 2ο RMS angle spread per path 20ο for 5ο RMS angle spread per path

24

Page 21: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 21 R. Canchi et.al KYOCERA

1

Table 6-2 Sub-path spatial parameters AoD and AoA offset 2 Sub-path # (m) Offset for a 2 deg AS at BS

(Macrocell) AoDmn ,,∆ (degrees)

Offset for a 35 deg AS at MS AoAmn ,,∆ (degrees)

1, 2 ± 0.0894 ± 1.5649 3, 4 ± 0.2826 ± 4.9447 5, 6 ± 0.4984 ± 8.7224 7, 8 ± 0.7431 ± 13.0045

9, 10 ± 1.0257 ± 17.9492 11, 12 ± 1.3594 ± 23.7899 13, 14 ± 1.7688 ± 30.9538 15, 16 ± 2.2961 ± 40.1824 17, 18 ± 3.0389 ± 53.1816 19, 20 ± 4.3101 ± 75.4274

3

6.3 System level simulation environment 4

6.3.1 System level simulation features 5 • TDD system 6 • 3 timeslot structure 7 • Spatial Division multiple Access Channels (Max. 4) 8 • Power control 9 • Link adaptation 10 11

6.3.2 System level simulation parameters 12

Table 6-3 System level simulation parameters 13 Number of antennas 12 BS antenna Antenna separation 0.5 λ Number of antennas 4 UT antenna Antenna separation 0.5 λ

Layout 19BS with 3sector each max Tx power at BS 39dBm/12ant max Tx power at UT 27dBm BS antenna gain 17dBi UT antenna gain 0dBi BS NF 5dB UT NF 10dB Temperature 15°C BS cable loss 3dB UT body loss 3dB Simulation bandwidth 2.5MHz (4 carriers)

(1 carrier= 625kHz) 14

6.3.3 System level simulation channel mode 15

Table 6-4 Suburban Macro Environment Parameters 16

Page 22: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 22 R. Canchi et.al KYOCERA

1 Channel Scenario Suburban Macro Number of paths (N) 6 Number of sub-paths (M) per-path 20 Mean AS at BS E[ ASσ ] =50 AS at BS as a lognormal RV

( )10 ^ , ~ (0,1)AS AS ASx xσ = ε + µ η ASµ = 0.69

ASε = 0.13

ASAoDASr σσ= / 1.2 Per-path AS at BS (Fixed) 20

BS per-path AoD Distribution standard distribution

),0( 2AoDση where

ASASAoD r σ=σ Mean AS at MS E[σAS, MS] = 680 Per-path AS at MS (fixed) 350 MS Per-path AoA Distribution (Pr)),0( 2

AoAση Delay spread as a lognormal RV ( )10 ^ , ~ (0,1)DS DS DSx xσ = ε + µ η

µDS = - 6.80 εDS = 0.288

Mean total RMS Delay Spread E[ DSσ ] = 0.17 µs

DSdelaysDSr σσ= / 1.4

Distribution for path delays Lognormal shadowing standard deviation 10dB Pathloss model (dB), d is in meters 31.5 + 35log10(d)

2

6.3.4 Traffic Model System Level Simulation 3 The simulation was carried out by full-duplex mode (UL-DL) in the same run and by 4 assuming full buffers (infinite backlog) model. No ARQ is employed. 5

7 Simulation Results 6

7.1 Link level simulation 7

The following sections report the FER versus SINR performance and link level throughput 8 curves for the 7 ModClasses in uplink and 8 ModClasses in downlink. 9

7.1.1 FER vs. SINR Performance 10 The FER vs. received SINR curves are plotted for the Pedestrian B and Vehicular B channels 11 for both uplink and downlink. It can be observed that, as expected, the FER worsens for 12 higher ModClass. 13

Page 23: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 23 R. Canchi et.al KYOCERA

0.01

0.1

1

-5 0 5 10 15 20 25 30

sinr [dB]

fer

120km/h mod7

120km/h mod6

120km/h mod5

120km/h mod4

120km/h mod3

120km/h mod2

120km/h mod1

120km/h mod0

1

Figure 7-1 Uplink (Vehicular B model) 120kmph 2 3

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

120km/h mod8

120km/h mod7

120km/h mod6

120km/h mod5

120km/h mod4

120km/h mod3

120km/h mod2

120km/h mod1

120km/h mod0

4 Figure 7-2 Downlink (Vehicular B model) 120kmph 5

6

Page 24: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 24 R. Canchi et.al KYOCERA

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

sinr [dB]

fer

3km/h mod7

3km/h mod6

3km/h mod5

3km/h mod4

3km/h mod3

3km/h mod2

3km/h mod1

3km/h mod0

1 Figure 7-3 Uplink (Pedestrian B model) 3kmph 2

3

0.01

0.1

1

-10 -5 0 5 10 15 20 25 30

SINR[dB]

FER

3km/h mod8

3km/h mod7

3km/h mod6

3km/h mod5

3km/h mod4

3km/h mod3

3km/h mod2

3km/h mod1

3km/h mod0

4 5

Figure 7-4 Downlink (Pedestrian B model) 3kmph 6

7.1.2 Throughput vs SINR Performance 7 The throughput vs. received SINR are plotted in Figure 7-5 to Figure 7-8. 8 9

Page 25: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 25 R. Canchi et.al KYOCERA

0

50

100

150

200

250

300

350

400

-5 0 5 10 15 20 25 30

sinr [dB]

kbps

120km/h mod7

120km/h mod6

120km/h mod5

120km/h mod4

120km/h mod3

120km/h mod2

120km/h mod1

120km/h mod0

1 Figure 7-5 Uplink (Vehicular B model)120kmph 2

3 4

0

200

400

600

800

1000

1200

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ugh

put[

kbps]

120km/h mod8

120km/h mod7

120km/h mod6

120km/h mod5

120km/h mod4

120km/h mod3

120km/h mod2

120km/h mod1

120km/h mod0

5 Figure 7-6 Downlink (Vehicular B model) 120kmph 6

Page 26: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 26 R. Canchi et.al KYOCERA

1

0

50

100

150

200

250

300

350

400

-10 -5 0 5 10 15 20 25 30

sinr [dB]

kbps

3km/h mod7

3km/h mod6

3km/h mod5

3km/h mod4

3km/h mod3

3km/h mod2

3km/h mod1

3km/h mod0

2 Figure 7-7 Uplink (Pedestrian B model) 3kmph 3

4

0

200

400

600

800

1000

1200

-10 -5 0 5 10 15 20 25 30

SINR[dB]

Thro

ugh

put[

kbps

]

3km/h mod8

3km/h mod7

3km/h mod6

3km/h mod5

3km/h mod4

3km/h mod3

3km/h mod2

3km/h mod1

3km/h mod0

5 Figure 7-8 Downlink (Pedestrian B model) 3kmph 6

7.2 System level simulation calibration result 7

7.2.1 System level simulation calibration condition and parameters 8 Number of paths: 1 9 Environment: Suburban macro 10 Number of BS & MS antenna: 1 11

Page 27: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 27 R. Canchi et.al KYOCERA

Inter BS separation 2.5km 1 1 user/timeslot @sector 2

o user1 @ (-60, R/2) intimeslot1 3 o user2 @ (0,R/2) in timeslot2 4 o user3 @ (60, R) in timeslot3 5 6

System level simulation calibration results are presented below. The cdf of the C/I, when the 7 users are located at fixed positions as shown in Figure 7-9 8 9

10 11

Figure 7-9 User Terminal Location Map for Deterministic calibration 12

Page 28: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 28 R. Canchi et.al KYOCERA

1 2

Figure 7-10 CDF for C/I with users at fixed locations 3

7.3 System Level Simulation Results 4

7.3.1 User Date Rate CDF 5 In this section we present system level simulation results as per the output metrics suggested 6 by the Evaluation Criteria document [5]. In the following User Data rate CDFs are plotted. 7

7.3.2 120km/h User Date Rate CDF 8 The CDF of user data rate for uplink and downlink at 120 kmph is shown in Figure 7-11. 9 The blue line plots downlink throughput CDF and red line plots uplink throughput CDF. 10

Page 29: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 29 R. Canchi et.al KYOCERA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

Throughput (kbps)

Pro

babi

lity

Up

Down

10% of users experience <=136 kbps

         [Up/Down]

1 Figure 7-11 120kmph User Date Rate CDF 2

7.3.2.1 3km/h Uplink and Downlink 3

The CDF of user data rate for uplink and downlink at 3 kmph is shown in Figure 7-12. The 4 blue line plots downlink throughput CDF and red line plots uplink throughput CDF. 5

Page 30: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 30 R. Canchi et.al KYOCERA

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

Throughput (kbps)

Pro

babi

lity

Up

Down

10% of users experience <=467 kbps

[Down]

10% of users experience <=170 kbps

[Up]

1

Figure 7-12 3km/h CDF of throughput vs SINR 2

7.3.3 Number of users vs Base station Separation 3 The minimum service level is computed from simulation, by changing inter BS separation 4 and the number of load users. 5

In the measurement of minimum service level, the degradation due to the increase in the 6 number of load users is larger compared with the degradation due to the increase in base 7 station separation. 8 In the 120 km/h simulation [vehicular B], aggravation of frequency efficiency was seen 9 compared with 3 km/h [Pedestrian B]. 10

7.3.3.1 Downlink 11 Figure 7-13 and Figure 7-14 plot the contour of constant downlink minimum service levels 12 for full buffer users per sector versus base station separation. 3 timeslot aggregations is 13 assumed for each carrier in each cell. 14

7.3.3.1.1 3 Kmph 15

16

Page 31: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 31 R. Canchi et.al KYOCERA

1 Figure 7-13 Contours of constant Minimum Service Level at 3Kmph -Downlink 2

7.3.3.1.2 120 Kmph 3

4 5

Figure 7-14 Contours of constant Minimum Service Level at 120Kmph -6 Downlink 7

Page 32: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 32 R. Canchi et.al KYOCERA

7.3.3.2 Uplink 1 Figure 7-15 and Figure 7-16 plot the contour of constant uplink minimum service levels for 2 full buffer users per sector versus base station separation. 3 timeslot aggregations is assumed 3 for each carrier in each cell. 4 5 6

7.3.3.2.1 3 kmph 7

8

Figure 7-15 Contours of constant minimum service level at 3Kmph - Uplink 9

Page 33: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 33 R. Canchi et.al KYOCERA

7.3.3.2.2 120 kmph 1

2 Figure 7-16 Contours of constant minimum service level at 120Kmph – Uplink 3

4

7.3.4 Aggregated Throughput vs. Base station Separation 5

7.3.4.1 DOWNLINK 6

7 8

Figure 7-17 Contours of constant minimum service level at 3kmph –Downlink 9

Page 34: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 34 R. Canchi et.al KYOCERA

1 Figure 7-18 Contours of constant minimum service level at 120Kmph – 2

Downlink 3 4

7.3.4.2 UPLINK 5 6

7 Figure 7-19 Contours of constant minimum service level at 3kmph –Uplink 8

9 10

Page 35: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 35 R. Canchi et.al KYOCERA

1 Figure 7-20 Contours of constant minimum service level at 120kmph -Uplink 2

7.4 Fairness criteria 3

The CDF of the normalized throughput with respect to average user throughput was 4 determined for a cell radius of 1km. 5

Table 7-1 Suburban Pedestrian B Case 6 7

Normalized throughput with respect to average user throughput

Uplink Downlink

<0.1 0.001% 0.002% <0.2 0.006% 0.013% <0.5 0.823% 1.128%

8 9

Table 7-2 Suburban Vehicular B Case 10 11

Normalized throughput with respect to average user throughput

Uplink Downlink

<0.1 0.003% 0.887% <0.2 0.017% 1.738% <0.5 1.257% 9.310%

12

8 Simulations Results Summary 13 14 Downlink average spectral efficiency = 15

Page 36: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 36 R. Canchi et.al KYOCERA

1211

5.2sec)5sec/1090(3sectors 57sec57

×××× MHzmslot

torsinthroughputtotalaggregateDownlinkµ

1

2 Uplink average spectral efficiency = 3

1211

5.2sec)5sec/545(3sectors 57sec57

×××× MHzmslot

torsinthroughputtotalaggregateUplinkµ

4

5 6 *Downlink time slot duration: 1090 μsec, Downlink time slot duration: 545 μsec 7 *timeframe duration : 5msec 8 9

10 Spectral Efficiency @pedestrian B Spectral Efficiency @Vehicular B

Uplink 3.018 2.479

Downlink 4.063 1.699

9 Practical System Results 11 The proposed MBTDD 625k-MC (BEST-WINE)’s base system HC-SDMA [1] has been 12 implemented and tested in some countries. The section illustrates the performance results 13 using spatial channels delivering high spectrum efficiency in Australia. 14

HC-SDMA [1] implemented spatial channel testing on Nov 7th 2003 at North Sydney (North 15 ride). Base station had 12 dipole antennas on a 25m high tower and user terminals were of 16 PCMCIA type as shown in Figure 9-1. Total 5MHz bandwidth (625kHz x 8Carrier) was used 17 for performance testing. The base station performs 8 carrier communications, including BCH, 18 and 3 spatial channels simultaneously. User terminal needs to use 625kHz bandwidths for 19 1Mbps communication. Therefore, base station delivered the following data rates to a total of 20 24 (3 × 8) users simultaneously. 21 22 User terminal data rate without BCH : Uplink 1,061 kbps 23 Downlink 346 kbps 24 User terminal data rate with BCH : Uplink 707 kbps 25 Downlink 231 kbps 26 27 So, Aggregate data rate (1,061 kbps + 346 kbps) × 7 Carrier × 3 Spatial 28 + (707 kbps + 231 kbps) × 1 Carrier × 3 Spatial ≅ 32.4 Mbps. 29 30 HC-SDMA [1] system could deliver aggregate data rate ≅ 32.4 Mbps. The corresponding 31 maximum spectrum efficiency that is achieved in 5MHz band is 32.4 Mbps / 5 MHz ≅ 6.5 32 bit/sec/Hz/cell. 33 34 35

Page 37: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 37 R. Canchi et.al KYOCERA

Figure 9-1 25m-high Tower, User terminal and Sydney MAP 1

The test result for 24 terminals communication achieved a total of 29.6Mbps. Figure 9-2 2 show throughput result for downlink performance. The logical maximum data rate is 3 32.4Mbps as already stated. From this result, spatial throughput efficiency is computed as 4 29.6Mbps / 32.4 Mbps ≅ 0.913 91.3%. 5 Furthermore, the test achieved spectrum efficiency is computed as 29.6 Mbps / 5 MHz ≅ 5.9 6 bit/sec/Hz/cell. 7

8

9 10

Figure 9-2: Downlink Date Rate Results 11

Table 9-1 Date rate and spectrum efficiency test results of HC-SDMA in 12 Australia 13

Data Flow Direction

Typical/Terminal Total Data Rates/Base

station

Spectrum Efficiency

(bit/sec/Hz/sector)

1Mbps 21Users

700Kbps 3Users

Page 38: January 6, 2006 IEEE C802.20-05/77r11977/05/20  · 2006-JAN-06 IEEE C802.20-05/77r1 Submission Page 2 R. Canchi et.al KYOCERA 1 2 3 4 5 6 7 8 9 10 11 12 MBTDD 625k-MC∗ 13 14 (BEST-WINE)2006-JAN-06

2006-JAN-06 IEEE C802.20-05/77r1

Submission Page 38 R. Canchi et.al KYOCERA

Downlink 942kbps 22.6Mbps 6.8

Uplink 290kbps 7.0Mbps 4.2

Total 1,232kbps 29.6Mbps 5.9

1 2


Recommended