+ All Categories
Home > Documents > Joan Vaccaro Joe Spring Anthony Chefles

Joan Vaccaro Joe Spring Anthony Chefles

Date post: 24-Jan-2016
Category:
Upload: holleb
View: 28 times
Download: 0 times
Share this document with a friend
Description:
Quantum Polling. Joan Vaccaro Joe Spring Anthony Chefles. Griffith University. PRA 75, 012333 (2007), quant-ph/050 4 161. ~ Hillery et al. PLA 349 75 (2006), quant-ph/050 5 041. Uni of Hertfordshire. HP Labs, Bristol. QUantum PRoperties Of DIstributed Systems. scalable. - PowerPoint PPT Presentation
16
1 CQCT Feb 07 Griffith University Joan Vaccaro Joe Spring Anthony Chefles Quantum Polling HP Labs, HP Labs, Bristol Bristol Griffith Griffith University University Uni of Uni of Hertfordshire Hertfordshire QUantum PRoperties Of DIstributed Systems PRA 75, 012333 (2007), quant-ph/0504161 ~ Hillery et al. PLA 349 75 (2006), quant-ph/0505041
Transcript
Page 1: Joan Vaccaro Joe Spring Anthony Chefles

1CQCT Feb 07 Griffith University

Joan VaccaroJoe SpringAnthony Chefles

Quantum PollingQuantum Polling

HP Labs,HP Labs,

BristolBristol

Griffith Griffith UniversityUniversity

Uni of Uni of HertfordshireHertfordshire

QUantumPRoperties OfDIstributed Systems

PRA 75, 012333 (2007), quant-ph/0504161~ Hillery et al. PLA 349 75 (2006), quant-ph/0505041

Page 2: Joan Vaccaro Joe Spring Anthony Chefles

2CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

~ small scale quantum processing

quantum data security

QKD – commercial…

other (incl. multiparty) protocols

Quantum Fingerprinting Quantum Seals Authentication of Quantum MessagesQuantum Broadcast Communication Quantum Anonymous TransmissionsQuantum ExamSecret Sharing

IntroductionIntroduction

Page 3: Joan Vaccaro Joe Spring Anthony Chefles

3CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

~ Small scale quantum processing

Quantum data security

QKD – 2 party protocols – commercial…

Other (incl. multiparty) protocols

Quantum Broadcast Communication Quantum Fingerprinting Quantum Seals Authentication of Quantum MessagesQuantum Anonymous TransmissionsQuantum Exam

Secret Sharing

IntroductionIntroductionQuantum Fingerprinting [Buhrman…PRL 87, 167902 (2003)]fingerprint: smaller string ~ uniquely identifies message. quantum fingerprints of classical messages are exp. smaller

Quantum Seals [Bechmann-Pasquinucci quant-ph/0303173]encode classical message in quantum state

(0 |0>|0>|f>, 1|1>|1>|f>, order of bits is random, |f>=|0>+ei|1>) easily read (majority vote) – can detect if message has been read

Authentication of Quantum Messages [Barnum… quant-ph/0205128]allows Bob to check that message has not been alterede.g. distribute EPR pairs, use purity checking, teleport,…

Quantum Anonymous Transmissions [Christandl… quant-ph/0409201]share GHZ state, pi phase, Hadamard, measure – announce, answer is mod 2. Can also share entanglement with “anon Bob”

Quantum Exam [Nguyen PLA 350, 174 (2006)]share GHZ states – local meas. gives shared random class. key– use key to send common exam text and the individual answers.

Secret Sharing [Hillery…, PRA 59 1829 ;Cleve…PRL 83 648 (1999)]

Page 4: Joan Vaccaro Joe Spring Anthony Chefles

4CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Cleve, Gottesman & Lo, PRL 83, 648 (1999)

(n,k) threshold scheme - n shares - need k pieces to reveal secret

)1001()1100(10

Quantum (2,2) threshold scheme

Secret sharing

Classical (2,2) threshold scheme: - two secret numbers m, c - encode as linear equation y = m x + c

quantum secret

c

0 x

y k = 2, n = 2

Shamir, ACM 22, 612 (1979)

(x1, y1)

(x2, y2)slope = m

e.g. distribute key to 2 people

Page 5: Joan Vaccaro Joe Spring Anthony Chefles

5CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Cleve, Gottesman & Lo, PRL 83, 648 (1999)

)1001()1100(10

Quantum (2,2) threshold scheme

quantum secret partial traces

(n,k) threshold scheme - n shares - need k pieces to reveal secret

Secret sharing

Classical (2,2) threshold scheme: - two secret numbers m, c - encode as linear equation y = m x + c

c

0 x

y k = 2, n = 2

Shamir, ACM 22, 612 (1979)

(x1, y1)

(x2, y2)slope = m

e.g. distribute key to 2 people

Page 6: Joan Vaccaro Joe Spring Anthony Chefles

6CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Secure surveySecure survey

1

2

N

Distributed ballot state

N

n

nnNN

B0

VT01

1

Estimate (or gift) Q1 of each person is: - private to each person - nonbinding (receipt not nec.)Net amount is known publicly

tallyman voting “booth”T V

N “particles”

0B

Page 7: Joan Vaccaro Joe Spring Anthony Chefles

7CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

1st person applies local phase shift for estimate Q1 at voting booth

VV

ˆnene niNi

VVˆ nnnN

for = Q1 1

2

N

1Q

Secure surveySecure survey

Distributed ballot state

N

n

nnNN

B0

VT01

1

Estimate (or gift) Q1 of each person is: - private to each person - nonbinding (receipt not nec.)Net amount is known publicly

tallyman voting “booth”T V

N “particles”

Nieˆ

0B

Page 8: Joan Vaccaro Joe Spring Anthony Chefles

8CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

tallymanT

Effect on ballot state:

N

n

i

i

nnNeN

BeB

nQ

NQ

0VT

01

1

1

1

1

ˆ

phase value is not available locally

11VT Trˆ BB 11TV Trˆ BB

Partial traces:

voting “booth”V

1

2

N

1Q

N

n

nNnNN 01

1

N

n

nnN 01

1

Secrecy:

Nieˆ

0B

1B

Page 9: Joan Vaccaro Joe Spring Anthony Chefles

9CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

….after the k th person:

N

n

k

nnNeN

BeB

nMi

NMi

0VT

0

1

1

ˆ

i

iQMwhere is net amount

Global phase-state basis Pegg & Barnett PRA 39, 1665 (1989)

N

nm nnNe

N

nmi

0VT

)(

1

1

nmnm ,

Global measurement yields M and thus net amount M

1

2

N

M

NmB mk ,1,0: tallymanT

voting “booth”V

kB

Page 10: Joan Vaccaro Joe Spring Anthony Chefles

10CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Local attack – colluding to learn amounts offered:

N

n

dnnN

0 2VTVT 2

Rewrite ballot state as:

A measures the phase angle locally and finds

V

Subsequent amounts tendered accumulate locally:

VV M

C then measures the phase angle

Collusion by A and C reveals net amount M .

value of is random

m

mimeV

n

nNineT

Tallyman detects attack by measuring total particle number (with prob. ~ 11/N )

Imagine:

Detection:

Page 11: Joan Vaccaro Joe Spring Anthony Chefles

11CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Defence - multiparty ballot state:

N

n

nnnnNKN

B0

VVVT0 )(1

1

K booths: one for each person

N

nk nnnnNKe

NB nMi

0VVVT

)(1

1 )(

N

n

nmim nnnnNKe

N 0VVVT

)( )(1

1

M

tallyman voting boothsT

V

Global Measurement in thebasis yields and thus net amount M

MM

Page 12: Joan Vaccaro Joe Spring Anthony Chefles

12CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Problem: not restricted to 1 vote/person

Solution: use

– restricted voting system– extra (trusted) electoral agent

Vote of each person is: - private, receipt-free - limited to 1 voteTally of votes is known publicly

Use multiparty ballot state:

N

n

nnnnNKN

B0

VVVT0 )(1

1

“No” = zero phase shift

“Yes” = phase shift of

Secure votingSecure voting

MVote:

Page 13: Joan Vaccaro Joe Spring Anthony Chefles

13CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Restricted voting systemVoter prepares qutrit pairs

(basis ) 1,0,1 0110Yes""

0110No""

21

21

one qutrit is given to Tallyman,

other qutrit is given to a local Electoral Agent

Extra (trusted) electoral agent

Vote is recorded in ballot state using the local operation

)ˆ21

41(ˆ)ˆ

21

41()ˆ( zNizNNi

ee

X""1

1X""

0ET0

N

n

nnNN

B

qutritsballot

tallyman electoral agent

Page 14: Joan Vaccaro Joe Spring Anthony Chefles

14CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Attack – colluding by Tallyman and Electoral Agent to measure state of qutrit pairs

Defence – increase number of Electoral Agents

100010001Yes""

100010001No""

31

31

X"")(21

1X""

0EET0

N

n

nnnNN

B

Example: triplet of qutrits

2 Agents

2 AgentsTallyman

Tallyman

Reduces risk of collusion (all parties need to be involved)

Reduces information available to each Agent

Reduces risk of collusion (all parties need to be involved)

Reduces information available to each Agent

Page 15: Joan Vaccaro Joe Spring Anthony Chefles

15CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

Quantum scheme computational complexity: distribute & collect ballot state to N voters = 2N

Comparison

Classical scheme

Chaum’s secret ballot protocol unconditionally secure - uses blind signature and sender untraceability - share one-time pads between all pairs of voters

computational complexity:distribute 1-time pads

= N(N-1) 2

order N speedup

T

D. Chaum EuroCrypt '88, 177 (1998)

101101011001001101101101

011001001101

adv. is scalability!

Page 16: Joan Vaccaro Joe Spring Anthony Chefles

16CQCT Feb 07

Introduction Secure Survey Secure Voting Summary

Griffith University

secure survey• multiparty ballot state• each offer is anonymous

secure voting• 1 vote per voter• extra Electoral Agents• receipt-free

SummarySummary

advocate small scale processing


Recommended