+ All Categories
Home > Documents > (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality:...

(joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality:...

Date post: 14-Feb-2019
Category:
Upload: vuongtu
View: 216 times
Download: 0 times
Share this document with a friend
258
(joint work with Sebastiano Vigna et al.) Axioms for centrality: rank monotonicity for PageRank Paolo Boldi Università degli Studi di Milano
Transcript
Page 1: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

(joint work with Sebastiano Vigna et al.)

Axioms for centrality: rank monotonicity for PageRank

Paolo BoldiUniversità degli Studi di Milano

Page 2: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC

Page 3: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

Page 4: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

❖ Orienteering in the centrality jungle

Page 5: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

❖ Orienteering in the centrality jungle

❖ Some important centrality indices

Page 6: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

❖ Orienteering in the centrality jungle

❖ Some important centrality indices

❖ Why axioms

Page 7: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

❖ Orienteering in the centrality jungle

❖ Some important centrality indices

❖ Why axioms❖ Orienteering in the axiom jungle

Page 8: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

❖ Orienteering in the centrality jungle

❖ Some important centrality indices

❖ Why axioms❖ Orienteering in the axiom jungle

❖ Some important axioms

Page 9: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

❖ Orienteering in the centrality jungle

❖ Some important centrality indices

❖ Why axioms❖ Orienteering in the axiom jungle

❖ Some important axioms

❖ Focus on rank monotonicity for PageRank

Page 10: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

TOC❖ Why centrality

❖ Orienteering in the centrality jungle

❖ Some important centrality indices

❖ Why axioms❖ Orienteering in the axiom jungle

❖ Some important axioms

❖ Focus on rank monotonicity for PageRank

❖ Conclusions

Page 11: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

Page 12: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

Page 13: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Document Repertoire- pages retrieved by Google- items on sale on Amazon- members of facebook- tweets posted by your friends- photographs on Instagram

Page 14: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Page 15: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Page 16: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Set of Queries (query language)- SE query - product recommendation- new-friend suggestion- tweets to be shown

Q

Page 17: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Q

Page 18: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Q

Page 19: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Q

Result- a selected

subset S⊆D- with a score

(typically: a non-negative real number) assigned to every element of S

Page 20: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System

D

Q

Result- a selected

subset S⊆D- with a score

(typically: a non-negative real number) assigned to every element of S

IMPORTANT

Often D is endowed

with a graph structure

Page 21: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 1st simplification

D

Q

Result- a selected

subset S⊆D- with a score

(typically: a non-negative real number) assigned to every element of S

Page 22: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 1st simplification

D

Q

No selection, only scores

Result- a selected

subset S⊆D- with a score

(typically: a non-negative real number) assigned to every element of S

Page 23: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 1st simplification

D

Q

Result- a score

assigned to every element of D

No selection, only scores

Page 24: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 1st simplification

D

Q

Result- a score

assigned to every element of D

No selection, only scores

The system can be formally represented

as a function:c: Q × D → ℝ

Page 25: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 2nd simplification

D

Q

Result- a score

assigned to every element of D

The system can be formally represented

as a function:c: Q × D → ℝ

Page 26: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 2nd simplification

D

Q

Result- a score

assigned to every element of D

Scores do not depend

on the query

The system can be formally represented

as a function:c: Q × D → ℝ

Page 27: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 2nd simplification

D

Q

Result- a score

assigned to every element of D

Scores do not depend

on the query

The system can be formally represented

as a function:c: Q × D → ℝ

Page 28: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 2nd simplification

D

Q

Result- a score

assigned to every element of D

Scores do not depend

on the query

The system can be formally represented

as a function:c: D → ℝ

Page 29: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 3rd simplification

D

Result- a score

assigned to every element of D

The system can be formally represented

as a function:c: D → ℝ

Page 30: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 3rd simplification

D

Result- a score

assigned to every element of D

Scores depend

only on the linkage

structure on D

The system can be formally represented

as a function:c: D → ℝ

Page 31: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

IR System: 3rd simplification

D

Result- a score

assigned to every element of D

Scores depend

only on the linkage

structure on D

Page 32: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality

Page 33: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality

❖ The system, given a graph G assigns a score to every node of G: cG: VG → ℝ

Page 34: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality

❖ The system, given a graph G assigns a score to every node of G: cG: VG → ℝ

❖ The nodes of G are precisely our documents (VG =D)

Page 35: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality

❖ The system, given a graph G assigns a score to every node of G: cG: VG → ℝ

❖ The nodes of G are precisely our documents (VG =D)

❖ This is what people refers to as a centrality index (or measure, or score, or just “centrality”)

Page 36: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality in social sciences

Page 37: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality in social sciences

❖ First works by Bavelas at MIT (1946)

Page 38: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality in social sciences

❖ First works by Bavelas at MIT (1946)

❖ This sparked countless works (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp 1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971; Czapiel 1974…)

Page 39: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality in social sciences

❖ First works by Bavelas at MIT (1946)

❖ This sparked countless works (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp 1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971; Czapiel 1974…)

❖ Brought to CS through IR

Page 40: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Centrality in social sciences

❖ First works by Bavelas at MIT (1946)

❖ This sparked countless works (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp 1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971; Czapiel 1974…)

❖ Brought to CS through IR

❖ Key role in modern IR (=search engines)

Page 41: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of centrality indices

Page 42: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of centrality indices

❖ Path-based indices, based on the number of paths or shortest paths (geodesics) passing through a vertex [betweenness, Katz, …]

Page 43: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of centrality indices

❖ Path-based indices, based on the number of paths or shortest paths (geodesics) passing through a vertex [betweenness, Katz, …]

❖ Spectral indices, based on some linear-algebra construction [PageRank, Seeley, …]

Page 44: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of centrality indices

❖ Path-based indices, based on the number of paths or shortest paths (geodesics) passing through a vertex [betweenness, Katz, …]

❖ Spectral indices, based on some linear-algebra construction [PageRank, Seeley, …]

❖ Geometric indices, based on distances from a vertex to other vertices [closeness, harmonic, …]

Page 45: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of centrality indices

❖ Path-based indices, based on the number of paths or shortest paths (geodesics) passing through a vertex [betweenness, Katz, …]

❖ Spectral indices, based on some linear-algebra construction [PageRank, Seeley, …]

❖ Geometric indices, based on distances from a vertex to other vertices [closeness, harmonic, …]

❖ (Actually, the first two families are largely the same, even if that wasn’t fully understood for a long time)

Page 46: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Path-based centralities

Page 47: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Path-based centralities

❖ Centrality depends on the paths entering (or passing through) the node

Page 48: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Path-based centralities

❖ Centrality depends on the paths entering (or passing through) the node

❖ Katz’s index is a paradigmatic example

Page 49: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Path-based centralities

❖ Centrality depends on the paths entering (or passing through) the node

❖ Katz’s index is a paradigmatic example

❖ Among them: betweenness (Anthonisse 1971), über-popular among social scientists

Page 50: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 51: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Betweenness centrality: cbetw(x) =

X

y,z 6=x

�yz(x)

�yz

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 52: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Betweenness centrality:

Fraction of shortest paths from y to z passing through x

cbetw(x) =X

y,z 6=x

�yz(x)

�yz

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 53: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Betweenness centrality: cbetw(x) =

X

y,z 6=x

�yz(x)

�yz

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 54: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Betweenness centrality:

❖ Katz centrality:

cbetw(x) =X

y,z 6=x

�yz(x)

�yz

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 55: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Betweenness centrality:

❖ Katz centrality:

cbetw(x) =X

y,z 6=x

�yz(x)

�yz

cKatz(x) =1X

t=0

↵t⇧x(t) = 11X

t=0

↵tGt

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 56: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Betweenness centrality:

❖ Katz centrality: # of paths of length t ending in x

cbetw(x) =X

y,z 6=x

�yz(x)

�yz

cKatz(x) =1X

t=0

↵t⇧x(t) = 11X

t=0

↵tGt

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 57: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Betweenness centrality:

❖ Katz centrality:

cbetw(x) =X

y,z 6=x

�yz(x)

�yz

cKatz(x) =1X

t=0

↵t⇧x(t) = 11X

t=0

↵tGt

The path tribe: betweenness and Katz (Anthonisse 1971; Katz 1953)

Page 58: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (1)

Page 59: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (1)❖ Eigenvector centrality: consider the left or right dominant eigenvector

of the adjacency matrix

Page 60: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (1)❖ Eigenvector centrality: consider the left or right dominant eigenvector

of the adjacency matrix

❖ First works by Edmund Landau in 1895 on matrices coming from chess tournaments

Page 61: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (1)❖ Eigenvector centrality: consider the left or right dominant eigenvector

of the adjacency matrix

❖ First works by Edmund Landau in 1895 on matrices coming from chess tournaments

❖ Motivation: take a matrix M that in entry Mxy has 1 if x won playing with y, 0 if he/she lost, 1/2 for a draw

Page 62: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (1)❖ Eigenvector centrality: consider the left or right dominant eigenvector

of the adjacency matrix

❖ First works by Edmund Landau in 1895 on matrices coming from chess tournaments

❖ Motivation: take a matrix M that in entry Mxy has 1 if x won playing with y, 0 if he/she lost, 1/2 for a draw

❖ M1T (the row sums) are a nice score; M21T even better, but it oscillates: so take score s such that MsT = λsT

Page 63: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (1)❖ Eigenvector centrality: consider the left or right dominant eigenvector

of the adjacency matrix

❖ First works by Edmund Landau in 1895 on matrices coming from chess tournaments

❖ Motivation: take a matrix M that in entry Mxy has 1 if x won playing with y, 0 if he/she lost, 1/2 for a draw

❖ M1T (the row sums) are a nice score; M21T even better, but it oscillates: so take score s such that MsT = λsT

❖ Berge (1958) extends to general social graphs and develops the theory

Page 64: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (1)❖ Eigenvector centrality: consider the left or right dominant eigenvector

of the adjacency matrix

❖ First works by Edmund Landau in 1895 on matrices coming from chess tournaments

❖ Motivation: take a matrix M that in entry Mxy has 1 if x won playing with y, 0 if he/she lost, 1/2 for a draw

❖ M1T (the row sums) are a nice score; M21T even better, but it oscillates: so take score s such that MsT = λsT

❖ Berge (1958) extends to general social graphs and develops the theory

❖ A similar idea was proposed by Seeley to evaluate children popularity

Page 65: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: Seeley index (Seeley 1949)

Page 66: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: Seeley index (Seeley 1949)

❖ Basic idea: in a group of children, a child is as popular as the sum of the popularities of the children who like him, but popularities are divided evenly among friends:

Page 67: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: Seeley index (Seeley 1949)

❖ Basic idea: in a group of children, a child is as popular as the sum of the popularities of the children who like him, but popularities are divided evenly among friends: cSeeley(x) =

X

y!x

cSeeley(y)

d+(y)

Page 68: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: Seeley index (Seeley 1949)

❖ Basic idea: in a group of children, a child is as popular as the sum of the popularities of the children who like him, but popularities are divided evenly among friends:

❖ In general it is a left dominant eigenvector of Gr

cSeeley(x) =X

y!x

cSeeley(y)

d+(y)

Page 69: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (2)

Page 70: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (2)❖ In 1998, Page, Brin, Motwani and Winograd propose a

spectral ranking for the web: PageRank

Page 71: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (2)❖ In 1998, Page, Brin, Motwani and Winograd propose a

spectral ranking for the web: PageRank

❖ After some changes in the definition, it stabilizes to a Markov chain αGr + (1 – α)1Tv

Page 72: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (2)❖ In 1998, Page, Brin, Motwani and Winograd propose a

spectral ranking for the web: PageRank

❖ After some changes in the definition, it stabilizes to a Markov chain αGr + (1 – α)1Tv

❖ Gr is Seeley’s matrix, α is the damping factor and v the preference vector

Page 73: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Spectral centralities (2)❖ In 1998, Page, Brin, Motwani and Winograd propose a

spectral ranking for the web: PageRank

❖ After some changes in the definition, it stabilizes to a Markov chain αGr + (1 – α)1Tv

❖ Gr is Seeley’s matrix, α is the damping factor and v the preference vector

❖ This is just Katz’s index with ℓ1-normalization, i.e., (1 – α)v∑t≥0 αtGrt = (1 – α)v(1 – αGr)–1

Page 74: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: PageRank (Brin, Page, Motwani, Winograd 1999)

Page 75: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: PageRank (Brin, Page, Motwani, Winograd 1999)

❖ The recursive version of the definition (for uniform preference) is

cpr(x) = α∑y→x

cpr(x)

d+(x)+ (1 − α)vx

Page 76: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: PageRank (Brin, Page, Motwani, Winograd 1999)

❖ The recursive version of the definition (for uniform preference) is

cpr(x) = α∑y→x

cpr(x)

d+(x)+ (1 − α)vx

Page 77: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The spectral tribe: PageRank (Brin, Page, Motwani, Winograd 1999)

❖ The recursive version of the definition (for uniform preference) is

❖ … or the dominant eigenvector of the Google matrix

cpr(x) = α∑y→x

cpr(x)

d+(x)+ (1 − α)vx

αGr + (1 − α)1Tv

Page 78: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Geometric centralities and neighbourhood functions

Page 79: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Define the distance-count function

Geometric centralities and neighbourhood functions

DG(x, t) = #{z ∣ dG(z, x) = t}

Page 80: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Define the distance-count function

❖ DG(x,-) is the distance-count vector of x

Geometric centralities and neighbourhood functions

DG(x, t) = #{z ∣ dG(z, x) = t}

Page 81: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Define the distance-count function

❖ DG(x,-) is the distance-count vector of x

❖ BTW: in 1-to-1 correspondence with the better known “neighbourhood function”

Geometric centralities and neighbourhood functions

DG(x, t) = #{z ∣ dG(z, x) = t}

Page 82: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Define the distance-count function

❖ DG(x,-) is the distance-count vector of x

❖ BTW: in 1-to-1 correspondence with the better known “neighbourhood function”

❖ A geometric centrality is a function of the distance-count vector (i.e., two nodes with the same distance-count vector have the same centrality)

Geometric centralities and neighbourhood functions

DG(x, t) = #{z ∣ dG(z, x) = t}

Page 83: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

Page 84: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Closeness centrality:

cclos(x) =1P

y d(y, x)

The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

Page 85: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Closeness centrality:

Distance from y to x

cclos(x) =1P

y d(y, x)

The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

Page 86: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Closeness centrality:

cclos(x) =1P

y d(y, x)

The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

Page 87: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Closeness centrality:

❖ The summation is over all y such that d(y,x)<∞

cclos(x) =1P

y d(y, x)

The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

Page 88: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Closeness centrality:

❖ The summation is over all y such that d(y,x)<∞

❖ Harmonic centrality:

cclos(x) =1P

y d(y, x)

charm(x) =X

y 6=x

1

d(y, x)

The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

Page 89: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

❖ Closeness centrality:

❖ The summation is over all y such that d(y,x)<∞

❖ Harmonic centrality:

❖ Inspired by (Marchiori, Latora 2000), but may be dated back to (Harris 1954)

cclos(x) =1P

y d(y, x)

charm(x) =X

y 6=x

1

d(y, x)

The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

Page 90: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Making sense of centrality

Page 91: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Making sense of centrality❖ Centrality indices can be studied

Page 92: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Making sense of centrality❖ Centrality indices can be studied

❖ individually (each single centrality index is a world in its own right)

Page 93: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Making sense of centrality❖ Centrality indices can be studied

❖ individually (each single centrality index is a world in its own right)

❖ comparatively

Page 94: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Making sense of centrality❖ Centrality indices can be studied

❖ individually (each single centrality index is a world in its own right)

❖ comparatively

❖ Both kinds of studies can be based on

Page 95: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Making sense of centrality❖ Centrality indices can be studied

❖ individually (each single centrality index is a world in its own right)

❖ comparatively

❖ Both kinds of studies can be based on

❖ external source of ground truth

Page 96: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Making sense of centrality❖ Centrality indices can be studied

❖ individually (each single centrality index is a world in its own right)

❖ comparatively

❖ Both kinds of studies can be based on

❖ external source of ground truth

❖ axioms (abstract desirable/undesirable properties)

Page 97: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Axioms for Centrality

Page 98: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Axioms for Centrality

❖ Various attempts, with different flavours: (Sabidussi 1966), (Nieminen 1973), (Kitti 2012), (Brandes et al. 2012), (B. & Vigna 2014)

Page 99: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Axioms for Centrality

❖ Various attempts, with different flavours: (Sabidussi 1966), (Nieminen 1973), (Kitti 2012), (Brandes et al. 2012), (B. & Vigna 2014)

❖ Sometimes aimed at specific indices (e.g. PageRank): (Chien et al. 2004), (Altman and Tennenholtz 2005)

Page 100: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of axioms

Page 101: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of axioms

❖ Invariance properties

Page 102: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of axioms

❖ Invariance properties

❖ Score-dominance properties

Page 103: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of axioms

❖ Invariance properties

❖ Score-dominance properties

❖ Rank-dominance properties

Page 104: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Orienteering in the jungle of axioms

❖ Invariance properties

❖ Score-dominance properties

❖ Rank-dominance properties

❖ Many other axioms that still need a classification

Page 105: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance properties

Page 106: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance properties

Page 107: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance properties

❖ Two graphs G and G’…

Page 108: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

Page 109: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints

Page 110: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints cG(x) = cG′�(x′�)

Page 111: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by isomorphism

Page 112: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by isomorphism

❖ If G and G’ are isomorphic (via isomorphism f: G → G’)

Page 113: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by isomorphism

❖ If G and G’ are isomorphic (via isomorphism f: G → G’)

❖ and f(x)=x’

Page 114: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by isomorphism

❖ If G and G’ are isomorphic (via isomorphism f: G → G’)

❖ and f(x)=x’

cG(x) = cG′�(x′�)

Page 115: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by isomorphism

❖ If G and G’ are isomorphic (via isomorphism f: G → G’)

❖ and f(x)=x’

cG(x) = cG′�(x′�)

This is so fundamental that it is often given for granted aspart of the notion of centrality!

Page 116: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by neighbours

Page 117: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by neighbours❖ Let G be a graph and x, x’ be two nodes such that

Page 118: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by neighbours❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)=NG-(x’) and NG+(x)=NG+(x’)

Page 119: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by neighbours❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)=NG-(x’) and NG+(x)=NG+(x’)

cG(x) = cG(x′�)

Page 120: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by neighbours❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)=NG-(x’) and NG+(x)=NG+(x’)

cG(x) = cG(x′�)

“Two nodes with the same (in- and out-)neighbours have

the same centrality”

Page 121: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by neighbours…

Page 122: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by neighbours…

❖ It is easy to verify that all geometric centralities are invariant by neighbours

Page 123: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by neighbours…

❖ It is easy to verify that all geometric centralities are invariant by neighbours

❖ Same for spectral centralities

Page 124: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by in-neighbours

Page 125: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by in-neighbours

❖ Let G be a graph and x, x’ be two nodes such that

Page 126: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by in-neighbours

❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)=NG-(x’)

Page 127: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by in-neighbours

❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)=NG-(x’)

cG(x) = cG(x′�)

Page 128: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Invariance by in-neighbours

❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)=NG-(x’)

cG(x) = cG(x′�)

“Two nodes with the same in-neighbours have the same centrality”

Page 129: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ A superficial observer may believe that geometric centralities satisfy invariance by in-neighbours

Page 130: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ A superficial observer may believe that geometric centralities satisfy invariance by in-neighbours

x x’

NG-(x)=NG-(x’)

Page 131: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ A superficial observer may believe that geometric centralities satisfy invariance by in-neighbours

x x’

z

A shortest path from z to x

Page 132: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ A superficial observer may believe that geometric centralities satisfy invariance by in-neighbours

x x’

z

A shortest path from z to xcan be turned into a

shortest path from z to x’

Page 133: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ A superficial observer may believe that geometric centralities satisfy invariance by in-neighbours

x x’

z

∀z ∉ {x, x′�} dG(z, x) = dG(z, x′�)

Page 134: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ A superficial observer may believe that geometric centralities satisfy invariance by in-neighbours

x x’

z

DG(x, − ) and DG(x′�, − ) are almost the same...

5 0 3 7 2 0 0 4 1 …DG(x, − )

5 0 3 6 2 0 0 5 1 …DG(x′�, − )

1 2 3 4 5 6 7 8 9 …

1 2 3 4 5 6 7 8 9 …

Page 135: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ A superficial observer may believe that geometric centralities satisfy invariance by in-neighbours

x x’

z

DG(x, − ) and DG(x′�, − ) are almost the same...

5 0 3 7 2 0 0 4 1 …DG(x, − )

5 0 3 6 2 0 0 5 1 …DG(x′�, − )

The difference (+1 in one position, -1 in another position) depends on the values of d(x,x’) and d(x’,x)

1 2 3 4 5 6 7 8 9 …

1 2 3 4 5 6 7 8 9 …

Page 136: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

Page 137: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ So, in general, geometric centralities are not invariant by in-neighbours

Page 138: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ So, in general, geometric centralities are not invariant by in-neighbours

❖ They are on symmetric (i.e. undirected) graphs, though

Page 139: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Invariance by in-neighbours…

❖ So, in general, geometric centralities are not invariant by in-neighbours

❖ They are on symmetric (i.e. undirected) graphs, though

❖ But spectral centralities (e.g. PageRank) are invariant by in-neighbours

Page 140: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score-dominance properties

Page 141: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score-dominance properties

Page 142: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score-dominance properties

❖ Two graphs G and G’…

Page 143: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

Page 144: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints

Page 145: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints

cG(x) ≥ cG′�(x′�)

Page 146: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints

❖ Sometimes > is required (strict dominance)

cG(x) ≥ cG′�(x′�)

Page 147: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Dominance by in-neighbours(Schoch and Brandes, 2016)

Page 148: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Dominance by in-neighbours(Schoch and Brandes, 2016)

❖ Let G be a graph and x, x’ be two nodes such that

Page 149: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Dominance by in-neighbours(Schoch and Brandes, 2016)

❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)⊆NG-(x’)

Page 150: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Dominance by in-neighbours(Schoch and Brandes, 2016)

❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)⊆NG-(x’) cG(x) ≤ cG(x′�)

Page 151: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Dominance by in-neighbours(Schoch and Brandes, 2016)

❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)⊆NG-(x’)

❖ Observe: if a measure satisfies this property, it is also invariant by in-neighbours

cG(x) ≤ cG(x′�)

Page 152: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Dominance by in-neighbours(Schoch and Brandes, 2016)

❖ Let G be a graph and x, x’ be two nodes such that

❖ NG-(x)⊆NG-(x’)

❖ Observe: if a measure satisfies this property, it is also invariant by in-neighbours

❖ ⇒ geometric centralities do not satisfy “dominance by in-neighbours”

cG(x) ≤ cG(x′�)

Page 153: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Score-dominance by arc addition (a.k.a. score monotonicity)

Page 154: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Score-dominance by arc addition (a.k.a. score monotonicity)

❖ If G is a graph not containing the arc x→y

Page 155: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Score-dominance by arc addition (a.k.a. score monotonicity)

❖ If G is a graph not containing the arc x→y

❖ And G’=G ∪ {x→y}

Page 156: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Score-dominance by arc addition (a.k.a. score monotonicity)

❖ If G is a graph not containing the arc x→y

❖ And G’=G ∪ {x→y}

❖ Then cG′�(y) > cG(y)

Page 157: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Score-dominance by arc addition (a.k.a. score monotonicity)

❖ If G is a graph not containing the arc x→y

❖ And G’=G ∪ {x→y}

❖ Then cG′�(y) > cG(y) “Adding one arc towards y

(strictly) increases its score”

Page 158: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Score-dominance by arc addition (a.k.a. score monotonicity)

❖ If G is a graph not containing the arc x→y

❖ And G’=G ∪ {x→y}

❖ Then

❖ The weak version (with ≥) also makes sense

cG′�(y) > cG(y) “Adding one arc towards y (strictly) increases its score”

Page 159: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score monotonicity (“Axioms for Centrality”, B. & Vigna 2014)

General Strongly connected

Seeley no yes

PageRank yes yes

betweenness no no

Katz yes yes

closeness no yes

harmonic yes yes

Page 160: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Score monotonicity (“Axioms for Centrality”, B. & Vigna 2014)

General Strongly connected

Seeley no yes

PageRank yes yes

betweenness no no

Katz yes yes

closeness no yes

harmonic yes yes

Page 161: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank satisfies score monotonicity

Page 162: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank satisfies score monotonicity

❖ Proved by (Chien, Dwork, Kumar, Simon and Sivakumar 2003) for the case when all nodes have nonzero PageRank

Page 163: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank satisfies score monotonicity

❖ Proved by (Chien, Dwork, Kumar, Simon and Sivakumar 2003) for the case when all nodes have nonzero PageRank

❖ Generalized in (B. and Vigna, 2014) to the case rx > 0

Page 164: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness does not satisfy score monotonicity

z y

x

Page 165: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness does not satisfy score monotonicity

z y

x

cG(y) =1

∑t dG(t, y)=

11

= 1

Page 166: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness does not satisfy score monotonicity

z y

x

cG(y) =1

∑t dG(t, y)=

11

= 1

Page 167: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness does not satisfy score monotonicity

z y

x

cG(y) =1

∑t dG(t, y)=

11

= 1

cG′�(y) =1

∑t dG′ �(t, y)=

11 + 1

=12

Page 168: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness satisfies score monotonicity in the strongly connected case

Page 169: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness satisfies score monotonicity in the strongly connected case

cclos(x) =1P

y d(y, x)

Page 170: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness satisfies score monotonicity in the strongly connected case

❖ On strongly connected graphscclos(x) =

1Py d(y, x)

Page 171: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness satisfies score monotonicity in the strongly connected case

❖ On strongly connected graphs

❖ the summation includes all nodes

cclos(x) =1P

y d(y, x)

Page 172: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness satisfies score monotonicity in the strongly connected case

❖ On strongly connected graphs

❖ the summation includes all nodes

❖ the distances do not increase after adding the new arc

cclos(x) =1P

y d(y, x)

Page 173: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness satisfies score monotonicity in the strongly connected case

❖ On strongly connected graphs

❖ the summation includes all nodes

❖ the distances do not increase after adding the new arc

❖ at least one distance strictly decreases

cclos(x) =1P

y d(y, x)

Page 174: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Closeness satisfies score monotonicity in the strongly connected case

❖ On strongly connected graphs

❖ the summation includes all nodes

❖ the distances do not increase after adding the new arc

❖ at least one distance strictly decreases

❖ So closeness centrality is score monotone on strongly connected graphs!

cclos(x) =1P

y d(y, x)

Page 175: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties

Page 176: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties

Page 177: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties

❖ Two graphs G and G’…

Page 178: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

Page 179: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints

Page 180: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints

❖ The rank of x’ in G’ is “not less” than the rank of x in G

Page 181: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties

❖ Two graphs G and G’…

❖ …and two nodes x∈G and x’∈G’…

❖ …satisfying some constraints

❖ The rank of x’ in G’ is “not less” than the rank of x in GTypically stated on two graphs with the same

set of nodes, and for a single node

Page 182: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties revised(weak version)

Page 183: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties revised(weak version)

❖ Two graphs G and G’ with the same node set V and node x∈V

Page 184: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties revised(weak version)

❖ Two graphs G and G’ with the same node set V and node x∈V

1. ∀z . cG(x) > cG(z) ⟹ cG′�(x) > cG′�(z)

Page 185: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties revised(weak version)

❖ Two graphs G and G’ with the same node set V and node x∈V

1.

2.2.

∀z . cG(x) > cG(z) ⟹ cG′�(x) > cG′�(z)

∀y . cG(x) = cG(y) ⟹ cG′�(x) ≥ cG′�(y)

Page 186: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties revised(strict version)

Page 187: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank-dominance properties revised(strict version)

❖ Two graphs G and G’ with the same node set V and node x∈V

∀z . cG(x) ≥ cG(z) ⟹ cG′�(x) > cG′�(z)

Page 188: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Rank-dominance by arc addition (a.k.a. rank monotonicity)

Page 189: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Rank-dominance by arc addition (a.k.a. rank monotonicity)

❖ If G is a graph not containing the arc x→y

Page 190: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Rank-dominance by arc addition (a.k.a. rank monotonicity)

❖ If G is a graph not containing the arc x→y

❖ And G’=G ∪ {x→y}

Page 191: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Rank-dominance by arc addition (a.k.a. rank monotonicity)

❖ If G is a graph not containing the arc x→y

❖ And G’=G ∪ {x→y}

❖ Then, for all z ∀z . cG(y) > cG(z) ⟹ cG′�(y) > cG′�(z)

∀z . cG(y) = cG(z) ⟹ cG′�(y) ≥ cG′�(z)

Page 192: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Example: Rank-dominance by arc addition (a.k.a. rank monotonicity)

❖ If G is a graph not containing the arc x→y

❖ And G’=G ∪ {x→y}

❖ Then, for all z

❖ For the strict version, the last ≥ should become a >

∀z . cG(y) > cG(z) ⟹ cG′�(y) > cG′�(z)∀z . cG(y) = cG(z) ⟹ cG′�(y) ≥ cG′�(z)

Page 193: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity (“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

General Strongly connected

Seeley no yes

PageRank† yes* yes*

betweenness no no

Katz† yes* yes*

closeness no yes

harmonic yes* yes*

† provided that no node has null preference

Page 194: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity (“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

General Strongly connected

Seeley no yes

PageRank† yes* yes*

betweenness no no

Katz† yes* yes*

closeness no yes

harmonic yes* yes*

(no)

(yes)

(no)

(yes)

(no)

(yes)

(yes)

(yes)

(no)

(yes)

(yes)

(yes)

† provided that no node has null preference

Page 195: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity (“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

General Strongly connected

Seeley no yes

PageRank† yes* yes*

betweenness no no

Katz† yes* yes*

closeness no yes

harmonic yes* yes*

† provided that no node has null preference

Page 196: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity (“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

General Strongly connected

Seeley no yes

PageRank† yes* yes*

betweenness no no

Katz† yes* yes*

closeness no yes

harmonic yes* yes*

† provided that no node has null preference

Page 197: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank and rank monotonicity

Page 198: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Loose (non-strict) rank monotonicity

Page 199: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Loose (non-strict) rank monotonicity❖ For PageRank, with G’=G ∪ {x→y} holds (Chien, Dwork, Kumar, Simon & Sivakumar 2004) for everywhere nonzero score

∀y . cG(y) > cG(z) ⟹ cG′�(y) > cG′�(z)∀y . cG(y) = cG(z) ⟹ cG′�(y) ≥ cG′�(z)

Page 200: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Loose (non-strict) rank monotonicity❖ For PageRank, with G’=G ∪ {x→y} holds (Chien, Dwork, Kumar, Simon & Sivakumar 2004) for everywhere nonzero score

❖ The strict version was proved in (B., Luongo, Vigna 2017) for everywhere nonzero preference

∀y . cG(y) > cG(z) ⟹ cG′�(y) > cG′�(z)∀y . cG(y) = cG(z) ⟹ cG′�(y) ≥ cG′�(z)

∀y . cG(y) ≥ cG(z) ⟹ cG′�(y) > cG′�(z)

Page 201: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Loose vs. strict

Page 202: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Loose vs. strict

❖ The proof in (Chien, Dwork, Kumar, Simon & Sivakumar 2004) exploits the fact that the Google matrix is a regular Markov chain

Page 203: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Loose vs. strict

❖ The proof in (Chien, Dwork, Kumar, Simon & Sivakumar 2004) exploits the fact that the Google matrix is a regular Markov chain

❖ (B., Luongo, Vigna 2017) is based on some properties of M-matrices…

Page 204: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Loose vs. strict

❖ The proof in (Chien, Dwork, Kumar, Simon & Sivakumar 2004) exploits the fact that the Google matrix is a regular Markov chain

❖ (B., Luongo, Vigna 2017) is based on some properties of M-matrices…

❖ …the results have wider applicability (e.g., Katz)

Page 205: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Damped spectral ranking

Page 206: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Damped spectral ranking

❖ Let M be a nonnegative matrix, 0 < α < 1/ρ(M), v a strictly positive vector

Page 207: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Damped spectral ranking

❖ Let M be a nonnegative matrix, 0 < α < 1/ρ(M), v a strictly positive vector

❖ Then, the centrality vector r defined by satisfies strict rank monotonicity, suitably generalised to matrices (see below)

r = v(I − αM)−1

Page 208: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Damped spectral ranking

❖ Let M be a nonnegative matrix, 0 < α < 1/ρ(M), v a strictly positive vector

❖ Then, the centrality vector r defined by satisfies strict rank monotonicity, suitably generalised to matrices (see below)

❖ Applies to PageRank, Katz, …

r = v(I − αM)−1

Page 209: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)C = (I − αM)−1 r = vC

Page 210: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)z

C = (I − αM)−1 r = vCy

Page 211: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)z

C = (I − αM)−1 r = vCy

cwz÷cwy

Page 212: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)z

C = (I − αM)−1 r = vCy

cwz÷cwy

Page 213: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)z

C = (I − αM)−1 r = vC

y

y

cwz÷cwy

Page 214: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)z

C = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

Page 215: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

zC = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

Page 216: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

zC = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

Page 217: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

zC = (I − αM)−1 r = vC

• Then cwy/cwz ≤ q

y

y

cwz÷cwy

÷ cyzcyy

Page 218: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

zC = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

• Then cwy ≤ q cwz

Page 219: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

z

As a consequence if q < 1…

ry = ∑w

vwcwy ≤

C = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

• Then cwy ≤ q cwz

Page 220: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

z

As a consequence if q < 1…

C = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

• Then cwy ≤ q cwz

ry = ∑w

vwcwy ≤ ∑w

vwcwzcyy

cyz

Page 221: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

z

As a consequence if q < 1…

C = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

• Then cwy ≤ q cwz

ry = ∑w

vwcwy ≤ ∑w

vwcwzcyy

cyz≤ ∑

w

vwcwz = rz

Page 222: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

z

As a consequence if q < 1…

Hence:

C = (I − αM)−1 r = vC

y

y

cwz÷cwy

÷ cyzcyy

• Then cwy ≤ q cwz

ry = ∑w

vwcwy ≤ ∑w

vwcwzcyy

cyz≤ ∑

w

vwcwz = rz

Page 223: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

z

As a consequence if q < 1…

Hence:

C = (I − αM)−1 r = vC

• If rz ≤ ry then q ≥ 1• If rz < ry then q > 1

y

y

cwz÷cwy

÷ cyzcyy

• Then cwy ≤ q cwz

ry = ∑w

vwcwy ≤ ∑w

vwcwzcyy

cyz≤ ∑

w

vwcwz = rz

Page 224: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Lemma (ext. Willoughby, 1977)

Assume cyz> 0 and let q = cyy/cyz

z

As a consequence if q < 1…

Hence:

THIS CONDITION IS NECESSARY!

C = (I − αM)−1 r = vC

• If rz ≤ ry then q ≥ 1• If rz < ry then q > 1

y

y

cwz÷cwy

÷ cyzcyy

• Then cwy ≤ q cwz

ry = ∑w

vwcwy ≤ ∑w

vwcwzcyy

cyz≤ ∑

w

vwcwz = rz

Page 225: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

Page 226: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

r = v(I − αM)−1

Page 227: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

r = v(I − αM)−1

Page 228: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

Page 229: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

Page 230: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

only row x is nonzero

Page 231: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

Page 232: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

“old” outneighbours of x

Page 233: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

Page 234: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

only the y-th column is positive

Page 235: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

Page 236: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

PageRank as a special case ofdamped spectral ranking

❖ In the case of PageRank, M=Gr

❖ When adding the arc x→y we obtain a new matrix M’ and

r = v(I − αM)−1

M 0 �M =

0

BBBBBB@

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0. . .0 � 1

d(d+1) . . . 1d . . . 0 0

0 0 . . . 0 . . . 0 00 0 . . . 0 . . . 0 0

1

CCCCCCA

<latexit sha1_base64="PbRjgTce+w/F69vxEfT9UA/38uo=">AAAC8nicjVLLTttAFB27PNLwCmXZzQgEDUJENhvYIKF20w0SSASQ4jQaj6+TEeOxNXONFFn+DDYsaFHFjq/prl/RX+gkzgICi1zpSkfnnrnPCTMpDHreX8f9MDe/sFj7WF9aXllda6x/ujRprjm0eSpTfR0yA1IoaKNACdeZBpaEEq7Cm2+j+NUtaCNSdYHDDLoJ6ysRC87QUr11p3b6Zf/0OJAQYzMIoS9UwbRmw7LglZV1j+7QkQdRiuYd7NEgmE00Jibi/SDWjPtF1Iz2/N3yhbwKRNMJZi0yWyegosmggRb9Ae72GlteyxsbfQv8Cdg6+fHv6Rch5KzX+GOz8jwBhVwyYzq+l2HXJkXBJZT1IDeQMX7D+tCxULEETLcYn6yk25aJaJxq6wrpmH35omCJMcMktMqE4cBMx0bke7FOjvFRtxAqyxEUrwrFuaSY0tH9aSQ0cJRDCxjXwvZK+YDZhaP9JXW7BH965Lfg8qDley3/3G7jK6msRj6TTdIkPjkkJ+Q7OSNtwp3UuXMenJ8uuvfuo/u7krrO5M0GeWXu839xsddF</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="OzaI/3hxNHfUSZsYzctOcZ+l83w=">AAAC8nicjVLNTttAEF67BdLwF+BU9bICAUGIyOZSLkgILj0UiUoEkOIQrdfjZMV6be2OK0WWH6OXHgqo6q1P01ufoq/QTZwDBA4ZaaRP33w7vxtmUhj0vL+O++bt3PxC7V19cWl5ZbWxtn5l0lxzaPNUpvomZAakUNBGgRJuMg0sCSVch3dno/j1V9BGpOoShxl0E9ZXIhacoaV6a07tfPfg/DiQEGMzCKEvVMG0ZsOy4JWVdY/u0JEHUYrmFezRIJhNNCYm4oMg1oz7RdSM9v298om8CkTTCWYtMlsnoKLJoIEW/QHu9RpbXssbG30J/AnYOrn99+vh6P3ni17jj83K8wQUcsmM6fhehl2bFAWXUNaD3EDG+B3rQ8dCxRIw3WJ8spJuWyaicaqtK6Rj9umLgiXGDJPQKhOGAzMdG5GvxTo5xkfdQqgsR1C8KhTnkmJKR/enkdDAUQ4tYFwL2yvlA2YXjvaX1O0S/OmRX4Krw5bvtfwvdhunpLIa+UA2SZP45CM5IZ/IBWkT7qTON+eHc++i+919dH9WUteZvNkgz8z9/R9Datfi</latexit><latexit sha1_base64="kot7j8Jcpi2jdWj1qixZ5/gAMZY=">AAAC8nicjVLPSxtBFJ5dbU1jf0Q99jIYbCPFMNuLXgTRixfBQqNCNoTZ2bfJ4OzsMvNWCMv+GV48KOK1f01v/jedJHuw0UMePPj43jfv50S5khYZe/b8ldV379caH5rrHz99/tLa2LywWWEE9ESmMnMVcQtKauihRAVXuQGeRgouo+uTafzyBoyVmf6NkxwGKR9pmUjB0VHDDa9x9n3v7DBUkGAnjGAkdcmN4ZOqFHOrmox+o1MP4wztG5jRMFxONCNq8V6YGC6CMu7EP4Ld6oV8HogXEyxbZLlOQMf1oKGRozHuDltt1mUzo69BUIM2qe182PrrsooiBY1CcWv7Actx4JKiFAqqZlhYyLm45iPoO6h5CnZQzk5W0R3HxDTJjHONdMa+fFHy1NpJGjllynFsF2NT8q1Yv8DkYFBKnRcIWswLJYWimNHp/WksDQhUEwe4MNL1SsWYu4Wj+yVNt4RgceTX4OJnN2Dd4BdrHx3X62iQr2SbdEhA9skROSXnpEeEl3m33r334KN/5z/6T3Op79Vvtsh/5v/5B6Ko1HM=</latexit>

δ

Page 237: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (1)

Page 238: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (1)

❖ By the Sherman-Morrison formula: for some suitable positive constant 𝜅. For simplicity I will assume 𝜅=1

r′�− r = κδ (I − αM)−1

Page 239: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (1)

❖ By the Sherman-Morrison formula: for some suitable positive constant 𝜅. For simplicity I will assume 𝜅=1

❖ We need to prove that

r′�− r = κδ (I − αM)−1

0 < rz ≤ ry implies r′�z < r′�y

Page 240: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (1)

❖ By the Sherman-Morrison formula: for some suitable positive constant 𝜅. For simplicity I will assume 𝜅=1

❖ We need to prove that

❖ We will in fact prove that

r′�− r = κδ (I − αM)−1

0 < rz ≤ ry implies r′�z < r′�y

0 < rz ≤ ry implies [r′�− r]z < [r′�− r]y

Page 241: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (1)

❖ By the Sherman-Morrison formula: for some suitable positive constant 𝜅. For simplicity I will assume 𝜅=1

❖ We need to prove that

❖ We will in fact prove that

r′�− r = κδ (I − αM)−1

0 < rz ≤ ry implies r′�z < r′�y

0 < rz ≤ ry implies [δ(I − αM)−1]z < [δ(I − αM)−1]y

Page 242: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (2)

Page 243: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (2)

❖ We aim at proving that

0 < rz ≤ ry implies [δ(I − αM)−1]z < [δ(I − αM)−1]y

Page 244: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (2)

❖ We aim at proving that

❖ Let cyz > 0 (the other case is easy), and q = cyy/cyz

0 < rz ≤ ry implies [δ(I − αM)−1]z < [δ(I − αM)−1]y

Page 245: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (2)

❖ We aim at proving that

❖ Let cyz > 0 (the other case is easy), and q = cyy/cyz

0 < rz ≤ ry implies [δ(I − αM)−1]z < [δ(I − αM)−1]y

[δ(1 − αM)−1]y = δycyy − ∑w≠y

|δw |cwy ≥ δyqcyz − ∑w≠y

q |δw |cwz

Page 246: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (2)

❖ We aim at proving that

❖ Let cyz > 0 (the other case is easy), and q = cyy/cyz

❖ By the Lemma,

0 < rz ≤ ry implies [δ(I − αM)−1]z < [δ(I − αM)−1]y

[δ(1 − αM)−1]y = δycyy − ∑w≠y

|δw |cwy ≥ δyqcyz − ∑w≠y

q |δw |cwz

rz ≤ ry ⟹ q ≥ 1

Page 247: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (2)

❖ We aim at proving that

❖ Let cyz > 0 (the other case is easy), and q = cyy/cyz

❖ By the Lemma,

0 < rz ≤ ry implies [δ(I − αM)−1]z < [δ(I − αM)−1]y

[δ(1 − αM)−1]y = δycyy − ∑w≠y

|δw |cwy ≥ δyqcyz − ∑w≠y

q |δw |cwz

rz ≤ ry ⟹ q ≥ 1

≥ δycyz − ∑w≠y

|δw |cwz = [δ(1 − αM)−1]z

Page 248: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (3)

Page 249: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (3)

❖ We in fact proved only

0 < rz ≤ ry implies [δ(I − αM)−1]z ≤ [δ(I − αM)−1]y

Page 250: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Rank monotonicity of PageRank (3)

❖ We in fact proved only

❖ The strict inequality requires more work…

0 < rz ≤ ry implies [δ(I − αM)−1]z ≤ [δ(I − αM)−1]y

Page 251: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Take-home messages

Page 252: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Take-home messages

❖ Centrality is important and ubiquitous

Page 253: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Take-home messages

❖ Centrality is important and ubiquitous

❖ A jungle of indices: taxonomies (and generalizations) are of help

Page 254: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Take-home messages

❖ Centrality is important and ubiquitous

❖ A jungle of indices: taxonomies (and generalizations) are of help

❖ Axiomatization is a good way to make sense of so many indices

Page 255: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Take-home messages

❖ Centrality is important and ubiquitous

❖ A jungle of indices: taxonomies (and generalizations) are of help

❖ Axiomatization is a good way to make sense of so many indices

❖ A jungle of axioms: taxonomies (and generalizations) are of help

Page 256: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Take-home messages

❖ Centrality is important and ubiquitous

❖ A jungle of indices: taxonomies (and generalizations) are of help

❖ Axiomatization is a good way to make sense of so many indices

❖ A jungle of axioms: taxonomies (and generalizations) are of help

❖ Apparently trivial properties fail to hold, or require a lot of work to be proved

Page 257: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Take-home messages

❖ Centrality is important and ubiquitous

❖ A jungle of indices: taxonomies (and generalizations) are of help

❖ Axiomatization is a good way to make sense of so many indices

❖ A jungle of axioms: taxonomies (and generalizations) are of help

❖ Apparently trivial properties fail to hold, or require a lot of work to be proved

❖ Beware, it’s a wild world out there

Page 258: (joint work with Sebastiano Vigna et al.) · Spectral centralities (1) Eigenvector centrality: consider the left or right dominant eigenvector of the adjacency matrix First works

Thanks for your attention!


Recommended