+ All Categories

Kammen

Date post: 21-Jan-2015
Category:
Upload: canaleenergia
View: 435 times
Download: 0 times
Share this document with a friend
Description:
New grid e grid systems to meet development challenges
Popular Tags:
40
New Grid and Smart G id S t G r id S ys t ems to Meet to Meet Development Challenges Professor Daniel M. Kammen Chief Technical Specialist for Renewable Energy and Energy Efficiency July, 2011 The World Bank Rome, Italy Also: Founding Director of the Renewable and Appropriate Energy Laboratory, University of California, Berkeley http://rael.berkeley.edu
Transcript
Page 1: Kammen

New Grid and Smart G id S tGrid Systems

to Meetto Meet Development Challenges

Professor Daniel M. KammenChief Technical Specialist for Renewable Energy and Energy Efficiency

July, 2011

p gy gy yThe World Bank

Rome, Italy

Also: Founding Director of theg

Renewable and Appropriate Energy Laboratory, University of California, Berkeley

http://rael.berkeley.edu

Page 2: Kammen

WORLD BANK LENDING ENERGY PORTFOLIO

MedupiRSA

2010 P tf li i 65% f il f l2010: Portfolio is 65% non-fossil fuel2011: New Energy Strategy (in review)

Page 3: Kammen

CONTENTS

• Building up expanded grid / smart grid capacity

• Short‐term impacts of variable power generation

• Variable generation technologies and planning

• Information management for the new / smart grid

• Transmission Planning and Renewable Energy

2

Page 4: Kammen

PLANNING AFTER DEREGULATION

• Planning was forgotten by many agencies for years…

• Indicative planning used to check if the market (independent decisions by investors) is delivering the required investment

• Planning as the basis to determine investments in non‐competitive areas: transmission and distribution

• Other applications: determine capacity payments or long‐term marginal cost reference price signals used in different forms of private sector contracting

• Rebirth of planning with the introduction of new market designs to ensure supply adequacy based on long‐term organized markets: Competition for the market and not in the market (e.g. Brazil, Colombia)

• Most important: systems assessments and integration key to managing costs and carbon

Page 5: Kammen

TODAY’S GRID

Top‐down control

Demand drives generationD / i ht d l d d

>230kV

Day/night and seasonal demand predictable to better than 3%

Conservative design and operation to d t f ilaccommodate failures

>69kV

Operates well with oneOperates well with one

ISO managed

Utility managedOperates well with oneOperates well with one‐‐way flow and static way flow and static 

conditionsconditions

Page 6: Kammen

THE FUTURE GRID HAS NEW NEEDS

Variable wind and solar generationWind variable at minutes timescale

S l i bl d i l

>230kV

Solar variable at seconds timescale

Solid state inverters reduce inertia in system

l d d dComplicated demand Potential for charging 1 million plug‐in electric vehicles (PEVs) tooverload the distribution system

>69kV

overload the distribution system

Demand response (DR)

Generation behind the meter

f d hSignificant generation and storage at the distribution level

Th ill i tTh ill i tThere will exist a very There will exist a very complex dynamic interaction complex dynamic interaction between load and generation between load and generation 

with unknown resultswith unknown results

+ -

+ - + - + - + - + -

with unknown resultswith unknown results StorageSolar PV & PEVs

Page 7: Kammen

TEAM DEVELOPS NEW TECHNIQUES TO SCALE AND ENHANCE ELECTRIC GRID

PLANNING AND OPERATIONS MODELSPLANNING AND OPERATIONS MODELS

Increasing grid complexity and dynamics (e.g., variable renewable, 100X data rates, 100X nodes). Existing planning codes use single-processor environments

Research focus on algorithms  and approaches for scaling selected codes and methods

Task 1: Develop high resolution models of grid, including distribution system

Solar thermal

Task 2: Use dynamic techniques to model wind, solar, demand response variability

T k 3 S l t h tiTask 3: Scale stochastic optimization algorithms to exploit parallel hardware

Task 4: Implement on HPC platformsTask 4: Implement on HPC platforms

Use of HPC is novel within electric industry and could Use of HPC is novel within electric industry and could revolutionize grid design and operationrevolutionize grid design and operation

Solar PV and wind

6

revolutionize grid design and operationrevolutionize grid design and operation

Page 8: Kammen

UNDERSTANDING PLANNING: SCREENING CURVE ANALYSIS

• Traditional generation planning has similarities with short term economic dispatch operations: definite the least‐cost generation schedule and new additions program for the next 5‐20 years.

• The main difference is that in generation planning a decision has to be made with regard to the new generation plants that should be added to the system to meet expected long run demand at least costthe system to meet expected long‐run demand at least‐cost

MW20,000

~ 6 % annual demand growht

MW6,000

09 10 11 12 13 14 15 16 29

6,000

MW Jan/09 July/09 Jan/10 July/10

4,500

09 10 11 12 13 14 15 16.. 29

Long-term demand projection (20 years)Generation Planning

4,500 Yearly load-curve (1.5 years)Operations planning

Daily load curve (24 hrs)Short-term dispatch

Page 9: Kammen

LOCAL SCALE:LOCAL SCALE:CONCEPT OF OPEN ARCHITECTURE SMART HOME

8

Page 10: Kammen

FIRST STEP TO NATIONAL GRID ‐ TRESAMIGAS INTERCONNECT SUPERSTATIONCONNECTS THE 3 MAJOR GRIDS OF U.S.

9

Site information hyperlink

Page 11: Kammen

LARGE SCALE:DIRECT CURRENT INTERCONNECT – RESOLVES AC PHASING ISSUES AND ENABLES RE FROM SOUTHWEST TO EASTERN LOAD CENTERS

10

Site information hyperlink

Page 12: Kammen

EMERGING APPROACHES TO TRANSMISSION DEVELOPMENT

• Renewable energy zones rapid change is possible (planning/economics)

RE‐zones approved in 2008

Source: National Renewable Energy  Laboratory&  US DOE

11

Page 13: Kammen

I d R bl ith Di ifi d SIncreased Renewables with Diversified Sources‐with benefit of long distance and intelligent grid

Average Load

NATURAL GASNATURAL GASSOLAR/PVSOLAR/PV

Load

Base Load

WINDWIND

COALCOAL

Load

NUCLEARNUCLEAR

HYDRO + OTHERHYDRO + OTHER

NUCLEARNUCLEAR

12

Page 14: Kammen

UNDERSTANDING PLANNING: SIMPLIFIED SCREENING CURVE ANALYSIS

• Long term generation planning and smart systems integration

Long run planning to

MW

20 000

answer: What, when, and how to add new

generation capacity to meet future demand ?20,000 meet future demand ?

6,000

2009 2010 2011 2012 …. 2027 2028 2029

Page 15: Kammen

SUSTAINABLE ENERGY PLANS IN CHINA / SMART SYSTEMS PLANNING

Renewable6%

14

16

Energy Nuclear

Hydro16%

CCP Scenario(2,336 GW)

10

12

14

(Gton)

gyEfficiency

Low‐carbon technology

Coal60%

Oil & gas14%

4%

6

8

10

emission

s   technology

ENV Scenario(1,975 GW)

2

4

6

CO2e

Coal, 30%

Renewable, 23

%

0

2

2009 2012 2015 2018 2021 2024 2027 2030

Oil & Gas, 16

%

Hydro, 23%

World Bank Group  

Nuclear,8%

Page 16: Kammen

CHALLENGES OF GRID ENVIRONMENT IN CHINA

Energy SecurityRenewable

6%Energy SecurityCoal, oil & gas, nuclearGrid integration, reliability and stability

Nuclear

Hydro16%

BAU Scenario(2,336 GW)

Load demand to double by 2030Urbanization

Increasing density of load demand

Coal60%

Oil & gas14%

4%

Increasing density of load demandIncreasing demand for high quality of 

power supply (work and life‐style)Increasing environmental sensitivityIncreasing environmental sensitivity

Green Growth and Climate Change• Shift to less energy‐intensive and 

Coal, 30%Renewable, 23%

SD Scenario(1,975 GW)

higher value‐added economy• Costs of local and global emissions

Oil & Gas, 16%

Hydro, 23%

World Bank Group 

Nuclear, 8%

Page 17: Kammen

OUTLOOKSUSTAINABLE DEVELOPMENT (SD) SCENARIO IS

INCREASINGLY AFFORDABLE AS THE ECONOMY CONTINUES

TO GROW, BUT THE INCREMENTAL COST IS LARGE INITIALLY

Investments Costs as a share of GDP(3 year moving average; Capex Investment )

2,0%

SD

1,5%

SD

0,5%

1,0%BAU

0,0%

0,5%

2010 2015 2020 2025 2030

World Bank Group

2010 2015 2020 2025 2030

Page 18: Kammen

OUTLOOKSTRONG AND SMART GRIDS WILL PLAY A KEY ROLE IN

ENABLING SAFE, SECURE AND EFFICIENT TRANSITION

TOWARDS SUSTAINABLE ENERGY DEVELOPMENT

Accelerating energy efficiency (EE) throughSmart Metering, Time-based Tariff Systems/ Dynamic PricingNet Metering and Distributed Power GenerationDSM EE trade and servicesDSM, EE trade and services

Scaling-up renewable energy (RE) throughDSP (e.g. phasor measurements) and wide-area stability controlFl ibl AC/DC i i (l d fl l)Flexible AC/DC transmission system (load flow control)Energy storage, network management and RE trading

Integration of New/Advanced Technologiesg g• Off-shore wind, Concentrated Solar Power and advanced solar

PV• Electric vehicles

World Bank Group  

• Electric vehicles• “Zero emission” buildings

Page 19: Kammen

TOWARDS SUSTAINABLE DEVELOPMENT

Pricing reforms are key for smart energy grid

nt c

ost Energy

EfficiencyRenewable Energy

New Technologies

Aba

tem

enC

O2

A STRONG AND SMART GRID

•Regulations and financial incentives

•Feed-in Tariff or RE Portfolio Standard

• Support for R&D• Financingfinancial incentives

(e.g. tariffs)• Financing mechanisms

Portfolio Standard• Tax on fossil fuel• Cap and trade CO2

• Financing incremental cost • Technology transfer and pilot

World Bank Group

• Institutional reforms projects

Page 20: Kammen

LOAD AREAS AND TRANSMISSION

Load areas are parts of the grid:• Within which there is significant 

existing distribution

50 Load Areas

• Between which there is limited existing transmission

• Congested transmission paths are retained

• Defined predominantly by existing borders• Control areas, load serving 

entities, country and state borders, urban areas, mountain ranges, etc.

Transmission in SWITCH:• Is built between major substations of adjacent load 

areas along existing lines when possible• Minimizes ecological impact and citing difficulties

• Costs $1000/MW‐km to build• Obeys thermal limits• Does not yet capture differences between AC and DC

Page 21: Kammen

EXISTING GRID AREAS

• Existing Generators• Existing Generators:• Are given the option to run or 

be mothballed in each investment period• Mixed integer linear program!

• Have plant primemover• Have plant‐primemover specific heat rates

• Are retired after their 

Hydroelectric   67 GW

operational lifetime

• Use historical monthly flows used to constrain daily Hydroelectric   67 GW

Nuclear               9 GWCoal 38 GWGeothermal       2 GWG 82 GW

DC Line500 kV

used to constrain daily hydroelectric generation• Existing hydroelectric is must‐

run

20Source: Ventyx EV Energy Map

Gas                    82 GWWind                 10 GW

run

Page 22: Kammen

Technologies SWITCH Can Currently Build

Compressed AirEnergy StorageEnergy Storage

21

Page 23: Kammen

22

Page 24: Kammen

RPS Enabled and No Carbon TaxDispatch in 2026‐2029Dispatch in 2026‐2029

• No new policy caseR t l t t t ti d b ti• Represents lowest cost system operation under above assumptions

• Coal increases to from 33%  to 47% of generation

• Emissions increase to 197% of 1990 LevelsEmissions increase to 197% of 1990 Levels

• Solar makes a small appearance at 2% of generation

• Biomass solid, biogas and geothermal are installed to meet RPS targets 

175

200

225Feb Apr Jun RPS Enabled

$0/tCO2

Jul Sep DecJan Mar May Aug Oct NovA

100

125

150

175

tion

(GW

)

SolarWindHydroelectric

50

75

100

Gen

erat Hydroelectric

GasGeothermalBiomass SolidBiogas

23

0

25

16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0

Hour of Day (PST)

BiogasCoalNuclearLoad16 20 0 4 8 12

Page 25: Kammen

RPS Enabled and No Carbon TaxGeneration and Transmission in 2026‐2029

• Cheap coal in W i i hi d

Generation and Transmission in 2026‐20292026-2029

RPS E bl dWyoming is shipped west

• Wind in the Rocky M i i

RPS Enabled$0/tCO2

Mountains is consumed locally

• Solar in the Average

TransmissionFlow (GW)

generated and used in the Desert Southwest

< 0.50.5 – 22 – 5> 5

Flow (GW)

• Biomass is consumed locally on the coast

• Hydro is shipped  5 GW

AverageGeneration

south to California

• California has highest RPS target of 33%

SolarWindGeothermalBiomass SolidBiogas

24

• Most diverse generation portfolio

BiogasHydroelectricGasCoalNuclear

Page 26: Kammen

Cost of Conserved Carbon in 2026‐2029100800

90

100

700

800

Cost of Power per MWh

RPS reduces emissions by 23%

70

80600

7)O2/y

r)

pWith RPS andWithout RPS

50

60

400

500

st ($

2007

ons

(MtC

Cost of Conserved Carbonper tCO2 With RPS andWithout RPS

CO2 EmissionsWith RPS andWithout RPS

30

40300

Cos

Emis

sio

1990 CO2 Emissions

20

30

100

200CO

2

2

0

10

0

100

25

0 10 20 30 40 50 60 70 80 90 100

Carbon Cost ($2007/tCO2)CCC reduction aidedby small carbon cost

1990 levels reachedat higher carbon costs

Page 27: Kammen

Generation Mix is Highly Sensitive to Nuclear Capital CostNuclear Capital Cost

• Optimal grid changes drastically as a function of nuclear capital b f $ /cost at carbon taxes of > $50/tCO2

• Increasing nuclear capital cost by $1/W tips the power mix far away from new nuclearaway from new nuclear

• Solar, wind, and natural gas substitute

$4/W Nuclear RPS Enabled 2026 2029 $5/W Nuclear RPS Enabled 2026 2029$4/W Nuclear, RPS Enabled, 2026-2029 $5/W Nuclear, RPS Enabled, 2026-2029

26

Page 28: Kammen

225B

Dispatch in2026‐2029 @ $60/tCO2

150

175

200

GW

)

Solar

Feb Apr Jun $4/W NuclearRPS Enabled

$60/tCO2

Jul Sep DecJan Mar May Aug Oct NovB

75

100

125

nera

tion

(G SolarWindHydroelectricGasGeothermal

0

25

50

16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0

Gen

GeothermalBiomass SolidBiogasCoalNuclear16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0

Hour of Day (PST) Load16 20 0 4 8 12

200

225Feb Apr Jun $5/W Nuclear

RPS EnabledJul Sep DecJan Mar May Aug Oct NovC

125

150

175

on (G

W)

SolarWindHydroelectric

RPS Enabled$60/tCO2

50

75

100

Gen

erat

io HydroelectricGasGeothermalBiomass SolidBiogas

27

0

25

16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0 16 8 0

Hour of Day (PST)

BiogasCoalNuclearLoad16 20 0 4 8 12

Page 29: Kammen

Geographic Build‐Out of Low Carbon Scenarios• @ $4/W nuclear capital cost

• New nuclear dominates eastern generation and consumption• Also uses existing transmission to send power west

• @ $5/W nuclear capital cost@ $5/W nuclear capital cost• Solar and gas increase in the Desert Southwest

• 9% and 30% of WECC‐wide generation, respectively

• In both wind power is deployed in the Rocky Mountains

$5/W Nuclear$60/tCO

• In both, wind power is deployed in the Rocky Mountains

$4/W Nuclear$60/tCO $60/tCO2

RPS Enabled2026-2029

$60/tCO2RPS Enabled

2026-2029

5 GW

AverageGeneration

AverageTransmission

Flow (GW)

SolarWindGeothermalBiomass SolidBiogas

28

< 0.50.5 – 22 – 5> 5

( ) BiogasHydroelectricGasCoalNuclear

Page 30: Kammen

VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING

• The cost of short‐term impacts..

Source: IEA Task 25 Design and Operation of Power Systems withLarge Amounts of Power

29

Page 31: Kammen

VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING

• The cost of short‐term impacts..

Source: IEA Task 25 Design and Operation of Power Systems withLarge Amounts of Power

30

Page 32: Kammen

VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING

• Emerging evidence

Wind integration costs are manageable

For levels below 10% of energy penetration costs are small

For levels 10% to 15%more impact on operative reserves, d th i D t il d t di d dand other services. Detailed studies recommended

For levels 15% to 30%more flexibility will be required, large interconnected areas wind diversity Studieslarge interconnected areas, wind diversity. Studies highly recommended

31

Page 33: Kammen

VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING

• Flexibility is the key to accommodate variable sources

nd

nsiv

e,

• Flexibility  is the key to accommodate variable sources

kets

,

Goo

d C

CG

T

age:

ote

m:

ts greg

ate

win

ss d

iffer

ent

mos

t exp

ene

solu

tions

$or

ene

rgy

al ti

me

mar

ks… en

erat

ion:

Gap

ab: G

T, C

on w

ith s

tora

mpe

d hy

dro

nect

ed s

yst

tiple

mar

ket

Div

ersi

fy/a

ggow

er: a

cros

reas

Oth

er,

stor

age$

e w

indo

ws

fosp

atch

: rea

ead

mar

kets

Flex

ible

ge

ram

ping

ca

Gen

erat

iohy

dro,

pum

hly

inte

rcon

nne

ct to

mul

t D po ar

Mul

tiple

trade

/di

day

ahe

Hig

hco

nn

32Solutions

Page 34: Kammen

VARIABLE RENEWABLE ENERGY TECHNOLOGIES AND PLANNING

Critical conditions: how transmission flexibility has helped Denmark ?Critical conditions: how transmission flexibility has helped Denmark ?

• During high wind conditions: excess tradedto NORDEL or Germanyto NORDEL or Germany

•During rapid wind decrease, large balancingarea permit imports from Germany

• Grid stability is improved by interconnections

Source Energinet.dk Denmark’s TSODenmark s TSO

Wind power generation 22.22 %of total consumption in 2007

3333

of total consumption in 2007

Page 35: Kammen

SOLAR RESOURCE MANAGEMENT

nin

<5

mi

wn

Spi

ke

85%

Dow

Ob d i t f T i t Cl d O Utilit l PV Fi ld

(a) Ten second resolution Global Horizontal Incidence cloudy and clear day(b) Ten second resolution power production cloudy and clear day[ 25 MW field, Florida w/tracking]

8

Observed impacts of Transient Clouds On Utility scale PV Fields Kankiewicz, Sengupta& Moon www.ases.org/papers/112.pdf

34

Page 36: Kammen

10% OF CARS EV IN THE US ….When to Charge EVs?When to Charge EVs?Charging at night could increase need for Base LoadDaytime charging can be done with SolarOptimal charging requires information feedback and pricing tools‐ Optimal charging  requires information feedback and pricing tools

Average Load

EV LoadTo Scale

LoadNATURAL GASNATURAL GAS

SOLAR/PVSOLAR/PVBase Load

WINDWIND

COALCOAL

Load

NUCLEARNUCLEAR

HYDRO + OTHERHYDRO + OTHER

NUCLEARNUCLEAR

35

Page 37: Kammen

TRANSMISSION: BARRIER TO RE GENERATION IN SEVERAL COUNTRIES

Mexico: Wind potential in Oaxaca 10 GW

First 1,895 MW of privately‐developed wind power require a new framework to expand the publicly‐owned transmission system with 271 km of double circuit 400 Kv lines plus 2,125 MVA substation are needed

• Average wind velocity above 15 /

*Source: CRE (2009) and CFE (2009)

m/s

• Average plant load factor > 50%

f f• Location: remote, far from consumption centers and the transmission system

• Smart system critical to use current and then future grid effectivelyy

36

Page 38: Kammen

TRANSMISSION: BARRIER TO RE GENERATION IN SEVERAL COUNTRIES

Mexico: Open for Private Wind Power Producers: Reducing and SharingMexico: Open for Private Wind Power Producers: Reducing and Sharing Transmission Costs

Wind power operating and committedWind power operating and committed

37Source: CFE

Page 39: Kammen

TRANSMISSION: BARRIER TO RE GENERATION IN SEVERAL COUNTRIES

Mexico: Open Season process flowMexico: Open Season process flow

38

Page 40: Kammen

CONCLUSIONS / DIRCTIONS

New Planning Tools Are Needed For Local Management and Long‐term regional planning

• Developing a  new generation of tools

• Co‐evolution of generation technology, energy efficiency and demand‐side planning

b l d d• Low‐carbon options at least cost require coordination and integration

• A secure energy, low‐cost set of products to assist all nations

39


Recommended