+ All Categories
Home > Documents > Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current...

Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current...

Date post: 11-May-2018
Category:
Upload: hamien
View: 213 times
Download: 1 times
Share this document with a friend
18
Late-Stage Deoxyfluorination of Alcohols with PhenoFluor Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem. Soc. 2012, ASAP DOI: 10.1021/ja3125405 Kara George Rosenker Current Literature 23 February 2013 Me OH Me O O Me O Me O Me OH Me O Me Me O Me Me OH Me OH HO Me OH Me O O Me O Me O Me OH Me O Me Me O Me Me F Me OH HO predictable and selective deoxyfluorination N N i Pr i Pr i Pr i Pr F F PhenoFluor 71%
Transcript
Page 1: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Late-Stage Deoxyfluorination of ���Alcohols with PhenoFluor

Sladojevich, F.; Arlow, S. I.; Tang, P.; Ritter, T. J. Am. Chem. Soc. 2012, ASAP DOI: 10.1021/ja3125405

Kara George Rosenker Current Literature 23 February 2013

Me

OH

Me

O

OMeO

Me

O

Me

OH

Me

O

Me

MeO

MeMe

OH

Me

OHHO Me

OH

Me

O

OMeO

Me

O

Me

OH

Me

O

Me

MeO

MeMe

F

Me

OHHO

predictable and selective deoxyfluorination

N NiPr

iPr

iPr

iPrF FPhenoFluor

71%

Page 2: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Fluorine in Medicinal Chemistry •  The carbon fluorine bond plays an integral role in agrochemicals,

pharmaceuticals, materials, and imaging •  Approximately 20% of all pharmaceuticals contain fluorine •  Strategies for the introduction of fluorine atoms in medicinal

chemistry: •  Metabolic stability by blocking metabolically labile sites •  Modulate the physicochemical properties such as lipophilicity

or basicity •  Enhance binding affinity to a target protein

•  Non-natural 18F is the most commonly used positron-emitting isotope for molecular positron emission tomography (PET) imaging in oncology

(a) Vitaku, E.; Ilardi, E. A.; Njarðarson, J. T. Top 200 Pharmaceutical Products by US Retail Sales in 2011. (b) Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637. (c) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (d) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (e) Jens Langner, J.; retrieved from http://en.wikipedia.org/wiki/File:PET-MIPS-anim.gif#filelinks

Lipitor (Pfizer)$7.7 billion (2011)

NNH

O

F

OH OH

OH

O

Lexapro(Forest Laboratories)

$2.9 billion (2011)

O

N

N

F

Me

H

H

F

F

Me

O

HO

S

O

F

OO

HO

HO

OH HN

O

Advair Diskus (GSK)$4.6 billion

Page 3: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Carbon-Fluorine Bond Formation •  Despite fluorine’s importance, carbon-fluorine bond formation still represents

a formidable synthetic challenge •  Only 21 biosynthesized natural molecules containing fluorine are known and

no fluoroperoxidase is known •  Conventional fluorination reactions are generally limited to very simple

molecules, with reliable fluorination of more complex molecules at specific positions being difficult

•  New methods to incorporate fluorine into complex organic molecules are crucial to the progress of the field

Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637. Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. O’Hagan, D.; Harper, D. B. Asymmetric Fluoroorganic Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, 1999.

O

OHO2C CO2H

F

OHHO2C

F

OOS

O

OH2N

FHO OH

N

N

NN

NH2

F CO2H

fluoroacetate fluorocitrate nucleocidin

ω-fluoro-oleic acid

Page 4: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Carbon-Fluorine Bond Formation •  Despite fluorine’s importance, carbon-fluorine bond formation still represents

a formidable synthetic challenge •  Only 21 biosynthesized natural molecules containing fluorine are known and

no fluoroperoxidase is known •  Conventional fluorination reactions are generally limited to very simple

molecules, with reliable fluorination of more complex molecules at specific positions being difficult

•  New methods to incorporate fluorine into complex organic molecules are crucial to the progress of the field

Böhm, H.-J.; Banner, D.; Bendels, S.; Kansy, M.; Kuhn, B.; Müller, K.; Obst-Sander, U.; Stahl, M. ChemBioChem 2004, 5, 637. Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. Furuya, T.; Kamlet, A. S.; Ritter, T. Nature 2011, 473, 470. O’Hagan, D.; Harper, D. B. Asymmetric Fluoroorganic Chemistry; ACS Symposium Series; American Chemical Society: Washington, DC, 1999.

OHR

R1R2

FR

R1R2

Page 5: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Deoxyfluorination Reagents: DAST and Deoxo-Fluor®

•  Reported by Middleton in 1975 as the first bench-stable deoxyfluorinating reagent and a useful alternative to SF4

•  DAST suffers from poor thermal stability and potentially hazardous scale-up

•  Deoxo-Fluor® was introduced in 1999 and is a significant competitor to DAST for deoxyfluorination reactions due to its improved thermal stability

Middleton,  W.J.    J.  Org.  Chem.    1975,  40,  574.  Lal,  G.  S.;  Pez,  G.  P.;  Pesaresi,  R.  J.;  Prozonic,  F.  M.;  Cheng,  H.    J.  Org.  Chem.    1999,  64,  7048.  Lal,  G.  S.;  Pez,  G.  P.;  Pesaresi,  R.  J.;  Prozonic,  F.  M.  Chem.  Commun.  1999,  215.  

OH O SF

NEt2F

O SF

NEt2 FSFF F

NEt2

FHF

Et2N S FF F

Et2NS

NEt2

F F

ExplosiveSF4

90 °CEt2N S FF F

N

Me

SF3

Me

DAST

MeO NOF3SMe

coordination prevents decomposition

NSF3

MeO OMe

Deoxo-Fluor®

Page 6: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Deoxyfluorination Reagents: XtalFluor-E® and XtalFluor-M®

•  In 2009, Courturier and co-workers reported the preparation and use of XtalFluor-E® and XtalFluor-M®

•  XtalFluor-E® and XtalFluor-M® are crystalline reagents that are relatively safe and cost-efficient to prepare

•  The reactions require the addition of either an HF�amine reagent or DBU for efficient transformation

•  The XtalFluor® reagents are typically more selective and reduce the levels of elimination side products often observed with DAST and Deoxo-Fluor®

L’Heureux,  A.;  Beaulieu,  F.;  BenneJ,  C.;  Bill,  D.  R.;  Clayton,  S.;  LaFlamme,  F.;  Mirmehrabi,  M.;  Tadayon,  S.;  Tovell,  D.;  Couturier,  M.    J.  Org.  Chem.  2010,  75,  3401.  Beaulieu,  F.;  Beauregard,  L.-­‐P.;  Courchesne,  G.;  Couturier,  M;  LaFlamme,  F.;  L’Heureux,  A.    Org.  Le4.    2009,  11,  5050.  

ROHXtalFluor-E

RO SF

NEt2

F

H

Et3N⋅3HF

F

RF

[DBU-H]+ DBU

RO S

F

NEt2F

RO S

F

NEt2F

Me Me

NSF2 BF4

XtalFluor-E®O

NSF2 BF4

XtalFluor-M®

N

Me

SF3

Me

DAST

NSF3

MeO OMe

Deoxo-Fluor®

Page 7: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Deoxyfluorination Reagents: Fluolead™ and TFEDMA, ���Yarovenko’s and Ishikawa’s reagents

•  There reagents are generally prepared by the addition of Et2NH to the corresponding halogenated alkene

•  This group of reagents can suffer from formation of ester and amide side products

(a)    Umemoto,  T.;  Singh,  R.  P.;  Xu,  Y.;  Saito,  N.    J.  Am.  Chem.  Soc.    2010,  132,  18199.  (b)  Takaoka,  A.;  Iwakiri,  H.;  Ishikawa,  N.    Bull.  Chem.  Soc.  Jpn.    1979,  52,  3377.    (c)    Petrov,  V.  A.;  Swearingen,  S.;  Hong,  W.;  Petersen,  W.  C.    J.  Fluorine  Chem.    2001,  109,  25.    (d)    Yarovenko,  N.  N.;  Raksha,  M.  S.    Zh.  Obshch.  Khim.    1959,  29,  2159.  

OH O

NEt2

CF3

F

O

NEt2

CF3

F

F

F

FIshikawa's

reagent

•  In 2010, Umemoto and co-workers introduced the second generation PhSF3, which is marketed as Fluolead™

•  More chemically stable than PhSF3, and more more thermally stable than DAST because of the stronger C-S bond in Fluolead™

•  Ishikawa’s, Yarovenko’s, and TFDMA reagents fluorinate a wide range of primary and secondary alcohols to provide alkyl fluorides

NMe

Me

FF

FH Cl

NMe

Me

FF

H F F

FF

NMe

Me

FF

FH F

Yarovenko's reagent Ishikawa's reagent

TFEDMAR

OH

R

OIshikawa's

reagent

Et2N

CF3

F

RF CF3

O

NEt2

Me Me

tBu

SF3

Fluolead™

Page 8: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Deoxyfluorination Reagent: PhenoFluor

•  PhenoFluor was first reported by Ritter and co-workers in 2011 for deoxyfluorination of phenols

•  PhenoFluor is commercially available from Sigma-Aldrich •  PhenoFluor is a crystalline, nonexplosive solid that can be handled in air, but

hydrolyzes upon prolonged storage in a wet atmosphere •  PhenoFluor can be stored in a dry toluene solution for at least 2 months

without detectable decomposition

Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2011,  133,  11482-­‐11484.  Tang,  P.;  Wang,  W.;  RiJer,  T.    WO  2012/142162    

MeO

OH

3 equiv CsFtoluene, 110 °C MeO

F

82%

PhenoFluor

N NiPr

iPr

iPr

iPrF F

PhenoFluor

Page 9: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

PhenoFluor: Proposed Mechanism •  Ritter and co-workers propose that the mechanism for fluorination proceeds via a 2-

phenoxyimidazolium bifluoride salt

Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2011,  133,  11482-­‐11484.  

MeO

OH N NiPr

iPr

iPr

iPrO

OMe

H

HF

F

toluene, 23 °C

N NiPr

iPr

iPr

iPrF FMeO

F

67%

3 equiv CsF

toluene-d8, 110 °C

N NiPr

iPr

iPr

iPrF F

OH

N NiPr

iPr

iPr

iPrF

N NiPr

iPr

iPr

iPrF O ArH

B

N NiPr

iPr

iPr

iPrF O Ar

N NiPr

iPr

iPr

iPrO

F

F

Ar

N NiPr

iPr

iPr

iPrO Ar

MeO

F

HF2

Page 10: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

PhenoFluor: Proposed Mechanism •  Ritter and co-workers propose that the mechanism for fluorination proceeds via a 2-

phenoxyimidazolium bifluoride salt

Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2011,  133,  11482-­‐11484.  

MeO

OH N NiPr

iPr

iPr

iPrO

OMe

H

HF

F

toluene, 23 °C

N NiPr

iPr

iPr

iPrF F

N NiPr

iPr

iPr

iPrF F

OH

N NiPr

iPr

iPr

iPrF

N NiPr

iPr

iPr

iPrF O ArH

B

N NiPr

iPr

iPr

iPrF O Ar

N NiPr

iPr

iPr

iPrO

F

F

Ar

N NiPr

iPr

iPr

iPrO Ar

MeO

F

HF2

Page 11: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

PhenoFluor: Hydrogen Bonding

Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2011,  133,  11482-­‐11484.  

MeO

F

<1%

MeO

F

<1%

MeO

F

2%

N NAr Ar

OAr'

ClCl HF2

N NAr Ar

OAr'

HF2

N NAr Ar

OAr'

HH PF6

3 equiv CsF

toluene-d8, 110 °C

3 equiv CsF

toluene-d8, 110 °C

3 equiv CsF

toluene-d8, 110 °C

MeO

OH N NiPr

iPr

iPr

iPrO

OMe

H

HF

F

toluene, 23 °C

N NiPr

iPr

iPr

iPrF F

MeO

F

67%

3 equiv CsF

toluene-d8, 110 °C

Page 12: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Title Paper: Deoxyfluorination of Aliphatic Alcohols •  Modifications of the initial reaction conditions allowed for the deoxyfluorination of

aliphatic alcohols

Sladojevich,  F.;  Arlow,  S.  I.;  Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2012,  ASAP.    DOI:    10.1021/ja3125405  

FmocHN CO2Me

HO

FmocHN CO2Me

Fdeoxyfluroinating reagent

FmocHN CO2Me

HO

FmocHN CO2Me

F

N NiPr

iPr

iPr

iPrF FPhenoFluor

74% in dioxane 80% in toluene

N NMe MeF F

N

Me

SF3

Me O

NSF2 BF4 N

SF3

MeO OMe

Me Me

tBu

SF3

DFI DAST XtalFluor-M® Deoxo-Fluor® Fluolead™

toluene

dioxane

reported optimizedconditions

<1%

2%

<1%

<1%

11%

3%

<1%

<1%

<1%

<1%

10%

<1%

<1%

<1%

<1%

Page 13: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Title Paper: Late-Stage Deoxyfluorination of Alcohols

Sladojevich,  F.;  Arlow,  S.  I.;  Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2012,  ASAP.    DOI:    10.1021/ja3125405  

PhenoFluor

2.0 equiv EtNiPr22.0 equiv KF

2-20 h

OHR

R1R2

FR

R1R2

parent compoundyield%

solvent, temperature

•  Chiral secondary alcohols could typically be deoxyfluorinated with inversion •  Carbonyl functional groups are well tolerated

N

F

CO2MeBoc

O

F

OO

O

OMe

Me

MeMe

(2S, 4R)-4-hydroxy-proline92%

toluene, 80 °C

D-allofuranose83%

toluene, 80 °C

artemisinin79%

toluene, 80 °C

OO

H Me

HH

Me OO

FMe

reserpine82%

toluene, 80 °C

NNH

MeO

H

H

H

MeO2COMe

F

O

FMe

H

H

Me

H

OH

N

O

F

testosterone88%

toluene, 80 °C

77%toluene, 80 °C

epi-androterone84%

toluene, 80 °C

OMe

H

H

H

Me

HF

Page 14: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Sladojevich,  F.;  Arlow,  S.  I.;  Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2012,  ASAP.    DOI:    10.1021/ja3125405  

•  Secondary allylic alcohols afforded allylic fluorides consistent with an SN2 mechanism •  Deoxyfluorination is site-selective and predictable

PhenoFluor

2.0 equiv EtNiPr22.0 equiv KF

2-20 h

OHR

R1R2

FR

R1R2

parent compoundyield%

solvent, temperature

galantamine80%, 10:1 dr

toluene, 80 °C

O

N

F

Me

MeO

morphine80%

CH2Cl2, 23 °C

O

F

H

BzO

N Me

ajmaline30%

CH2Cl2, 50 °C

NN F

MeMe

HO

H

methyl α-D-glucopyranoside43%

dioxane, 80 °C

O

OMe

HOHO

F

HO ivermectin B1a41%

toluene, 50 °C

O O O

OMe

MeMe

MeOOMe

Me

HO O

OO

MeF

OH

O

O

Me

MeMeH

Title Paper: Late-Stage Deoxyfluorination of Alcohols

Page 15: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Title Paper: Site-Selective Late-Stage Deoxyfluorination of Alcohols

Sladojevich,  F.;  Arlow,  S.  I.;  Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2012,  ASAP.    DOI:    10.1021/ja3125405  

•  Deoxyfluorination can be carried out at room temperature, allowing for fluorination of temperature sensitive substrates

•  KF was not required

everolimus83%

CH2Cl2, 23 °C

oligomycin A71%

CH2Cl2, 23 °C to 0 °C

Me

OH

Me

O

OMeO

Me

O

Me

OH

Me

O

Me

MeO

MeMe

F

Me

OHHOOF

MeO

O O

Me

Me

MeO

OH

O

Me

ON

Me

OO

OHOMe

Me

OMe

Me

PhenoFluor

2.0 equiv EtNiPr22.0 equiv KF

2-20 h

OHR

R1R2

FR

R1R2

parent compoundyield%

solvent, temperature

Page 16: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Title Paper: Site-Selective Late-Stage Deoxyfluorination of Alcohols

Sladojevich,  F.;  Arlow,  S.  I.;  Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2012,  ASAP.    DOI:    10.1021/ja3125405  

Me

O

Me

O

OMeO

Me

O

Me

O

Me

O

Me

MeO

MeMe

OH

Me

OHHO

tertiary alcoholnon-allylic

β,β'-disubsitutionhydrogen bonding

β,β'-disubsitution

selective fluorination siteoligomycin A

Me

OH

Me

O

OMeO

Me

O

Me

OH

Me

O

Me

MeO

MeMe

F

Me

OHHO

N NiPr

iPr

iPr

iPrF FPhenoFluor

71%

H H

•  Primary alcohols are selectively deoxyfluorinated •  Secondary alcohols react slower or not at all when they are β,β’-dibranched, unless it is allylic

•  Hydroxyl groups engaged in hydrogen bonding are not reactive •  Tertiary alcohols do not react, unless they are allylic

Page 17: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Deoxyfluorination with PhenoFluor: Mechanistic Considerations

Sladojevich,  F.;  Arlow,  S.  I.;  Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2012,  ASAP.    DOI:    10.1021/ja3125405  

•  The formation of elimination products could be reduced by increasing the reaction temperature from 23 °C to 80 °C

•  The addition of DIPEA was beneficial to shorten the reaction time •  KF was found to reduce side products resulting from elimination, but

was not generally required for the reaction to proceed

N NiPr

iPr

iPr

iPrF F

HO R

N NiPr

iPr

iPr

iPrF

N NiPr

iPr

iPr

iPrF ORH

B

N NiPr

iPr

iPr

iPrF OR

N NiPr

iPr

iPr

iPrO

R

N NiPr

iPr

iPr

iPrOF R

F

F

HF2

Page 18: Kara George Rosenker 23 February 2013 - CCC/UPCMLDccc.chem.pitt.edu/wipf/Current Literature/Kara_8.pdf · Title: Kara George Rosenker_23 February 2013 Author: Kara Rosenker Created

Conclusions and Outlook

Sladojevich,  F.;  Arlow,  S.  I.;  Tang,  P.;  Wang,  W.;  RiJer,  T.    J.  Am.  Chem.  Soc.    2012,  ASAP.    DOI:    10.1021/ja3125405  

•  A general method for selective, late-stage deoxyfluorination of complex aliphatic alcohols has been developed

•  The substrate scope and functional group tolerance of this methodology surpass all

others reported to date •  PhenoFluor has a better safety profile and higher chemoselectivity than other

deoxyfluorination reagents •  One drawback is the molar mass (427 g/mol), which is convenient for subgram- and

gram-scale reactions, but is wasteful for larger-scale reactions •  Extending this method to late-stage 18F radiolabeling would be useful for positron

emission tomography (PET) applications

PhenoFluor

2.0 equiv EtNiPr22.0 equiv KF

2-20 h

OHR

R1R2

FR

R1R2

OHR

R1R2

18FR

R1R2


Recommended