+ All Categories
Home > Documents > Kuliah.3 f Lithosfer

Kuliah.3 f Lithosfer

Date post: 16-Nov-2015
Category:
Upload: muhammad-harvan
View: 220 times
Download: 2 times
Share this document with a friend
Description:
geokimia
Popular Tags:
24
3 The Lithosphere 3.1 Rocks and Minerals Elements are atoms with a specific number of protons. All hydrogen atoms have one proton, all oxygen atoms have 8 protons. Molecules are combinations of elements. Molecules are the smallest subdivision of a substance that retains that substance’s chemical composition. Water ( ) is a molecule. The chemi- cal properties of hydrogen (H) and oxygen (O) are very different than the chemical properties of water. Bonds hold the elements together, making molecules. Elements only bond together when they form a stable electron configuration. Ionic bonds: these bonds occur when an electron is stripped from an element by another element, forming a cation and an anion. Chloride can strip elections from sodium, creating and ions. These ions are electrically attracted to each other forming salt (Halite) Covalent bonds: these bonds are created when elements share electrons. Oxygen occurs as in the atmosphere, these two atoms are sharing electrons van der Walls bond: these bonds are weak and result from the electrical attraction caused by atomic asymmetry Minerals are compounds or collections of molecules. Silicon and oxygen are the primary ele- ments that make up minerals. All minerals have five basic properties: crystalline: solid with regular structure homogeneous: can’t be mechanically separated into different chemical compounds natural definite chemical composition inorganic: not made by a biological process There are many different groups of minerals (e.g. oxides, sulfides, carbonates). The silicates are the dominant mineral group (silicon oxides). The building block for this group of minerals is . These compounds have a tetrahedral structure that can be isolated, make chains, planes or framework structures (Figure 4-7 in text). Shell (subshells) Max. Na Cl K ( ) 2 2 2 L ( ) 8 8 8 M ( ) 18 1 7 Table 1: Electron shells in atoms. These shells control how the different elements interact. 1
Transcript
  • 3 The Lithosphere

    3.1 Rocksand Minerals

    Elements areatomswith a specificnumberof protons.All hydrogenatomshave oneproton,alloxygenatomshave8 protons.

    Molecules arecombinationsof elements.Moleculesarethesmallestsubdivision of a substancethatretainsthatsubstances chemicalcomposition.Water(

    ) is a molecule.Thechemi-

    calpropertiesof hydrogen(H) andoxygen(O) areverydifferentthanthechemicalpropertiesof water.

    Bonds hold the elementstogether, makingmolecules.Elementsonly bondtogetherwhentheyform a stableelectronconfiguration.

    Ionic bonds: thesebondsoccurwhenan electronis strippedfrom an elementby anotherelement,forming a cation and an anion. Chloride can strip electionsfrom sodium,creating and ions.Theseionsareelectricallyattractedto eachotherformingsalt(Halite)

    Covalent bonds: thesebondsarecreatedwhenelementsshareelectrons.Oxygenoccursasin theatmosphere,thesetwo atomsaresharingelectrons

    van der Walls bond: thesebondsareweakandresultfrom theelectricalattractioncausedby atomicasymmetry

    Minerals arecompoundsor collectionsof molecules.Silicon andoxygenare the primary ele-mentsthatmakeupminerals.All mineralshavefivebasicproperties: crystalline:solid with regularstructure homogeneous:cant bemechanicallyseparatedinto differentchemicalcompounds natural definitechemicalcomposition inorganic:notmadeby abiologicalprocess

    Therearemany differentgroupsof minerals (e.g.oxides,sulfides,carbonates).Thesilicatesarethedominantmineralgroup(silicon oxides).Thebuilding block for this groupof mineralsis . Thesecompoundshave a tetrahedralstructurethatcanbeisolated,make chains,planesor framework structures(Figure4-7 in text).

    Shell (subshells) Max. Na ClK ( ) 2 2 2L ( ) 8 8 8M ( ) 18 1 7

    Table1: Electronshellsin atoms.Theseshellscontrolhow thedifferentelementsinteract.

    1

  • Mineral identification is doneby testingthephysicalandchemicalpropertiesof amineral.Thesepropertiesreflect the atomic structureand chemistryof a mineral. Thesepropertiesalsoinfluencethe impactof mineralson the environment(will a mineral increaseor decreaselandslidehazard,slow contaminantmigration,or alterwaterchemistry). cleavage hardness color streak crystalshape reactionto chemical(likeHCl) density opticalproperties

    Rocks areaggregatesof minerals(aresomeexceptions:obsidian,coal).Thetextureandchemistryof rocksprovidesclueson theenvironmenttherock formedin. if time, passaroundrocksandaskstudentsto speculateon

    wherethey formed

    IgneousRocks: cooledfrom magma.Rockwascompletelymeltedbeforeif formed. Extrusive: cooledquickly nearsurfaceof theearth Intrusive: insulatedby surroundingrocksandcooledslowlySedimentaryRocks: formedfrom erodedpartsof rock. book defines another classification-biologicsedimentary

    rocks,while coal easily falls in this group,otherrocksarenot aseasilyclassified,is coquina(rock madeof shell frag-ments)detrital,chemical,or biological?

    Clastic or Detrital: formed from broken bits of materialcreatedby mechanicalweatheringandshowing evidenceof transport.Theserocksareclassifiedby grainsizeandincludesandstone,siltstone,andshale Chemical:formedfrom dissolvedmaterialthathasprecipitated Somerocksaredifficult to classify:coal,coquina

    Metamorphic Rocks Rockthathasbeenalteredby heatandpressure(but not completelymelted) foliation impartedin rock: themineralgrainsareorientedrelative to astressfield specificmineralsform at differenttemperaturesandpressures

    2

  • !"!!"!#"##"#+$"$"$$"$"$%"%%"%+&"&&"&'"''"'+

    ("(("()"))")+*"*"**"*"*+"+"++"+"++ ,",,",-"--"-+

    .".."./"//"/+ 0"00"01"11"1+2"22"23"33"3+

    4"4"44"4"45"5"55"5"5+

    6"66"67"77"7+8"8"88"8"88"8"89"9"99"9"99"9"9 :"::":

    :"::":;";;";;";>">?"??"??"?

    @"@@"@@"@A"AA"AA"AB"B"BB"B"BB"B"BC"C"CC"C"CC"C"CD"D"DD"D"DD"D"DE"EE"EE"EF"FF"FF"FG"GG"GG"GH"H"HH"H"HH"H"HI"I"II"I"II"I"I

    J"JJ"JJ"JK"KK"KK"KL"L"LL"L"LL"L"LM"MM"MM"M

    N"NN"NN"NO"OO"OO"O

    e e

    ee

    ee

    ee

    ee

    e

    Im Lonely

    3

  • Universe Crust WholeEarth

    H (93.5) O (46) Fe(35)He (6.3) Si (28) O (30)O (.06) Al (8) Si (15)C (.04) Fe(6) Mg (13)Ne (.01) Mg (4) Ni (2.4)

    N Ca(2.4) S (1.9)Mg K (2.3) Ca(1.1)Si Na (2.1) Al (1.1)Fe

    Table2: Abundanceof elements(%). Chemicalandphysicalprocesseshave differentiatedtheelementswithin theEarthandtheUniverse.

    4

  • Figure1: Dif ferenttetrahedralstructuresformedby silicateminerals

    5

  • The Rock Cycle

    Igneous Rocks

    Compaction/Cementation

    Sedimentary Rocks

    Metamorphic Rocks

    Heat and Pressure

    Melting

    Magma

    Weathering and Erosion

    Solidification

    6

  • 3.2 Structure of the Earth TheEarthis madeupof layerswith differentchemicalandphysicalproperties.Temperatureandpressureincreasewith depth,resultingin phasechangeswithin the threemajor layers,thecrust,mantle,andcore.Thesethreelayerscontaindifferentchemicalcompositionsthatdifferentiatedwhentheearthformed.

    CrustPoceaniccrustfrom 0 to 10 km, Mafic//basalticPcontinentalcrustfrom 0 to 40km, Sialic/granitic

    UpperMantle: to 700k, maficsilicates,dividedinto partiallymoltenandsolid layers.

    LowerMantle: to 2900km, maficsilicates,solid

    OuterCore:to 4980km, iron, fluid

    InnerCore:to 6370km, iron, solid Thecrustof theearthis brokeninto platesthatareslowly moving. ContinentalDrift wasfirstproposedin 1912by Wegenerbasedongeologiccorrelationof rocksondifferentcontinents. PlateTectonicsdevelopedout of this ideaand incorporatesmechanismsfor platemotion.Platesincludethecrustandasmallportionof themantle.

    Subductionoccursalongconvergentplateboundaries.Denseroceaniccrustis forcedunderlessdensecontinentalcrustandinto themantle.

    Mid-oceanridgesfoundat divergentplateboundaries.Magmarisesfrom theEarthsinterior andformsrockat thisboundary.

    transformboundariesoccurwhereplatesslidepastoneanother

    Plateboundariesarezonesof active faulting andfolding. Folding occurswherethe rocksbehaveplastically, typically atdepth,andfaultingoccursatshallow (lessthan30km) depths.

    reversefault: compression

    normalfault: tension

    transformfault: lateralslip

    7

  • InnerCore

    OuterCore

    LowerMantle

    Upper Mantle

    CrustOceanic=5 kmContinental=40 km

    63700 km2900 5000

    8

  • ocea

    nic cr

    ust

    dive

    rgen

    t bou

    ndar

    y

    M.O

    .R.

    Sub

    duct

    ion

    conv

    erge

    nt b

    ound

    ary

    QQQQ

    QQQQ

    QQQQ

    QQQQ

    RRRR

    RRRR

    RRRR

    RRRR S

    SSS

    SSSS

    SSSS

    SSSS

    SSSS TT

    TTTTTT

    TTTT

    TTTT

    TTTT

    UUUUUUUU

    UUUUUUUU

    UUUUUUUU

    UUUUUUUU

    UUUUUUUU

    UUUUUUUU

    UUUUUUUU

    UUUUUUUU

    UUUUUUUU

    VVVVVVVV

    VVVVVVVV

    VVVVVVVV

    VVVVVVVV

    VVVVVVVV

    VVVVVVVV

    VVVVVVVV

    VVVVVVVV

    VVVVVVVV

    WWWWW

    WWWWW

    WWWWW

    WWWWW

    WWWWW

    XXXX

    XXXX

    XXXX

    XXXX

    Man

    tle

    cont

    inen

    tal c

    rust

    Con

    vect

    ion

    Cur

    rent

    s

    Mag

    ma

    9

  • Normal Fault

    Reverse Fault

    10

  • 3.3 MainesVery General Geologic

    3.3.1 GeologicHistory Theeventsthatcontrolledtheformationof Precambrianrocks(olderthan570million yearsbeforepresent)not well understood.Theoldestrocksin Maineareabout1.5 billion yearsold andarelocatedin northwesternMaine. Subductiontheoceanicplate(thentheIapetusOcean)underMaineoccurredduringtheearlyPaleozoic. During this time, small piecesof continentalcrustwithin the oceaniccrustareplasteredontotheMainecoastline.Eachdistinctremnantof thesesmallpiecesof continentalcrust are called terranes, and theseterranesappearas bandsof geologicmaterialon thegeologicmapof Maine. Thecollision of thesepiecesof continentalcrustproducedearthquakesandotherdeforma-tion in thecrustalrocksof Maine. Theseeventsareorogenies, mountainbuilding episodes.Orogeniesareidentifiedin the rock recordby igneousintrusions,rapiddepositionof sedi-mentsrelatedto theerosionof uplifted mountains,andmetamorphismof rocksdueto heatandpressureassociatedwith thecollision. In theDevonian,Europecollideswith MaineproducingtheAcadianorogeny, amajordefor-mationeventthatproducedtheAppalachianmountains. Uplift with associatederosionand igneousactivity continuesthroughthe Mississippian,Pennsylvanian,andPermian.Sebagoplutonandassociatedpegmatitesaredepositedin Mis-sissippian Europesplitsfrom North Americain LatePaleozoic.Fracturingandfaultingof rocksasso-ciatedwith this rifting occursthroughtheTriassic. Limited igneousactivity in thelateMesozoicandCenozoicandcontinuederosion. GlaciersadvanceacrossMaineseveraltimesin theQuaternary. This glaciationscouredthelandscape,mixing andredepositingsedimentsin new landforms.Glacial ice wasthousandsof feetthick andcoveredthehighestmountainsin Maine.Theweightof this icewarpedthecrust,locally loweredthebedrocksurface. Theglaciersbeganretreatedfrom Maineabout14,000yearsago(this retreatbeganlongbe-forethisbut it tookabout10,000yearsfor theicemargin to reachMaine).SeawaterfloodedtheMainelandscapethathadbeenloweredby theweightof theice. As theMainelandscapeslowly rebounded,thecoastlinemigratedfrom centralMaineto its currentposition.

    3.4 Glacial Geology Till materialdepositeddirectlyby theglacier

    11

  • usuallypoorly sorted,composedof a materialwith a wide rangeof grain sizes(e.g.boulderyclay)

    angularfragment,commonlywith striations(scratchescausedby rocksbeingrubbedagainsteachotherby themoving ice)canbefoundin thetill.

    ablationtill is till thatformsat theice surface,it is theaccumulationof debristhathasmeltedoutof theice

    lodgmenttill representsmaterialthat wasdepositedat the baseof the glacier. It ismaterialthatis plasteredagainstsediments/rocksby themoving ice

    morainesare the accumulationof till. Terminalmorainesaremorainesdepositedattheendof a glacierwherethe influx of ice is balancedby melting,producinga ridgecomposedof till. Groundmorainesform when the capacityfor the glacier to carrysedimentis exceededand the glacier must drop someof this material,producingablanket of till.

    StratifiedDrift Sedimentsdepositedby meltwater coming from the glacier. Thesesedimentsare sortedduringthetransportprocess.

    contactdrift forms in contactwith the glacierwhile proglacialdepositsthat areem-placedat somedistancefrom theglacier

    eskers,streamsedimentsdepositedin theice, form ridgesof coarsematerial

    outwash,streamsedimentdepositedin from of theglacier.

    kamesandkameterracesareformedfrom materialdepositedat theicemargin. Kamesaredeltadepositsthat form at thefront of theglacieror aredepositsthataccumulatedin stagnentzonesin theice andkameterracesarestreamsedimentsfrom streamsthatranalongthecontactbetweenavalley andtheglacier.

    proglacialdeltas,proglaciallakesediment

    12

  • 3.5 Earthquakes Earthquakesarecausedby suddenmotionalonga fault. This faultingis typically associatedwith plate motion. Stressbuilds up along fault followed by catastrophicfailure and thereleaseof energy storedin therocks. Thehypocenter is thelocationof earthquake in theearth(truelocationof theearthquake). The epicenter is the locationof the earthquake on the earths surface(projectionof earth-quakeontotheearths surface) A seismometeris usedto measuretheamplitudeandfrequency of wavesgeneratedby anearthquake Body wavesandsurfacewaves:

    P-waves(Primarywaves)arecompressionalwavesandarethe fastestwaves( Y[Z]\_^a`ab ) generatedby anearthquake. Thesewavesstrikeanareafirst. S-waves(Secondarywaves)areshearingwavesthat travel at a rateof cdfegZ]\h^a`ab .

    ThesewavesarriveaftertheP-waves

    Surfacewavesarewavesthatmovealongthesurfaceof theEarth(SandPwavesmovethroughtheearthandarebothBody waves.)Thesearehigh amplitude,low frequencywaves. Seismicwaveshavebeenusedto developanunderstandingof theEarthsstructure To determinethepositionof anearthquake, the time differencesbetweenS andP wavesat

    threelocationsareneeded. Differentscaleshavebeenproposedto quantifytheintensityof earthquakes: A Richter Scalelogarithmicscaleof thelargestwaveamplitudegeneratedby anearth-

    quake. Eachunit increasein theRichterscalecorrespondsto a10-fold increasein waveamplitudeanda30-fold increasein earthquakeenergy.

    TheModified Mercalli Intensity Scaleis basedon humanobservationof thedamagedoneby anearthquake. This intensityvarieswith distancefrom theearthquake andisdependenton thegeologicmaterialsandotherfactors.

    TheMoment Magnitude Scaleis basedon theenergy releasedby anearthquakeat itshypocenter. Geologicmaterialsinfluencethedestructive impactof anearthquake.

    seismicwavesareamplifiedin loosesediments

    wet unconsolidatedsedimentscanliquefy Building structureinfluencesthe damagecausedby an earthquake: concreteandmasonrybuildingswill sustainandcausemoredamagethansteelor woodstructures.Concretefailsmorereadilythansteelandlight weightmaterialwill causelessdamagethanheavy material.

    13

  • Resonance:buildingshave a naturalperiod wherewave motion that correspondstothatperiodwill causeresonancein thebuilding. Theseismicwaveswill beamplifiedin thebuilding causingbuildingsof certainsizesto experiencemorestress.

    A buildingscompressivestrengthis greaterthanits shearstrengthS-wavesandsurfacewavescausemostdamage. Planningcan reducingthe damagecausedby an earthquake by identify areaswith high

    earthquake risk andpreventinginappropriatestructuresfrom beingbuilt in high risk areas.Whencharacterizingearthquake risk, thefollowing itemsareconsidered:

    earthquakeprobabilityandstrength

    geologicmaterials,strengthof bedrockor unconsolidatedmaterial

    slopes/vegetativecover

    distancefromthefault(earthquake): greaterdamageoccursnearanearthquakebecausewaveshave not beendampedby traveling throughrock anddifferentwavesarrive atsametimeexposingbuilding to forcesin many directionsat onetime.

    distancefrom utilities (gaslines,electricallines) Humanscant predictearthquakesverywell but they canforecastearthquakes(identify highrisk areas,assignaprobabilitythatanearthquakewill occurin sometimeperiod). A varietyof changeshavebeenobservedbeforeandearthquakeandcouldbeusedto predictandearthquake. Noneof thesemethodsalonearevery reliable.

    changein animalbehavior

    changein electricalpropertiesof theearth,canmeasurechangesin electricalcurrentsin theearth

    seismicgaps,reductionin seismicactivity

    fore shocks

    changesin gasemission(Radon) An earthquake with a magnitudeof 8.5 on the Richterscalehasthe energy of 10,000Hi-roshimaA-bombs Seismometersnow arealsousedto monitorfor nucleartesting. Somehumanactivitiescanincreaseearthquakeactivity

    Injection of liquids: At Rocky Mountain Arsenal, liquid wastewas pumpedinto a3600m. deepwell. A correlationwasobservedbetweeninjectionrateandearthquakeactivity.

    Loadingearthscrust: 600earthquakesover the10 yearsfollowing theconstructionoftheHooverDam,relatedto loadingandincreasewaterpressurein therocks.

    Nuclearexplosions

    14

  • SecondaryEffectsof Earthquakes Landslides

    Fires:brokenutilities linesignitefires

    Tsunamis(Tidal Waves): oceanwatervertically displaced,waveshave low amplitudein deepwater(lessthan1m)but canreachheightsof 15 m in coastalwaters As we discussnaturaldisasters,the function of theseeventsshouldbe considered.Some

    naturaldisastershave a service function and may benefithumansor the environmentinsomeway. It is difficult to think of aservicefunctionfor earthquakes,otherthannotingthatthey relievestressin theEarthscrust.

    Amplitude

    Wavelength

    Velocity=Frequency * wavelength

    Figure2: Characteristicsof awave.

    15

  • 00

    10

    20

    30

    40

    50

    60

    distance (km.)

    time

    (sec

    .)

    P-wa

    ve

    S-w

    ave

    P-WaveS-Wave

    15 seconds

    5.0 10.0 15.0 20.0 25.0 30.0

    15 km awayA 15 second lag time indicated the earthquake occured

    Figure3: Thelag time betweentheP andS wavesof anearthquake canbeusedto definehow farawayanearthquake is from a seismicstation.

    16

  • i"ii"ij"jj"j

    k"kk"kl"ll"l

    m"m"mm"m"mn"n"nn"n"nSeismic Station 2Seismic Station 3

    Epicenter

    distance from station

    Seismic Station 1to earthquake

    Figure4: Threestationsareneededto identify the epicenterof an earthquake. The distanceanearthquake is from asinglestationdefinesacirclearoundthatstation.

    17

  • 3.6 Volcanos Most (80%)volcanosareassociatedwith convergentplateboundaries,theremainderoccuralongdivergentplateboundariesor hot spots. A fracturein thecrustallows magmato risein thecrust.This rising magmaformsandfillsamagmachamber, pressureincreasesin this chamberuntil it ruptures. Theeruptivestyleof a volcanois influencesby thethechemicalcompositionof themagmaemittedfrom thevolcano.

    Magmawith a high silica content(70%) hasa high viscosity. This materialmovesslowly andclogsthefracturesandfissuresassociatedwith avolcano.Eruptionsassoci-atedwith thismagmaareviolent. Bits of theviscouspyroclasticmaterialformvolcanicdomes, steepwalled,smallvolcanos.Thesevolcanosdont form asfrequentlyasothertypesbecausethemagmahasdifficulty rising throughthecrust.

    Magmawith intermediatesilica composition(60%) form Stratovolcanos(compositevolcanos). Magmawith an andesiticcompositionreachthe surfacemoreoften thanfelsic magmas.Stratovolcanoshave a steepslopenearthe vent anda shallow slopefartheraway from thevent.Thesedifferentslopesreflecttheintermediatecompositionof the magma.Both pyroclasticdebrisandlava flows areemittedby stratovolcanos.Mt. St. Helensis astratovolcano.

    Magmawith a low silica content(50%)hasthelowestviscosityandformsshield vol-canos. Thesearearealythe largesttypeof volcanoandhave shallow slopes.Kilaueais ashieldvolcano.Magmacoolsto form basalticrocks. Pyroclasticdebrisis calledtephraandincludesashfall, ashflows,andlargerfragments

    ashfall: fine grainedmaterialthat settlesslowly out of the atmosphere.Thismaterialcanbecarriedgreatdistancesfrom thevolcano.

    ashflows (Nuee ardante):mixture of hot gas,steamandashthat movesasa densityflow down thehillside. Thesedebrisflowscantravel atspeedsof 100 Z\o^qpr . Gasesare alsoemittedby volcanosduring eruptionsandduring dormantperiods. These

    gasescanpoisonorganismsaroundthevolcanos. A Caldera is a cratercreatedfrom the collapseof rock into an emptiedmagmachamber.Eruptionsassociatedwith theformationof acalderaareveryviolentbut arerare. Secondaryeffectsof Volcaniceruption:

    Lahars (Mudslides),thick depositsbecomesaturatedandmovedownslope.

    fires

    building failurefrom weightof ash Volcanic eruptionshave beenpredictedwith successthroughthe measurementof earth-quakes,changein thecompositionof gases,anddoming.

    18

  • Geologicmaterialassociatedwith volcaniceruptionscanbemapped,allowing the identifi-cationof hazardousareas.

    19

  • 3.7 Mineral Resources As the populationgrows, larger quantitiesof mineral resourcesarerequiredto sustainit.As thereis a finite amountof mineral resourceson the Earth, it appearsthat the demandfor mineralresourceby anever increasinghumanpopulationwill eventuallyexceedsupply.Concernsoverresourcedepletionarealleviatedby improvementsin technologythatdecreasethecostof mining, improvewasterecovery, or allow alternativematerialsto beused. Thereis a largedisparityof thepercapitauseof resourcesbetweendifferentcountries. Mineral,rock,andsedimentdepositsareconcentratedby geologicprocesses.Thesedepositsareminedby humanswhenthe concentrationof the resourceallows it to be economicallyextracted(thevalueof thematerialexceedsthecostof mining,processing,andtransportingit). the concentrationfactor is ever changingdue to changing

    valueandchangingmineralextractiontechnology

    Theeconomicconcentration factor is theamountthata metalhasto beenrichedtomake it aneconomicallyviableresource( sutvwsuxyvwz|{}~z||tyvv{xyty{s xs tyvsuxyvz|{}~z|tvvsu{wuz ) Iron hasa concentrationof about50 g per kilogram in theEarths crust. To extract iron profitably, 500 gramsof iron

    perkilogramof rock is required.Iron, therefore,hasaneco-nomicconcentrationfactorof 10. Economicmetaldepositsareassociatedwith plateboundaries.Heat(associatedwith plate

    boundaries)is neededto concentratemany metalsin thecrust.

    Metalsin mineralsaremeltedwith subductedrocks,segregatefrom the magma,andform concentratedmetaldeposits.

    Hot seawatermovesthroughrock at spreadingcentersandleachesout metals.Whenthis fluid cools,metal-richmineralsprecipitate. Theconcentrationof mineralresourcescanberelatedto:

    IgneousprocessesMetalsconcentratedin crystalsor densemagmathatsettleto bottomofmagmachamber;verycoarsegrainedigneousrocks(pegmatites)containrareelementsthat areincorporatedinto mineralsthat form in the late stagesof magmacrystalliza-tion (in easternMaine,beryllium is a componentof beryl (alsousedasthegemstonesemeraldandaquamarine)andtourmalineis avaluedgemstoneandusedin electronics(the Maine statemineral). Densecrystalsseparatefrom lighter materialin a magmachamberforming layerswhatareenrichedin someelements.

    Metamorphic processeshigh tempandpressurecausesmovementof hot fluid or partialmelting of rock that preferentiallymobilizesmetals. This canbe relatedto contactmetamorphism, metamorphismthatoccursalongthecontactbetweenamagmacham-ber andthe rock it intrudes.Groundwatercanmigratethroughthemagmachamber,leachingmetals,andmove into the country rock depositingmetal-richveins(a hy-drothermaldeposit). Regional metamorphism refersto large-scalemetamorphism,dueto platecollision or other large scaleprocesses.The high temperatureandpres-surecanchangethemineralogycreatingimportantmineralssuchasasbestos,talc,andgraphite.

    Hydr othermal processesrefer to the movementof materialby hot water. Metalscanbepartitionedinto waterandgasasthemagmacrystallizes;themetalsarethendeposited

    20

  • in fracturesandotheropeningsthat the fluids migrateinto the surroundingrock andcool. Similarly, Hot watercanleachmetalsfrom rockanddepositthemetalsin amoreconcentratedform.

    Sedimentaryprocessesinclude1) theselective separationof densemineralsfrom movingwater(formingplacer deposits)(gold,diamonds)andevaporationof seawaterproduc-ing evaporitemineralssuchashaliteandgypsum.Bandediron formationsareauniquechemicalsedimentaryrockproducedfrom alternatingchemicalconditionsthatallowedsilica andhematiteor magnetite(iron ore)to bedepositedin alternatinglayersrelatedto changesin atmosphericchemistry. Manganesenodulesarefoundover muchof thedeepseafloor wheresedimentationratesare low. Thesenodulesreachdiametersofabout10cm andcontaincopper, nickel, cobalt,andplatinum,aswell asmanganese.

    Weatheringprocessesreferto thepreferentialweatheringof rock or sediment,leaving be-hind importantmineralsthatareinsoluble,suchasgibsite(Al) andgeothite(Fe). New technologiesareimproving our ability to find mineraldeposits,increasingour ability

    to extractthedeposits,andreducingenvironmentalimpact.

    Remotesensinginvolvesusingsatellitesandairplanesto collectinformationover largeportionsof the Earth. Picturesare taken that capturedifferentwavelengthsof light.Theseimagesarethenusedto identify favorablelocationsfor mineralresourcesthatcanthenbeexploredin moredetail.

    In situmining: performedby pumpingfluidsinto thegroundthatleachmetals,recover-ing thefluid, andextractingthemetals.Thereareproblemscontrollingthetoxic fluidsthatcouldbegeneratedby this method.

    recycling is improving, reducingthe amountof mineral resourcesthat are needed.Thereis somespeculationon mining landfills.

    Impactof mining on theenvironment Heapleachinginvolvespercolatinga cyanidesolutionthrougha pile of broken rock.

    Thecyanidewill leachgold or othermetalsout of thepile of rock andthemetal-richsolutioncanbeprocessed.Whenimproperlymanaged,spills or leaksoccur, releasingcyanideandheavy metalsinto theenvironment

    Mercuryis usedto to gather(amalgamate)goldandthetwo metalsarethenseparated.Mercuryis very toxic andhasbeenreleasedin gold-miningareas.

    Smeltersreleasemetalsandsulfurassociatedwith themetalsinto theatmosphere.Par-ticulatesenrichedin metalsarecarriedfrom the smelteranddepositedon the nearbylandscape(10s of km downwind). Acid rain is generatedfrom thechemicalreactionof sulfur with oxygenandwaterin theatmosphere.

    de^ Plantandanimallife canbedevastatednearsmelters.All coniferswerekilled within12 milesof a largesmelterin British Columbia.Smeltersthatareproperlyconstructedtodayhavemuchloweremissionsthanthoseconstructedjust20 yearsago.

    21

  • Mine spoilsarewastepilesleft from miningactivity. Rainwaterthatpercolatesthroughthesepiles canleachout heavy metalsthat thenentergroundwateror surfacewater.Dustis producedfrom thesepilesif not re-vegetated,spreadingmetalrich debris.

    Acid minedrainageis producedfrom minespoilsandfrom mineexcavationsthatareleft open. Oxygenatedwaterthatcomesin contactwith sulfidemineralscanproducesulfuric acid that thenentersstreamsandgroundwater. This is associatedwith metalminesandcoalmines(coalcontainspyrite (iron sulfide))

    alterationof thephysicalenvironment,ground-waterdewatering,inducederosion,col-lapseof undergroundmines

    22

  • resource Merritset al. Kellerstone 7905 9250sand 6658 8370

    cement 659 792salt 383 440clay 375 550iron 1063 1300

    aluminum 45 66copper 23 24zinc 11 15lead 9 15

    Table3: U.S.A.percapitauseof minerals(in pounds).

    1987 1988 1989aluminum 15.6 19.5 21.6

    lead 54.7 56.4 60.3nickel 24.6 32.3 34.4

    Table4: Metalsrecycledin U.S.aspercentof consumption.(U.S.Bureauof mines,1990)

    23

  • Magma ChamberFractures

    Metal-Rich FluidsMigrate from magma

    into country rock

    Hydrothermal Mineral Deposits are formedby hot , metal-rich fluids

    in sedimentary environmentsPlacer deposits are collections of dense minerals

    River

    Faster Current

    Possible locationsof placer deposit

    24


Recommended