+ All Categories
Home > Documents > Lecture 02 Transistor Models

Lecture 02 Transistor Models

Date post: 15-Nov-2015
Category:
Upload: ralph-co
View: 220 times
Download: 0 times
Share this document with a friend
Description:
Transistor Models
Popular Tags:
29
EEE 51: Second Semester 2014 2015 Lecture 2 Transistor Models EEEI University of the Philippines Diliman
Transcript
  • EEE 51: Second Semester 2014 - 2015 Lecture 2

    Transistor Models

    EEEI - University of the Philippines Diliman

  • Today

    Transistor Models Large Signal Small Signal

    EEEI - University of the Philippines Diliman

  • From Transistors to Transistor Circuits

    EEEI - University of the Philippines Diliman

    transistors

    [wikipedia]

    transistor circuits

    ?

  • Transistor Models

    EEEI - University of the Philippines Diliman

    transistor operaGon

    device characterizaGon

    IC = IS eVBEVT 1( ) 1+VCEVA

    "

    #$

    %

    &' IB =

    1IC

    [wikipedia]

    device models

    I-V models (large signal approximaGon)

    large signal terminal behavior (I-V curves)

    transistor circuits

    ?

    EEE 41

    EEE 41 EEE 51

  • Large Signal Models

    V and I over dierent transistor opera:ng regions BJT: Forward-acGve, saturaGon, cut-o MOSFET: SaturaGon, linear (ohmic), subthreshold (cut-o)

    Large signal model reference largest gain topology Transfer CharacterisGc Output CharacterisGc Input CharacterisGc Unilateral Low frequency

    EEEI - University of the Philippines Diliman

    gain input output

    How many ways can you congure a 3-terminal device?

    C

    E

    B

  • BJT Transfer CharacterisGcs (IC vs. VBE)

    EEEI - University of the Philippines Diliman

    Common-Emi^er topology

    IC = IS eVBEVT 1( ) 1+VCEVA

    "

    #$

    %

    &'

    IS eVBEVT

  • MOSFET Transfer CharacterisGcs (ID vs. VGS)

    EEEI - University of the Philippines Diliman

    Common-Source topology

    ID = k VGS VTH( )2 1+ VDS( )

    k VGS VTH( )2

  • Output CharacterisGcs

    EEEI - University of the Philippines Diliman

    2N2222A

    ZVN3306A

    IB =10A

    IB = 50A VGS = 9V

    VGS =1V

    IC = IS eVBEVT 1( ) 1+VCEVA

    "

    #$

    %

    &'

    ID = k VGS VTH( )2 1+ VDS( )

    (forward acGve)

    (saturaGon)

    ID = 2k VGS VTH( )VDS 12VDS2#$ %&(linear/ohmic)

  • Input CharacterisGcs

    BJT MOSFET

    EEEI - University of the Philippines Diliman

    IB =IC

    1IS e

    VBEVT IG = 0

  • Two Ways to Bridge the Gap

    EEEI - University of the Philippines Diliman

    IC = IS eVBEVT 1( ) 1+VCEVA

    "

    #$

    %

    &'

    IB =1IC

    I-V models (large signal transfer, input and output characterisGcs)

    transistor circuits

    EEE 51 way ( aka the fun way J ) Allows us to use our EEE 31, 33 skills Allows us to break up large circuits into smaller ones Gives us more intuiGon in terms of circuit operaGon

    direct applicaGon of KCL and KVL

    linearizaGon + two-port network

    reducGon

    The complex, non-intuiGve, non-extendable way

  • LinearizaGon (1)

    Consider an amplier with large gain:

    EEEI - University of the Philippines Diliman

    gain input output

    5V

    voltage gain = 1,000

    input voltage levels?

    In most amplier applicaGons, we are interested in the transistor behavior when we apply small signals

  • LinearizaGon (2) Consider a BJT in the forward acGve region:

    EEEI - University of the Philippines Diliman

    IC = IS eVBEVT

    A is known as the quiescent DC operaGng point

  • LinearizaGon (3)

    So what if the signals are small? Recall: Taylor Series expansion

    EEEI - University of the Philippines Diliman

    f x( ) = f a( )+f ' a( )1! x a( )+

    f '' a( )2! x a( )

    2+f ''' a( )3! x a( )

    3+

    ex = e0 + e0

    1! x +e02! x

    2 +e03! x

    3 +

    =1+ x + x2

    2! +x33! +

    Example:

  • Linearizing the BJT Transfer CharacterisGc (1)

    Expanding the transfer characterisGc

    EEEI - University of the Philippines Diliman

    iC = IC,Q + ic = IS eVBE ,Q+vbe

    VT

    IC,Q + ic = IS eVBE ,QVT e

    vbeVT = IC,Q e

    vbeVT

    = IC,Q 1+vbeVT

    +v2be2V 2T

    +v3be6V 3T

    +"

    #$

    %

    &'

    IC,Q + ic = IC,Q + IC,QvbeVT

    +IC,Q2

    vbeVT

    "

    #$

    %

    &'

    2

    +IC,Q6

    vbeVT

    "

    #$

    %

    &'

    3

    +

    ic = IC,QvbeVT

    +IC,Q2

    vbeVT

    "

    #$

    %

    &'

    2

    +IC,Q6

    vbeVT

    "

    #$

    %

    &'

    3

    +

    (VBE,Q, IC,Q )

    vbe

    ic

    vBE =VBE,Q + vbeiC = IC,Q + ic nonlinear!

  • Linearizing the BJT Transfer CharacterisGc (2)

    If vbe is small

    EEEI - University of the Philippines Diliman

    ic = IC,QvbeVT

    +IC,Q2

    vbeVT

    !

    "#

    $

    %&

    2

    +IC,Q6

    vbeVT

    !

    "#

    $

    %&

    3

    +

    IC,QvbeVT

    (VBE,Q, IC,Q )

    vbe

    ic

    vBE =VBE,Q + vbeiC = IC,Q + ic

    linear!

    small means vbeVT

  • Linearizing the BJT Transfer CharacterisGc (3)

    Another way to think about linearizaGon

    EEEI - University of the Philippines Diliman

    (VBE,Q, IC,Q )

    vbe

    ic

    vBE =VBE,Q + vbeiC = IC,Q + ic

    If we make vbe 0

    m = limvbe0

    iC VBE,Q + vbe( ) iC VBE,Q( )VBE,Q + vbe VBE,Q

    =ICVBE VBE=VBE ,Q

    We can make the approximaGon:

    ic =m vbe =ICVBE VBE=VBE ,Q

    vbe

  • Linearizing the BJT Transfer CharacterisGc (4)

    Transconductance

    EEEI - University of the Philippines Diliman

    (VBE,Q, IC,Q )

    vbe

    ic

    vBE =VBE,Q + vbeiC = IC,Q + ic

    Dene transconductance as

    ic = gm vbe

    gm =ICVBE VBE=VBE ,Q

    For small signals

  • Linearizing the BJT Transfer CharacterisGc (5)

    BJT transconductance

    EEEI - University of the Philippines Diliman

    (VBE,Q, IC,Q )

    vbe

    ic

    vBE =VBE,Q + vbeiC = IC,Q + ic

    gm =ICVBE VBE=VBE ,Q

    =

    VBEIS e

    VBEVT

    #

    $%%

    &

    '((VBE=VBE ,Q

    =IS e

    VBE ,QVT

    VT=IC,QVT

    Again, we get: ic = gm vbe =IC,QVT

    vbe

    slope: gm

  • Linearizing the MOSFET Transfer CharacterisGc

    MOSFET transconductance

    EEEI - University of the Philippines Diliman

    gm =IDVGS VGS=VGS ,Q

    =

    VGSk VGS VTH( )

    2( )VGS=VGS ,Q

    = 2k VGS,Q VTH( )(VGS,Q, ID,Q )

    vgs

    id

    vGS =VGS,Q + vgsiD = ID,Q + id

    slope: gm

    We get the linear relaGonship:

    id = gm vgs = 2k VGS,Q VTH( ) vbe

  • Does gm give us the complete picture?

    What else changes ic or id?

    EEEI - University of the Philippines Diliman

    2N2222A

    ZVN3306A

    IB =10A

    IB = 50A VGS = 9V

    VGS =1V

    IC = IS eVBEVT 1( ) 1+VCEVA

    "

    #$

    %

    &' ID = k VGS VTH( )

    2 1+ VDS( )

  • BJT Transistor Output Resistance

    What happens when there are small changes in VCE?

    EEEI - University of the Philippines Diliman

    2N2222A IB =10A

    IB = 50A

    ic =ICVCE VCE=VCE ,Q

    vce

    =

    VCEIS e

    VBEVT 1( ) 1+VCEVA

    $

    %&

    '

    ()

    $

    %&&

    '

    ())VCE=VCE ,Q

    vce

    =IS e

    VBE ,QVT 1$

    %&

    '()

    VA vce =

    IC,QVA

    vce = go vce =vcero

    Output resistance: ro =VAIC,Q

  • MOSFET Transistor Output Resistance

    What happens when there are small changes in VDS?

    EEEI - University of the Philippines Diliman

    id =IDVDS VDS=VDS ,Q

    vds

    =

    VDSk VGS VTH( )

    2 1+ VDS( )( )VDS=VDS ,Q

    vds

    = k VGS VTH( )2 vds = IDS,Q vds

    = go vds =vdsro

    Output resistance: ro =1

    IC,Q

    ZVN3306A VGS = 9V

    VGS =1V

  • CompleGng the Picture: Transistor Input Resistance BJT Small signal base current

    due to vbe

    MOSFET Small signal gate current

    due to vgs

    EEEI - University of the Philippines Diliman

    g =IBVBE VBE=VBE ,Q

    =

    VBEIC

    "

    #$

    %

    &'VBE=VBE ,Q

    =1

    ICVBE VBE=VBE ,Q

    =gm

    g =IGVGS VGS=VGS ,Q

    = 0

    r =1g

    =gm

    = VTIC,Q

    r =1g

  • LinearizaGon Result: The Small Signal Model

    BJT Total ic:

    Total ib:

    MOSFET Total id:

    Total ig:

    EEEI - University of the Philippines Diliman

    ic =ICVBE VBE=VBE ,Q

    vbe#

    $

    %%

    &

    '

    ((+

    ICVCE VCE=VCE ,Q

    vce#

    $

    %%

    &

    '

    ((

    = gmvbe +vcero

    id =IDVGS VGS=VGS ,Q

    vgs#

    $

    %%

    &

    '

    ((+

    IDVDS VDS=VDS ,Q

    vds#

    $

    %%

    &

    '

    ((

    = gmvgs +vdsro

    ib =IBVBE VBE=VBE ,Q

    vbe =vber

    ig = 0

  • The BJT Small Signal Equivalent Circuit

    KCL / KVL results in the small signal model

    EEEI - University of the Philippines Diliman

    ic = gmvbe +vcero

    ib =vber

    Linear! Fully describes the response of the BJT to small signal disturbances

    about the quiescent point (no DC informaGon!) Dependent on the quiescent DC operaGng point

  • The MOSFET Small Signal Equivalent Circuit

    KCL / KVL results in the small signal model

    EEEI - University of the Philippines Diliman

    id = gmvgs +vdsro

    ig = 0

  • Large Signal vs. Small Signal

    EEEI - University of the Philippines Diliman

    IC,Q = IS eVBE ,QVT 1"

    #$

    %&' 1+VCE,QVA"

    #$

    %

    &'

    IB,Q =IC,Q

    ic = gmvbe +vcero

    ib =vber

    IC,QVBE,Q ic

    vbe

  • Small Signal Model ImplicaGons

    Linear relaGonships! For small signals

    Linear circuit analysis works! EEE 31 and 33 is useful amer all J Can use two-port network concepts

    EEEI - University of the Philippines Diliman

    gain input output

    5V

    voltage gain = 1,000

    5mV input

  • Next MeeGng

    Review of Two-Port Networks Single-Stage Ampliers

    EEEI - University of the Philippines Diliman


Recommended