+ All Categories
Home > Documents > Lecture 6: CMOS Proximity Wireless Communications for 3D...

Lecture 6: CMOS Proximity Wireless Communications for 3D...

Date post: 20-Aug-2020
Category:
Upload: others
View: 1 times
Download: 0 times
Share this document with a friend
48
© T. Kuroda (1/48) Lecture 6: CMOS Proximity Wireless Communications for 3D Integration (1) Tadahiro Kuroda Visiting MacKay Professor Department of EECS University of California, Berkeley [email protected], [email protected] http://bwrc.eecs.berkeley.edu/Classes/ee290c_s07 http://www.kuroda.elec.keio.ac.jp/ EE290c Spring 2007, Tues & Thurs 9:30-11:00, 212 Cory UCB
Transcript
Page 1: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (1/48)

Lecture 6: CMOS Proximity Wireless Communications for 3D Integration (1)

Tadahiro KurodaVisiting MacKay ProfessorDepartment of EECSUniversity of California, [email protected], [email protected]://bwrc.eecs.berkeley.edu/Classes/ee290c_s07http://www.kuroda.elec.keio.ac.jp/

EE290c Spring 2007, Tues & Thurs 9:30-11:00, 212 Cory UCB

Page 2: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (2/48)

Memory Bus

Trend of Chip Performance and Pin Bandwidth

Chip Performance

Year70 80 90 00 10

4004

8086

286

Intel386

Intel486

Pentium

Pentium4

X1.70 / year

100

MIP

S [i

nstr

uctio

n/s]

0.01

0.1

1

10

1000

10000

100000

1000000

Pin Bandwidth Data R

ate [MB

/s]

1

10

100

1000

10000

Bus on BoardATA (HDD)

Ethernet

ISA

PCI

PCI-EXSerial ATA

X1.44 / year

Fast Ethernet

Courtesy: Intel, Fujitsu Lab

Page 3: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (3/48)

The Gap Is Caused by Topological Difference

TRANSISTOR Scaling Per yearGate length [x] 0.87Voltage [V] 0.87Capacitance [c]~[x2/x] 0.87Current [i]~[v2/x] 0.87Speed [i/cv] 1.15

WIREWire pitch [x] 0.87Chip size [s] 1.06Tracks [t]~[s/x] 1.22Grids [g]~[t2] 1.49

Rent’s rule:Bandwidth demand from a module withcapacity C (grids*speed) grows as C0.7.Required pin bandwidth: x1.45/year

Pin bandwidth1.15 (Speed) x 1.11 (Pin #) = x1.28/year

Periphery

Chip performance1.15 (Speed) x 1.49 (Grids) = x1.71/year

Area

Moore’s Law

Chip perform

ance : 1.71/year

Pin bandwidth : 1.45/year

Scaling:1.28/year

circuitinnovation

Year

Dat

a R

ate

Page 4: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (4/48)

Challenges in Wireline Link

’96 ’98 ’00 ’02 ’04 ’06

100G

1T

Dat

a R

ate

[b/s

]

Year’ ’ ’ ’ ’ ’’ ’ ’ ’ ’ ’’ ’ ’ ’ ’ ’

1G

10G

Speed-wall

Stanford (1ch)

Stanford (1ch)

NEC (1ch)

Power/Area-wall

Toshiba(4ch,4W)

Rambus(26ch)

NTT(16ch,8W)

Hotrail(32ch)

NEC (4ch,5W)

NEC (21ch,3W)

NEC (20ch,8W)

TI (20ch,6W)

Intel (32ch,15W)

IBM,Sony,Toshiba (48ch,6W)

Hitachi(1024ch,12W)

Page 5: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (5/48)

150nm and 65nm Single-chip Supercomputer at Max Performance

Courtesy: NEC

Leakage and IO Power Rapidly Increasing

65nm (estimated)150nm

Vector

Scalar FPU

Logic

IO

Clock

SRAM

x1.3(Total Power)

VectorFPU

Scalar FPU

LogicIO

Clock

SRAM

leakageFPU

IO

Clock

IO

Clock

Page 6: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (6/48)

I/O Power Recently Increasing

0.010.11

10

10000

1

1000

100

Technology [µm]

Pow

er [m

W]

fCV2 ∝ 1/κ1.3

Page 7: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (7/48)

I/O Power DetailsPo

wer

[mW

]

50

200

100

0

150

250

90nm, 10Gb/s

CDR

PLL

CLK

EQDMXDRMUX

25mW, 10%

70mW, 30%

25mW, 10%

30mW, 12%

30mW, 12%

25mW, 10%

25mW, 10%15mW, 6%

180nm, 2.5Gb/s

20mW, 17%

25mW, 21%

20mW, 17%5mW, 4%

10mW, 8%25mW, 21%

5mW, 4%10mW, 8%

245mW

120mW

OtherTx

Rx

Clock

Power in red is increasing

Page 8: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (8/48)

+5% Speed Requires +20% Power in Clock

Normalized speed(by changing the number & size of repeaters)

0.9 0.95 10.7

0.8

0.9

1N

orm

aliz

ed p

ower

exponential

Ref. [11]

Page 9: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (9/48)

SoC Improves I/O PerformanceSeparate

chips 891mW

240mW

DRAMLogic & memory

EmbeddedDRAM

Power 16MbitDRAM

Speech codec

Multiplexer

MPEG-4 VideoCodec

HostI/F

DRAM

I/F

PLLCamI/F

DisplayI/F

Pre-filter

VTVT

VT VT

MPEG4 codec

DRAM - logic interface

70% power reduction by DRAM embedding technology

Courtesy: Toshiba

Page 10: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (10/48)

DRAM

PC Board

Package

PCBDRAM

SRAM

Analog

CPU

Connection

DRAM

PC Board

Package

PCBDRAM

SRAM

Analog

CPU

Connection DRAM SRAM

Analog CPU

DRAM SRAM

Analog CPU

From SoC to SiPSystem-on-a-Board

CPU

SRAM DRAM

Analog

CPU

SRAM DRAM

Analog

Lower Cost, QTAT

Low power, High speed

System-in-a-Package (SiP)

System-on-a-Chip (SoC)

Mas

k Se

t Cos

t [M

$]

0

0.5

1

1.5

2

2.5

0.4 0.25 0.2 0.180.15 0.13 90n65n0

0.5

1

1.5

2

2.5

0.4 0.25 0.2 0.180.15 0.13 90n65n0

0.5

1

1.5

2

2.5

0.4 0.25 0.2 0.180.15 0.13 90n65n

Generation [µm]Source: Intel

ASIC

ASSP

02000400060008000100001200014000

2000 2001 2002Year

Des

ign

star

ts

ASIC

ASSP

02000400060008000100001200014000

2000 2001 2002Year

Des

ign

star

ts

Number of design starts is declining from 1997.

Source: EE Times

Page 11: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (11/48)

Chip Stacking and Wire Bonding in SiP

Courtesy: Toshiba

Page 12: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (12/48)

From Periphery to Area

MPU

Memories

Sensor / RF / Analog

Bonding (Conv.) Through Si Via (Future)(+) area contact:

large # of connections(~10000)short distance(~0.1mm)

(-) expensive process / reliability issue(-) low yield due to Known Good Die

issue : difficult to test in fine pitch(-) scaling limit due to mechanical

contacts (~10µm pitch)

(+) low cost, practical(-) peripheral contact:

small # of connections(~100)

long distance(~10mm)

Page 13: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (13/48)

From Mechanical to Electrical

TSV Wireless Interface

Proposalwireless transceiver arrays

(-) process(-) KGD(-) scaling limit

(+) no addition in process, no reliability issue(+) KGD solvable : easy to attach and remove(+) high density channels (below 10µm pitch)(+) 3D scaling scenario (thinning a chip)(+) channels through active devices (+) low power : no ESD protection required

Page 14: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (14/48)

Communication Bottleneck Resolved in SiP

DRAM

SRAMAnalog CPU

DRAM

SRAMAnalog CPU

DRAM

PC Board

Package

PCB

DRAM

SRAM

Analog

CPU

Connection

DRAM

PC Board

Package

PCB

DRAM

SRAM

Analog

CPU

Connection

Chip perform

ance : 1.71/year

Pin bandwidth : 1.45/year

Scaling:1.28/year

circuitinnovation

Year

Dat

a R

ate

Chip perform

ance : 1.71/year

Pin bandwidth : 1.71/year

Year

Dat

a R

ate

Electrical Area Interface for 3D Integration

Page 15: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (15/48)

Area Interface for 3D Integration

CapacitiveCoupling [3]

Wired Wireless2

Chi

ps(F

ace-

to-F

ace)

Ove

r 3 C

hips

(Fac

e up

/dn)

[1] ISSCC’04, Sony [2] ISSCC’01, MIT [3] ISSCC’03, Univ. Tokyo, Keio Univ. [4] ISSCC’04, Keio Univ.

InductiveCoupling [4]

Micro-Bump [1]

Through-Si Via [2]

Page 16: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (16/48)

Capacitive-Coupling Link

[8] CICC’03, Sun Microsystems[9] ISSCC’04, Sun Microsystems

Chip to Chip[5] CICC’02, NC State Univ.[6] ISSCC’05, NC State Univ.

Chip to Interposer

Base chip

Face-down chips

30um pitch mini-pads (Top metal layer)

substrate

IC #1 IC #2

Trench Interconnection layer

DC connection(Solder bump)

AC connections DC connection(Solder bump)

substrate

IC #1 IC #2

Trench Interconnection layer

DC connection(Solder bump)

AC connections DC connection(Solder bump)

2µm

[3] ISSCC’03, Univ. Tokyo and Keio Univ.[7] CICC’05, Univ. Bologna

1µm

Chip 1Chip 2

Chip 3

Txdata Rxdata

TxdataRxdata

Chip 1Chip 2

Page 17: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (17/48)

Inductive-Coupling Link

VR Vbias

+

-

Rxdata

Rxclk

Rxdatab

Dl

Dlb

TxdataIT

Tx/Rx

VR Vbias

+

-

Rxdata

Rxclk

Rxdatab

Dl

Dlb

TxdataIT

Tx/Rx

Digital CMOS Circuits

Multi-layer Wires

ISSCC 2006 (1Tb/s)ISSCC 2005 (200Gb/s)ISSCC 2004 (1Gb/s) [4] ISSCC’04, Keio Univ. [10] ISSCC’05, Keio Univ.

[11] ISSCC’05, Hiroshima Univ.[14] ISSCC’06, Keio Univ.

Transmitter Chip (Top)

1024ch Data Transceivers

Receiver Chip (Bottom)

Data Transceiver

30µm

SEM Photo

15µm

Clock Transceiver

200µm

Tx Chip

Rx Chip

Clock Transceivers

BIS

TC

lock

Con

trolfo

r Top

Chi

p

DC

Pro

be

for Top Chip

195 Transceiver

Channel Array

AC Probefor Bottom

Chip

for B

otto

m C

hip

AC Probe

DC

Pro

be

50µm

Channel

Tx

Rx

Bon

ding

Wire

s fo

r Bot

tom

C

hip

Bon

ding

Wire

s fo

r Top

Chi

p

Tx ArrayRx Array

Bottom Chip

Top Chip

Inductor TEG

VLSI 2005 VLSI 2006[12] VLSI’05, Hiroshima Univ.[13] VLSI’05, NC State Univ.

[15] VLSI’06, Keio Univ.

Page 18: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (18/48)

D=60µm D=60µm

Inductive vs. Capacitive: Loss by Body

0

0.2

0.4

0.6

0.8

1

Nor

mal

ized

S21

Resistivity, ρ [Ωcm]10-6 10-5 10-4 10-3 10-2 10-1 100 101 102 ∞

@10GHz

~ ~~ ~

Loss=exp(-T ) [12]ρωµ 2/

Typical

Indu

ctiv

e

Cap

aciti

ve

Inductor

Si

Capacitor

T=60µmChargeEddy

Capacitive: only for 2 chips, placed face-to-faceInductive: for 2 chips (face-to-face) and >3 chips (face up/down)

Page 19: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (19/48)

Inductive vs. Capacitive: Package Flexibility

Bed

Face-up ChipFace-up ChipFace-up ChipFace-up Chip

Bed

Face-up (Logic)Face-down (Memory)

Cavity

Bed

Face-down (Logic)Face-up (Memory)

Inductive Coupling

Capacitive Coupling

[7]

Inductive: compatible with conventional wire/area bonding

Capacitive: need new technology for power delivery

Page 20: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (20/48)

Inductive vs. Capacitive: ScalabilityCoupling coefficient is enlargedby increasing # of metal layers.

Transmission power can besecured even at low VDD’s.

Supply Voltage VDD [V]

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2

Nor

mal

ized

Tra

nsm

issi

on P

ower Inductive

Capacitive

VR

+ -

IT

VR

VT

VDD VDD

1

3

5

7

9

11

13

3 4 5 6 7 8 9 10

15

Number of Metal Layers

Nor

mal

ized

S21

Inductive

Capacitive

Tx

Rx

10µm

2µm

CRX

Page 21: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (21/48)

Channel Design

)()1(1

11

2ToutTTTTTout

RTRRT

R

LRRCjRCLRLLkj

RCjVV

+++−××

+=

ωωω

ω

0 2 4 6 8

0.2

|VR

/ V T

| CR=0.1pF

0 2 4 6 8

0.2

|VR

/ V T

|

CR=1pF

Frequency [GHz] Time [ns]

0 4 8 12

0 4 8 12

0

-0.2

0.2

V R[V

]

0

-0.2

0.2

V R[V

]

16

16

0 2 4 6 8

0.2

|VR

/ V T

| CR=0.1pF

0 2 4 6 8

0.2

|VR

/ V T

|

CR=1pF

Frequency [GHz] Time [ns]

0 4 8 12

0 4 8 12

0

-0.2

0.2

V R[V

]

0

-0.2

0.2

V R[V

]

16

16

w

nd

TRT ILLkjω

IT

VT+ -

VR+ -

CT

LT

RR/2 RR/2

CR

+ -

RT/2 RT/2

Rout

k

TRT ILLkjω

IT

VT+ -

VR+ -

CT

LT

RR/2 RR/2

CR

+ -

RT/2 RT/2

Rout

k

N. Miura, et al., “Analysis and Design of Transceiver Circuit and Inductor Layout for Inductive Inter-chip Wireless Superconnect,” 2004 Symposium on VLSI Circuits Digest of Technical Papers, pp. 246-249 June 2004.

Modeling

Design knowledge

Optimization

Page 22: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (22/48)

NRZ vs. BPM

Tx Rx+VR-Rxdata

ITTxdata

Txclk

Crosstalk

0 1 2 3 4Time [ns]

0

1.80

1.8

Txcl

k [V

]Tx

data

,

-50

0

50

-50

0

50

V R [m

V]V R

[mV]

NRZ Signal

BPM

Rx Dead Zone

1 10Pulse Energy [pJ/b]

10-12

10-9

10-6

10-3

BER

10-15

NRZ

BPMx1/3

30.3

x1/6

0 011 0

Page 23: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (23/48)

PulseGenerator

Txclk

Txdata

VR+ -

Vb

Rxdata

Rxclk

Rxdata

IT

Txdata

I T [m

A]

05

-5V R

[mV]

0

50

-50

Txda

ta

0

1.8V

Txcl

k1.8V

0

Rxc

lk1.8V

0

Rxd

ata

0

1.8V

Time [ns]2 4 60

Transceiver Circuit for Data

[14] ISSCC’06, Keio Univ.

Page 24: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (24/48)

Transceiver Circuit for Clock

Rxc

lk[V

]

0

1.80.7

1.10.9

V SA

[V]

-0.1

0.10

V RC

[V]

1

-10

I TC[m

A]

Txcl

k[V

]

0

1.8

0 321Time [ns]

54

VRC

Vbias

+ -

RxclkRxclk

VDD

ITC

Vbrx

VSA

TxclkTxclk

IDC

[16] ISSCC’07, [20.2] , Keio Univ.

Page 25: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (25/48)

Txdata

Rxdata

Clock and Data Link

Data Link (one clock latency)Clock Link

・Both clock and data are linked by inductive coupling

[14] ISSCC’06, Keio Univ.

1Gb/s, 223-1 PRBS Data, BER<10-13

Clk

TxC

lkR

x

ITC

φ

V

+-

RC

φ

Dat

a Tx

Dat

a R

x

IT

VR

+-

Rxdata0

Txclk

7.4ps-rms Jitter in Rxclk

20ps

1GHz Rxclk

100ps

Txdata0

IT

VR

+-Txdata6

3

Rxdata63

64ch

Page 26: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (26/48)

LAN Wire vs. Wireless

path loss

multi-path fading

Multiple access in free space: cell, TDMA, FDMA, CDMA

Wired LAN (Ethernet) Wireless LAN (WiFi)802.3u(100BASE-T) 802.11btwisted pair 2.4GHz<100m <100m

Data rate High speed (100Mbps) Low speed (11Mbps)Reliability High (BER<10-14) Low (BER~10-4)Cost Inexpensive (~$15) Expensive (~$100)Power Low (~100mA) High (~400mA)Size Small Large (w/ antenna)Connection Easy (plug and play) Complex (authentication)Usability Messy/Difficult (ie.wall) Neat, Simple, EasyMobility Low/Immobile Movable

Page 27: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (27/48)

Inter-Chip 3D Link Wire vs. WirelessWired Inter-Chip Link Wireless Inter-Chip Link

Micro-bump (2 chips) Capacitive coupling (2 chips)TSV ( >3 chips) Inductive coupling (>3 chips)<100µm <100µm

Data rate High speed Low speed ?Reliability High-reliable Low-reliable ?Cost Inexpensive Expensive ?Power Low High ?Size Small Large (w/ Antenna) ?Connection Easy (plug on play) Complex?Usability Messy/Difficult (ie.wall) Neat, Simple, Easy ?Mobility Low/Immobile Movable ?

100µm: 0.001 wave length (proximity)100m :1000 wave length

Page 28: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (28/48)

World Fastest (1Tb/s) Data Rate

[14] ISSCC’06, Keio Univ.

Dat

a R

ate

[b/s

]

’961G

10G

100G

1T

Year’98 ’00 ’02 ’04 ’06

Hitachi (1024ch, 12W)

NEC (4ch, 5W)

NEC (21ch, 5W)

NEC (20ch, 8W)

TI (20ch 6W)NTT(16ch, 8W)

Intel (32ch, 15W)

Toshiba (4ch, 4W)

Rambus (26ch)

Hotrail(32ch)

Sony (1300ch), TeraChip (16ch, 15W)

Rambus FlexIO(48ch, 6W)

Power/Area Wall

NEC (1ch)

Stanford (1ch)

Stanford (1ch)

Keio(1Gb/s/ch, 1024ch, 3W)

Keio (1ch, 46mW)

Keio (195ch, 1.2W)

Speed Wall

Page 29: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (29/48)

Maximum Data Rate per Channel

[17] Symp. on VLSI Circuits’06, Keio Univ.

0

-0.2

0.2

V R[V

]

0

-0.2

0.2

V R[V

]

IT

CR

LRRR/2

k

VR

CT

LT

RR/2

RT/2 RT/2X

D=X

Time [ns]0 4 8 12 16

Time [ns]0 4 8 12 16

0

-0.2

0.2

V R[V

]

0

-0.2

0.2

V R[V

]

Communication Distance, X [µm]

0.1

1

10

100

1000

0 20 40 60 80 100 120

Max

imum

Dat

a R

ate

[Gb/

s] fSR = 1/2π LC

fSR/3

[14] [10] [10]

[13]

Page 30: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (30/48)

Communication Distance vs. Inductor Size

Comparator

LNA +Comparator (40dB)

Receiver Lower Limits

10-8

10-6

10-4

10-2

1

10µm 100µm 1mm 10mm

Cou

plin

g C

oeffi

cien

t k

Communication Distance X

D

X

D=10µm D=100µm D=1mm

LNA noise floor… difficult to eavesdrop

Page 31: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (31/48)

Bus Probing for Debugging

[20.3] “An Attachable Wireless Chip-Access Interface for Arbitrary Data Rate Using Pulse-Based Inductive-Coupling through LSI Package”

Probe IC on FCB

Inductorsin FCB

PCB

glue

Inductors in FCB

Target LSI on PCB

CLK

TX RX

PCB

Target LSI(in SSOP pkg)

Probe IC(transceiver)

Flexible-Circuit-Board(FCB)

To/Fromin-Circuit-Emulator

On-chip inductors [18] ISSCC’07, Keio Univ.

Page 32: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (32/48)

World Lowest Energy (0.14pJ/b)

1Tb/s, 0.14W (0.14pJ/b), 1mm2

300Gb/s, 6W (20pJ/b), 3.8mm2

1

10

100

1000

Ener

gy D

issi

patio

n [p

J/b]

Year’96 ’98 ’00 ’02 ’04 ’06

Toshiba (350nm)

NTT (250nm)

Hitachi(250nm)

NEC (250nm)

NEC (130nm)Intel (180nm)

TI (180nm)

NEC (130nm)

Keio (350nm)

Keio(250nm)

[2]Keio(180nm

)

TeraChip (130nm)

Rambus(90nm)

Sun (350nm)

[1]SFT(180nm)

Fujitsu(90nm)

0.1

Inductive Coupling (180nm)Inductive Coupling (90nm)

’07

’05’03’01’99’97

1/150

[20.2] “A 0.14pJ/b Inductive-Coupling Inter-Chip Data Transceiver with Digitally-Controlled Precise Pulse Shaping”

[16] ISSCC’07, Keio Univ.

Page 33: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (33/48)

World Smallest (1mm2/Tb/s)

L-coupling30µm pitch (incl. transceiver circuits)Thinner packaging (no solder bump)

Micro-bump60µm pitch

TSV50µm pitch (excl. transceiver circuits)Need additional area for circuits

100

1k

10k

100k

10

1

Layo

ut A

rea

/ Dat

a R

ate

[mm

2 /Tb/

s]

Year’96 ’98 ’00 ’02 ’04 ’06

Sonyµ-bump

TI

NECIntel

NECNEC

Hotrail

HitachiNTT

Toshiba

IBM,Sony,Toshiba

Keio(1024ch)

Keio(195ch)

Keio(1ch)

TxRx

Circuits

TSV

Si Substrate

InductorCircuits

TSV

Si Substrate

Circuits

TSV

Si Substrate

Circuits

TSV

Circuits

TSV

Si Substrate

Inductor

[14] ISSCC’06, Keio Univ.

Page 34: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (34/48)

Channel Pitch vs. Crosstalk

[19] CICC’04, Keio Univ.

X

Inductor Array

YD

-22.5

-17.5

-12.5

-7.5

-2.5

1 2 3 4

BER=10-12

X=D

5

Inte

rfer

ence

-to-S

igna

l Rat

io (I

SR) [

dB]

Y/DChannel Pitch Y [µm]120 1200240 360 480600 840

10-4

10-3

10-2

10-1

1

Nor

mal

ized

Cro

ssta

lk

1/Y 3Slope

X=D

Page 35: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (35/48)

Narrower Pitch by Time Interleaving

-50

0

50

-50

0

50

-50

0

50

0 1 2 3Time [ns]

Rec

eive

d Vo

ltage

[mV]

Crosstalk

Signal

50mV

25mV

10mV

w/oTime Interleaving

2-phaseTime Interleaving

4-phaseTime Interleaving

Ch Array

[14] ISSCC’06, Keio Univ.

[10] ISSCC’05, Keio Univ.

Page 36: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (36/48)

As Reliable As Wireline (BER<10-13)

10-13

10-7

10-4

10-3

∆T [ps]

Bit

Erro

r Rat

e

300 350250 400

1Gb/s

φ

φ

Data Tx

Data Rx

Rxdata

Txdata

223-1 PRBS Generator

TxclkClk Tx

Clk Rx

Error Counter

∆TRxclk

1GHz Clock

Timing Margin=150ps

10-11

10-5

10-6

10-8

10-9

10-10

10-12

・Easy to synchronize[14] ISSCC’06, Keio Univ.

Page 37: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (37/48)

Interference ImmunityInterference to circuits:negligibly small for digital

Interference from environment:negligibly small for receiverdiminishing by scaling

1

10

100

1000

10000

100000

10k 1M 100M 10G 100G0.00001

0.0001

0.001

0.01

0.1

1

10

1G10M100kFrequency [Hz]

Mag

netic

Fie

ld In

tegr

ity, B

EMI[m

G]

Noi

se, V

N[m

V]

D=60µm

RX

BEMI

VN

BEMI(Regulation)

-30

-20

-10

0

10

20

30

-60 -45 -30 -15 0 15 30 45 60Position, Y [µm]

Noi

se V

olta

ge [m

V]

D=60µm

TX

Y

IT

5mA

125psM2

M1

1mm S

ignal

Line

Page 38: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (38/48)

Misalignment Tolerance

・3µm alignment error can be compensated by 5% power increase.

0 5 10 15-5-10-15Misalignment, ∆Y, ∆Z [µm]

Normalized (VR – Vcrosstalk)

Rx ChannelX=15µm

P~30µmTx Array

ZY

D~30µm

Time Interleaving

Single Channel

(Vcrosstalk =0)

0.25

0.5

0.75

1

+3µm

Stacked Chips

Alignment Mark

Misalignment<3µm

Page 39: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (39/48)

Cost Down・ Circuit solution in standard CMOS:

no need for new process developmentno additional cost in manufacturing

・ Reduce chip size: no peripheral circuits neededno ESD protection needed

Page 40: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (40/48)

AC Coupling・No need for level shifters under different VDD’s・No need for additional VDD’s nor thick gate oxide transistors・VDD’s can change: in burn-in, dynamic voltage scaling

RxTx

1V2V

Txdata Rxdata

Txdata

1V

2V

2V

2V

Rxdata

Chip2, VDD=2VChip1, VDD=1V

[20] ESSCIRC’06, Keio Univ.

Page 41: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (41/48)

Detachable・ At-speed test possible if same transceiver

are arranged in test head:solve KGD problem improve yield remove built-in test circuit

・ Wafer entirely test possible: reduce test time and cost (¢3 /min)

・ Avoid Pad damage by probe:raise yield

・ Replace a high-speed connector: improve reliabilityreduce cost

Page 42: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (42/48)

Inter-Chip 3D Link Wire vs. WirelessWired Inter-Chip Link Wireless Inter-Chip

Micro-bump (2 chips) Capacitive coupling (2 chips)TSV ( >3 chips) Inductive coupling (>3 chips)<100µm <100µm

Data rate High speed High speedReliability High reliable High reliableCost Up (new technology) Down (circuit solution)Power Low LowSize Small SmallConnection Easy Easy (clock and data)Usability Good Better (AC coupling)Mobility One time attachment Detachable

Scalability Mechanical Electrical … Scalable

Page 43: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (43/48)

Constant Magnetic Field Scaling

pd

D

pd

D

TRT

TR

tIDkn

tIkL

tILLk

tIMV

6.12

maxmax

==

∂∂

=∂

∂∝

Received Signal Voltage

Self Inductance6.12DnL ∝

[I]

[x]

[T]

[V]

[n]

[t]~[CV/I]

1/α

1/α

1/α

α0.5

1/α

1/α

1

Coil Diameter [D]~[1/x] 1/α

[k] 1

[vRS/vRN] 1

[1/t] α

[ItV] 1/α3

D1.6(I/t)] 1

[1/tD2] α3

[1/D2] α2

Current [I]

Transistor Size [x]

Chip Thickness [T]

Power Supply Voltage [V]

Coil Turn Number (Layer #) [n]

Circuit Delay Time [t]~[CV/I]

Self Inductance

1/α

1/α

1/α

α0.8

1/α

1/α

1

[D]~[1/x] 1/α

Magnetic Coupling Coefficient [k] 1

Crosstalk [vRS/vRN] 1

Data Rate / Channel [1/t] α

Energy / Bit [ItV] 1/α3

Receive Signal [vR]~[kn2[vR]~[kn2 t)] 1

Aggregated Data Rate / Area [1/tD2] α3

Channel Number / Area [1/D2] α2

1.6[L]~[n2D ][L]~[n2D

Distance~Chip Thickness (T)

Diameter (D)Turns (n)

1/α

Page 44: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (44/48)

Diameter: 1/α

Chip Thickness: 1/α

Turn: α0.8

Voltage: 1/α

Transistor size: 1/α

Constant Magnetic Field

Constant Electric Field

1/α

Diameter: 1/α

Chip Thickness: 1/α

Turn: α0.8

Voltage: 1/α

Transistor size: 1/α

Constant Magnetic Field

Constant Electric Field

1/α1/α

3D Scaling Scenario

Inductive Coupling Link(Communication)

Field Effect Transistor(Computation)

[I]

[x]

[T]

[V]

[n]

[t]~[CV/I]

1/α

1/α

1/α

α0.5

1/α

1/α

1Coil Diameter [D]~[1/x] 1/α

[k] 1

[vRS/vRN] 1

[1/t] α

[ItV] 1/α3

D1.6(I/t)] 1

[1/tD2] α3

[1/D2] α2

Current [I]

Transistor Size [x]

Chip Thickness [T]Power Supply Voltage [V]

Coil Turn Number (Layer #) [n]

Circuit Delay Time [t]~[CV/I]

Self Inductance

1/α

1/α

1/α

α0.8

1/α

1/α

1

[D]~[1/x] 1/α

Magnetic Coupling Coefficient [k] 1

Crosstalk [vRS/vRN] 1

Data Rate / Channel [1/t] α

Energy / Bit [ItV] 1/α3

Receive Signal [vR]~[kn2[vR]~[kn2 t)] 1

Aggregated Data Rate / Area [1/tD2] α3

Channel Number / Area [1/D2] α2

1.6[L]~[n2D ][L]~[n2D

[I]

[x]

[T]

[V]

[n]

[t]~[CV/I]

1/α

1/α

1/α

α0.5

1/α

1/α

1Coil Diameter [D]~[1/x] 1/α

[k] 1

[vRS/vRN] 1

[1/t] α

[ItV] 1/α3

D1.6(I/t)] 1

[1/tD2] α3

[1/D2] α2

Current [I]

Transistor Size [x]

Chip Thickness [T]Power Supply Voltage [V]

Coil Turn Number (Layer #) [n]

Circuit Delay Time [t]~[CV/I]

Self Inductance

1/α

1/α

1/α

α0.8

1/α

1/α

1

[D]~[1/x] 1/α

Magnetic Coupling Coefficient [k] 1

Crosstalk [vRS/vRN] 1

Data Rate / Channel [1/t] α

Energy / Bit [ItV] 1/α3

Receive Signal [vR]~[kn2[vR]~[kn2[vR]~[kn2[vR]~[kn2 t)] 1

Aggregated Data Rate / Area [1/tD2] α3

Channel Number / Area [1/D2] α2

1.6[L]~[n2D ][L]~[n2D1.6[L]~[n2D ][L]~[n2D

Cost/Performance will be improved by a 3D scaling scenario:

[20] ESSCIRC’06, Keio Univ.

Page 45: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (45/48)

Trends in Chip Performance and Pin Bandwidth

Year’70 ’80 ’90 ’00 ’10

4004

8086

286

Intel386Intel486

Pentium

Pentium4

100

MIP

S [i

nstr

uctio

n/s]

0.01

0.1

1

10

1000

10000

100000

1000000

Data R

ate [MB

/s]

1

10

100

1000

10000

100000

Chip Perform

ance

X1.70/year

Pin Bandwidth

X1.44/year

Rambus FlexIO

’20

Inductive-Coupling Link

Tchip=150µm80µm

45µm25µm

[20] ESSCIRC’06, Keio Univ.

Page 46: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (46/48)

Which Technology, µ-bump, TSV, Inductive?

Analog

Digital

µ-bump

TSV

Inductive

2 chips

>3 chips

Tr-link

Chip-link

High-end

Consumer

Homogeneous

Heterogeneous

TSV-light

Inductive

Page 47: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (47/48)

ConclusionsInductive and capacitive coupling links are discussed.Inductive coupling has advantages over capacitive coupling in terms of coupling strength through body, package flexibility, scalability.Inductive coupling can link >2 chips (face up or down), and eliminate ESD protection to lower delay, area, power.Inductive coupling bears comparison with TSV/µ-Bump in terms of data rate (1Tb/s), reliability (BER<10-13), energy dissipation (0.1pJ/b) Inductive coupling is applicable to a standard CMOS, and less expensive than TSV/µ-Bump. Inductive coupling exhibits high noise immunity and alignment tolerance.Inductive coupling provides with AC coupling link and makes interface design easy under multiple/variable VDD’s.Inductive coupling may make non-contact testing possible.Constant magnetic field scaling scenario by thinning chip thickness is proposed as a new guideline for 3D integration.

Page 48: Lecture 6: CMOS Proximity Wireless Communications for 3D ...bwrcs.eecs.berkeley.edu/Classes/ee290c_s07/EECS290CDOCS/L6-Ku… · 30um pitch mini-pads (Top metal layer) substrate IC

© T. Kuroda (48/48)

To Probe Further[1] T. Ezaki, et al., “A 160Gb/s Interface Design Configuration for Multichip LSI,” ISSCC Dig. Tech. Papers, pp.140-141, Feb. 2004.[2] J. Burns, et al., “Three-Dimensional Integrated Circuits for Low-Power, High-Bandwidth Systems on a Chip,” ISSCC, pp.268-269,

Feb. 2001.[3] K. Kanda, et al., “A 1.27Gb/s/ch 3mW/pin Wireless Superconnect (WSC) Interface Scheme,” ISSCC, pp.186-187, Feb. 2003.[4] D. Mizoguchi, et al., “A 1.2Gb/s/pin Wireless Superconnect Based on Inductive Inter-chip Signaling (IIS),” ISSCC, pp.142-143, Feb.

2004.[5] S. Mick et al. “4Gbps High-Density AC Coupled Interconnection,” CICC, pp.133-140, May 2002. [6] L. Luo, et al., “3Gb/s AC-Coupled Chip-to-Chip Communication using a Low-Swing Pulse Receiver,” ISSCC, pp.522-523, Feb. 2005. [7] A. Fazzi, et al., “A 0.14mW/Gbps high-density capacitive interface for 3D system integration,” CICC, pp.101-104, Sep. 2005.[8] R. Drost, et al., “Proximity Communication,” CICC, pp.469-472, Sep. 2003.[9] R. Drost, et al., “Electronic Alignment for Proximity Communication,” ISSCC, pp.144-145, Feb. 2004.[10] N. Miura, et al., “A 195Gb/s 1.2W 3D-Stacked Inductive Inter-Chip Wireless Superconnect with Transmit Power Control Scheme,”

ISSCC, pp.264-265, Feb. 2005.[11] A. Iwata, et al., “A 3D Integration Scheme utilizing Wireless Interconnections for Implementing Hyper Brains,” ISSCC, pp.262-263,

Feb. 2005.[12] M. Sasaki, et al., “A 0.95mW/1.0Gbps Spiral-Inductor Based Wireless Chip-Interconnect with Asynchronous Communication

Scheme,” Symposium on VLSI Circuits, pp.348-351, Jun. 2005.[13] Jian Xu, et al., “2.8 Gb/s inductively coupled interconnect for 3D ICs,” Symposium on VLSI Circuits, pp.352-355, Jun. 2005.[14] N. Miura, et al., “A 1Tb/s 3W Inductive-Coupling Transceiver for Inter-Chip Clock and Data Link,” ISSCC, pp.424-425, Feb. 2006.[15] M. Inoue, et al., “Daisy Chain for Power Reduction in Inductive-Coupling CMOS Link,” Symposium on VLSI Circuits, pp.80-81,

Jun. 2006.[16] N. Miura, et al., “A 0.14pJ/b Inductive-Coupling Inter-Chip Data Transceiver with Digitally-Controlled Precise Pulse Shaping,”

ISSCC, [20.2], Feb. 2007.[17] N. Miura, et al., “Analysis and Design of Inductive Coupling and Transceiver Circuit for Inductive Inter-Chip Wireless

Superconnect,” Symposium on VLSI Circuits, pp. 246-249, Jun. 2004.[18] H. Ishikuro, et al., “An Attachable Wireless Chip-Access Interface for Arbitrary Data Rate Using Pulse-Based Inductive-Coupling

through LSI Package,” ISSCC, [20.3], Feb. 2007.[19] N. Miura, et al., “Cross Talk Countermeasures in Inductive Inter-Chip Wireless Superconnect,” CICC, pp.99-102, Oct. 2004.[20] T. Kuroda, et al., “Perspective of Low-Power and High-Speed Wireless Inter-Chip Communications for SiP Integration,” ESSCIRC,

pp.3-6, Sep. 2006.


Recommended