+ All Categories
Home > Documents > Lecture 7 -- Theory of Periodic Structures

Lecture 7 -- Theory of Periodic Structures

Date post: 04-Jun-2018
Category:
Upload: jesus1843
View: 214 times
Download: 0 times
Share this document with a friend
23
2/7/2012 1 ECE 5390 Special Topics: 21 st Century  Electromagnetics Instructor: Office: Phone: EMail: Dr. Raymond C. Rumpf A337 (915) 7476958 [email protected] Spring 2012 Theory of Periodic Structures Lecture #7 Lecture 7 1 Lecture Outline Periodic devices Math describing periodic structures Electromagnetic waves in periodic structures Electromagnetic bands Isofrequency contours Lecture 7  Slide 2
Transcript
Page 1: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 1/23

2/7/20

ECE 5390 Special Topics:21st Century  Electromagnetics

Instructor:

Office:Phone:

E‐Mail:

Dr. Raymond C. Rumpf 

A‐337

(915) 747‐6958

[email protected] Spring 2012

Theory of Periodic

Structures

Lecture #7

Lecture 7  1

Lecture Outline• Periodic devices

• Math describing periodic structures

• Electromagnetic waves in periodic structures

• Electromagnetic bands

• Isofrequency contours

Lecture 7    Slide 2

Page 2: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 2/23

2/7/20

Periodic Devices

Examples of Periodic Electromagnetic

Devices

Lecture 7    Slide 4

Diffraction Gratings

Antennas

Waveguides Band Gap Materials

Frequency Selective 

Surfaces

Metamaterials

Slow Wave Devices

Page 3: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 3/23

2/7/20

What is a Periodic Structure?

Lecture 7    Slide 5

Periodicity at

 the

 Atomic

 Scale Larger

‐Scale

 Periodicity

Materials are periodic at the atomic scale. 

Metamaterials are periodic at a much larger scale, but smaller than a wavelength.

The math describing how things are periodic is the same for both atomic scale and larger scale. 

Describing Periodic Structures• There is an infinite number of ways that

structures can be periodic.

• Despite this, we need a way to describe andclassify periodic lattices. We have to makegeneralizations to do this.

• We classify periodic structures into:

 – 230 space groups

 – 32 crystal classes

 – 14 Bravais lattices

 – 7 crystal systems

Lecture 7    Slide 6

Less specific.

More generalizations.

Page 4: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 4/23

2/7/20

Symmetry Operations

Lecture 7    Slide 7

Infinite crystals

 are

 invariant

 under

 certain

 symmetry

 operations

 that

 

involve:

Pure Translation Pure Rotation

Pure Reflections Combinations

Definition of Symmetry

Categories• Space Groups

 – Set of all possible combinations of symmetry operationsthat restore the crystal to itself.

 – 230 space groups

• Bravais Lattices – Set of all possible ways a lattice can be periodic if

composed of identical spheres placed at the lattice points.

 – 14 Bravais lattices

• Crystal Systems – Set of all Bravais lattices that have the same holohedry

(shape of the conventional unit cell)

 – 7 crystal systems

Lecture 7    Slide 8

Page 5: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 5/23

Page 6: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 6/23

2/7/20

Math Describing

Periodic

Structures

Primitive Lattice Vectors

Lecture 7    Slide 12

Axis vectors most intuitively define the shape and orientation of  the unit cell.  They cannot 

uniquely describe all 14 Bravais lattices.

Translation vectors connect adjacent points in the lattice and can uniquely describe all 14 

Bravais lattices.  They are less intuitive to interpret.

Primitive lattice vectors are the smallest possible vectors that still describe the unit cell.

Page 7: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 7/23

2/7/20

Non-Primitive Lattice Vectors

Lecture 7    Slide 13

Almost always,

 the

 label

 “lattice

 vector”

 refers

 to

 the

 translation

 

vectors, not the axis vectors.

A translation vector is any vector that connects two points in a lattice. 

They must be an integer combination of  the primitive translation 

vectors.

1 2 3 pqr t pt qt rt  

, 2, 1, 0,1, 2,

, 2, 1, 0,1, 2,

, 2, 1, 0,1, 2,

 p

q

Primitive translation vector

Non‐primitive translation vector

Reciprocal Lattices (1 of 2)

Lecture 7    Slide 14

Each direct lattice has a unique reciprocal lattice so knowledge of  one implies knowledge 

of  the other.

2t 

Page 8: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 8/23

2/7/20

Reciprocal Lattices (2 of 2)

Lecture 7    Slide 15

Direct Lattice Reciprocal Lattice

Simple Cubic Simple Cubic

Body‐Centered Cubic Face‐Centered Cubic

Face‐Centered Cubic Body‐Centered Cubic

Hexagonal Hexagonal

Reciprocal Lattice Vectors

Lecture 7    Slide 16

The reciprocal lattice vectors can be calculated from the direct lattice vectors (and the 

other way around) as follows:

2 3 3 1 1 21 2 3

1 2 3 1 2 3 1 2 3

2 3 3 1 1 21 2 3

1 2 3 1 2 3 1 2 3

2 2 2

2 2 2

t t t t     t t T T T 

t t t t t t t t t  

T T T T     T T t t t 

T T T T T T T T T  

 

 

 

 

 

 

There 

also 

exists 

primitive 

reciprocal 

lattice 

vectors. 

All 

reciprocal 

lattice 

vectors 

must 

be an integer combination of  the primitive reciprocal lattice vectors.

1 2 3 PQRT PT QT RT   , 2, 1, 0,1, 2,

, 2, 1, 0,1, 2,

, 2, 1, 0,1, 2,

 P 

Q

 R

Page 9: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 9/23

2/7/20

 K 

Grating Vector 

Lecture 7    Slide 17

2 K 

   

ˆ ˆ ˆ x y z  K K x K y K z 

A grating

 vector

 is

 very

 much

 like

 a wave

 vector

 in

 that

 its

 direction

 is

 

normal to planes and its magnitude is 2 divided by the spacing 

between the planes.

  avg cosr    r K r   

ˆ ˆ ˆr xx yy zz  

position vector

Reciprocal Lattice Vectors are

Grating Vectors

Lecture 7    Slide 18

Reciprocal lattice vectors are grating vectors!!

2a a

a

T K    

There is a close and elegant relationship between 

the reciprocal lattice vectors and wave vectors. 

For this

 reason,

 periodic

 structures

 are

 often

 

analyzed in reciprocal (grating vector) space.

Page 10: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 10/23

2/7/20

Primitive Unit Cells

Lecture 7    Slide 19

Primitive unit

 cells

 are

 the

 smallest

 volume

 of 

 space

 that

 can

 be

 stacked

 onto

 itself 

 (with no voids and no overlaps) to correctly reproduce the entire lattice.

The Wigner‐Seitz cell is one method of  constructing a primitive unit cell.  It is defined 

as the volume of  space around a single point in the lattice that is closer to that point 

than any other point in the lattice.

These illustrations show the relationship between the conventional unit cell (shown as 

frames) and the Wigner‐Seitz cell (shown as volumes) for the three cubic lattices.

Brillouin Zones

Lecture 7    Slide 20

The Brillouin zone is constructed in the same manner as the “Wigner‐Seitz,” but from 

the reciprocal lattice.

The Brillouin zone is closely related to wave vectors and diffraction so analysis of  

periodic structures is often performed in “reciprocal space.”

The Brillouin zone for a face‐

centered‐cubic lattice is a 

“truncated” octahedron with 14 

sides.

This is the most “spherical” of  all the 

Brillouin zones so

 the

 FCC

 lattice

 is

 

said to have the highest symmetry of  

the Bravais lattices.

Of  the FCC lattices, diamond has the 

highest symmetry.

Page 11: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 11/23

2/7/20

Exploiting Additional Symmetry

Lecture 7    Slide 21

If  the

 field

 is

 known

 at

 every

 point

 inside

 a single

 unit

 cell,

 than

 it

 is

 also

 known

 at

 any

 

point in an infinite lattice because the field takes on the same symmetry as the lattice 

so it  just repeats itself.

Since the reciprocal lattice uniquely defines a direct lattice, knowing the solutions to 

the wave equation at each point inside the reciprocal lattice unit cell also defines the 

field everywhere in the infinite reciprocal lattice.

Many times, there is still additional symmetry to exploit so the smallest volume of  

space that completely describes the electromagnetic wave can be smaller than the 

unit cell itself.

The field in each of  these squares 

is a mirror image of  each other.

Due to the symmetry in this example, the field at 

any point in the entire lattice can be mapped to an 

equivalent point in this triangle.

The Irreducible Brillouin Zone

Lecture 7    Slide 22

The smallest volume of  space within the Brillouin zone that 

completely characterizes the field inside a periodic structure is called 

the irreducible Brillouin zone.  It is smaller than the Brilluoin zone 

when there is additional symmetry to exploit.

Page 12: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 12/23

2/7/20

ElectromagneticWaves in

Periodic

Structures

Fields are Perturbed by Objects

Lecture 7    Slide 24

A portion of  the wave front is 

delayed after travelling through 

the dielectric object.

Page 13: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 13/23

2/7/20

Fields in Periodic Structures

Lecture 7    Slide 25

Waves in

 periodic

 structures

 take

 on

 

the same periodicity as their host.

The Bloch Theorem

Lecture 7    Slide 26

The field inside a periodic structure takes on the same symmetry and 

periodicity of  that structure according to the Bloch theorem.

    j r  A r   e E r     

 

Overall field Amplitude envelope 

with same periodicity 

and symmetry as the 

device.

Plane‐wave like phase “tilt” term

 

Page 14: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 14/23

2/7/20

Example Waves in a PeriodicLattice

Lecture 7    27

Wave normally

 incident

 on

 a periodic structure.

Wave incident

 at

 45° on

 the

 same periodic structure.

Mathematical Description of

Periodicity

Lecture 7    Slide 28

A structure is periodic if  its material properties repeat.  Given the 

lattice vectors, the periodicity is expressed as

  1 2 3  pqr pqr r t r t pt qt rt    

Recall that it is the amplitude of  the Bloch wave that has the same 

periodicity as the structure the wave is in.  Therefore,

  1 2 3  pqr pqr r t A r t pt qt rt  

Page 15: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 15/23

2/7/20

Example – 1D Periodicity

Lecture 7    Slide 29

For a device that is periodic only along one direction, these relations 

reduce to

, , , ,

, , , ,

 x

 x

 p y z x y z 

 A x p y z A x y z 

 

 x

 x

 x p x

 A x p A x

 

more compact

notation

Many devices are periodic along  just one dimension.

 x 

 y

 z 

  x 

Electromagnetic

Bands

Page 16: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 16/23

2/7/20

Band Diagrams (1 of 2)

Lecture 7    Slide 31

Band diagrams

 are

 a compact,

 but

 incomplete,

 means

 of 

 

characterizing the electromagnetic properties of  a periodic structure. 

It is essentially a map of  the frequencies of  the eigen‐modes as a 

function of  the Bloch wave vector  .  

Band Diagrams (2 of 2)

Lecture 7    Slide 32

To construct a band diagram, we make small steps around the perimeter of  the 

irreducible Brilluoin zone (IBZ) and compute the eigen‐values at each step.  When 

we plot all these eigen‐values as a function of    , the points line up to form 

continuous “bands.”

Page 17: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 17/23

2/7/20

 Animation of the Construction of aBand Diagram

Lecture 7    Slide 33

Reading Band Diagrams

Lecture 7    Slide 34

• Band gaps – Absence of any bands within a range of frequencies indicates a band gap.

 – A COMPLETE BAND GAP is one that exists over all possible Bloch wave vectors.

• Transmission/reflection spectra – Band gaps lead to suppressed transmission and enhanced reflection

• Phase velocity – The slope of the line connecting to the point on the band corresponds to phase

velocity.

 – From this, we get the effective phase refractive index.

• Group velocity – The slope of the band at the point of interest corresponds to the group velocity.

 – From this, we get the effective group refractive index.

• Dispersion – Any time the band deviates from the “light line” there is dispersion.

 – The phase and group velocity are the same except when there is dispersion.

At least five electromagnetic properties can be estimated from a band 

diagram.

Page 18: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 18/23

2/7/20

Reading Band Diagrams

Lecture 7    Slide 35

The Band Diagram is Missing

Information

Lecture 7    Slide 36

 x

 y

 yk 

 xk 

M

X

Direct lattice: We have an array 

of  air holes in a dielectric with 

n=3.0.

Reciprocal lattice: We 

construct the band diagram 

by marching around the 

perimeter of  the irreducible 

Brillouin zone.

The band extremes “almost” always occur at the key points of  symmetry.

But we are missing information from inside the Brilluoin zone.

Page 19: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 19/23

2/7/20

The Complete Band Diagram

Lecture 7    Slide 37

02

a

c

 

 

a a 

a 0

0

 yk    xk 

The Full

 Brillouin Zone…

 yk 

0

a  0   a 

 xk There is an infinite set of  eigen‐frequencies 

associated with each point in the Brillouin zone. 

These form “sheets” as shown at right.

Isofrequency

Contours

Page 20: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 20/23

2/7/20

Index Ellipsoids for IsotropicMaterials

Lecture 7    Slide 39

The dispersion

 relation

 for

 a LHI

 material

 is:

This defines a sphere called an “Index Ellipsoid.”

The vector connecting a point on the sphere

to the origin is the k ‐vector for that direction

from which refractive index can be calculated.

For LHI materials, the refractive index is the

same in all directions.

2 2 2 2 2

0a b ck k k k n

a

b

c

index ellipsoid

Index Ellipsoids for Uniaxial

Materials

Lecture 7    Slide 40

ab

c   Observations

•   Both solutions share a common axis.

•   This “common” axis looks isotropic 

with refractive index n0 regardless of  

polarization.

•   Since both solutions share a single 

axis, these crystals are called 

“uniaxial.”

•   The “common” axis is called:

oOptic axis

oOrdinary axis

oC axis

oUniaxial axis

•   Deviation from the optic axis will 

result in two separate possible 

modes.

On

O

n

On

 E n E n

Page 21: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 21/23

2/7/20

Index Ellipsoids for BiaxialMaterials

Lecture 7    Slide 41

Biaxial materials

 have

 all

 unique

 refractive

 indices.

 Most

 texts

 adopt

 the

 convention where

The general dispersion relation cannot be reduced. 

a b cn n n

ab

c

optic axes

Notes and Observations

•   The convention na<nb<nc causes the optic 

axes to lie in the a‐c  plane.

•   The two solutions can be envisioned as one 

balloon inside another, pinched together so 

they touch at only four points.

•  Propagation along either of  the optic axes 

looks isotropic, thus the name “biaxial.”

Direction of Power Flow

Lecture 7    Slide 42

Isotropic Materials

 P 

 x

 y

Anisotropic Materials

 P 

 x

 y

Phase propagates in the direction of  k .  Therefore, the refractive index derived from |k | 

is best described as the phase refractive index.  Velocity here is the phase velocity.

Energy propagates in the direction of  P  which is always normal to the surface of  the 

index ellipsoid.  From this, we can define a group velocity and a group refractive index.

Page 22: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 22/23

2/7/20

Isofrequency Contours FromFirst-Order Band

Lecture 7    Slide 43

02

a

c

 

 

a a 

a 0

0

 yk    xk 

02

a

c

 

 

a a 

a 0

0

 yk    xk 

Isofrequency Contours From

Second-Order Band

Lecture 7    Slide 44

02

a

c

 

 

a a 

a 0

0

 yk    xk 

02

a

c

 

 

a a 

a 0

0

 yk    xk 

Page 23: Lecture 7 -- Theory of Periodic Structures

8/13/2019 Lecture 7 -- Theory of Periodic Structures

http://slidepdf.com/reader/full/lecture-7-theory-of-periodic-structures 23/23

2/7/20

Standard View of IsofrequencyContours

Lecture 7    Slide 45


Recommended