+ All Categories
Home > Documents > Lecture 8-9 block-diagram_representation_of_control_systems

Lecture 8-9 block-diagram_representation_of_control_systems

Date post: 13-Jun-2015
Category:
Upload: saifullah-memon
View: 309 times
Download: 0 times
Share this document with a friend
Popular Tags:
56
Feedback Control Systems (FCS) Dr. Imtiaz Hussain email: [email protected]. pk URL :http://imtiazhussainkalwar.weeb ly.com/ Lecture-8-9 Block Diagram Representation of Control Systems
Transcript
Page 1: Lecture 8-9 block-diagram_representation_of_control_systems

Feedback Control Systems (FCS)

Dr. Imtiaz Hussainemail: [email protected]

URL :http://imtiazhussainkalwar.weebly.com/

Lecture-8-9Block Diagram Representation of Control Systems

Page 2: Lecture 8-9 block-diagram_representation_of_control_systems

Introduction• A Block Diagram is a shorthand pictorial representation of

the cause-and-effect relationship of a system.

• The interior of the rectangle representing the block usually contains a description of or the name of the element, gain, or the symbol for the mathematical operation to be performed on the input to yield the output.

• The arrows represent the direction of information or signal flow.

dt

dx y

Page 3: Lecture 8-9 block-diagram_representation_of_control_systems

Introduction• The operations of addition and subtraction have a special

representation.

• The block becomes a small circle, called a summing point, with the appropriate plus or minus sign associated with the arrows entering the circle.

• The output is the algebraic sum of the inputs.

• Any number of inputs may enter a summing point.

• Some books put a cross in the circle.

Page 4: Lecture 8-9 block-diagram_representation_of_control_systems

Introduction• In order to have the same signal or variable be an input

to more than one block or summing point, a takeoff (or pickoff) point is used.

• This permits the signal to proceed unaltered along several different paths to several destinations.

Page 5: Lecture 8-9 block-diagram_representation_of_control_systems

Example-1• Consider the following equations in which , , , are variables, and ,

are general coefficients or mathematical operators.

522113 xaxax

Page 6: Lecture 8-9 block-diagram_representation_of_control_systems

Example-1

522113 xaxax

Page 7: Lecture 8-9 block-diagram_representation_of_control_systems

Example-2• Draw the Block Diagrams of the following equations.

11

22

2

13

11

12

32

11

bxdt

dx

dt

xdax

dtxbdt

dxax

)(

)(

Page 8: Lecture 8-9 block-diagram_representation_of_control_systems

Canonical Form of A Feedback Control System

Page 9: Lecture 8-9 block-diagram_representation_of_control_systems

Characteristic Equation• The control ratio is the closed loop transfer function of the system.

• The denominator of closed loop transfer function determines the characteristic equation of the system.

• Which is usually determined as:

)()()(

)()(

sHsG

sG

sR

sC

1

01 )()( sHsG

Page 10: Lecture 8-9 block-diagram_representation_of_control_systems

Example-31. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation

8. Open loop poles and zeros if 9. closed loop poles and zeros if K=10.

)()()()(

sHsGsE

sB

)()(

)(sG

sE

sC

)()()(

)()(

sHsG

sG

sR

sC

1

)()()()(

)()(

sHsG

sHsG

sR

sB

1

)()()()(

sHsGsR

sE

1

1

)()()(

)()(

sHsG

sG

sR

sC

1

01 )()( sHsG

)(sG

)(sH

Page 11: Lecture 8-9 block-diagram_representation_of_control_systems

Reduction techniques

2G1G 21GG

1. Combining blocks in cascade

1G

2G21 GG

2. Combining blocks in parallel

Page 12: Lecture 8-9 block-diagram_representation_of_control_systems

3. Eliminating a feedback loop

G

HGH

G

1

G

1H

G

G

1

Page 13: Lecture 8-9 block-diagram_representation_of_control_systems

Example-4: Reduce the Block Diagram to Canonical Form.

Page 14: Lecture 8-9 block-diagram_representation_of_control_systems

Example-4: Continue.

Page 15: Lecture 8-9 block-diagram_representation_of_control_systems

Example-5• For the system represented by the following block diagram

determine:1. Open loop transfer function2. Feed Forward Transfer function3. control ratio4. feedback ratio5. error ratio6. closed loop transfer function7. characteristic equation 8. closed loop poles and zeros if K=10.

Page 16: Lecture 8-9 block-diagram_representation_of_control_systems

Example-5– First we will reduce the given block diagram to canonical form

1sK

Page 17: Lecture 8-9 block-diagram_representation_of_control_systems

Example-5

1sK

ss

Ks

K

GH

G

11

11

Page 18: Lecture 8-9 block-diagram_representation_of_control_systems

Example-5 (see example-3)1. Open loop transfer function

2. Feed Forward Transfer function

3. control ratio

4. feedback ratio

5. error ratio

6. closed loop transfer function

7. characteristic equation

8. closed loop poles and zeros if K=10.

)()()()(

sHsGsE

sB

)()()(

sGsE

sC

)()()(

)()(

sHsG

sG

sR

sC

1

)()()()(

)()(

sHsG

sHsG

sR

sB

1

)()()()(

sHsGsR

sE

1

1

)()()(

)()(

sHsG

sG

sR

sC

1

01 )()( sHsG

)(sG

)(sH

Page 19: Lecture 8-9 block-diagram_representation_of_control_systems

Example-6• For the system represented by the following block diagram

determine:1. Open loop transfer function2. Feed Forward Transfer function3. control ratio4. feedback ratio5. error ratio6. closed loop transfer function7. characteristic equation 8. closed loop poles and zeros if K=100.

Page 20: Lecture 8-9 block-diagram_representation_of_control_systems

Reduction techniques

4. Moving a summing point behind a block

G G

G

G G

G

1

5. Moving a summing point ahead a block

Page 21: Lecture 8-9 block-diagram_representation_of_control_systems

7. Moving a pickoff point ahead of a block

G G

G G

G

1

G

6. Moving a pickoff point behind a block

Page 22: Lecture 8-9 block-diagram_representation_of_control_systems

8. Swap with two neighboring summing points

A B AB

Page 23: Lecture 8-9 block-diagram_representation_of_control_systems

Example-7

R_+

_+

1G 2G 3G

1H

2H

+ +

C

• Reduce the following block diagram to canonical form.

Page 24: Lecture 8-9 block-diagram_representation_of_control_systems

Example-7

R_+

_+

1G 2G 3G

1H

1

2

G

H

+ +

C

Page 25: Lecture 8-9 block-diagram_representation_of_control_systems

Example-7

R_+

_+

21GG 3G

1H

1

2

G

H

+ +

C

Page 26: Lecture 8-9 block-diagram_representation_of_control_systems

Example-7

R_+

_+

21GG 3G

1H

1

2

G

H

+ +

C

Page 27: Lecture 8-9 block-diagram_representation_of_control_systems

R_+

_+

121

21

1 HGG

GG

3G

1

2

G

H

C

Example-7

Page 28: Lecture 8-9 block-diagram_representation_of_control_systems

R_+

_+

121

321

1 HGG

GGG

1

2

G

H

C

Example-7

Page 29: Lecture 8-9 block-diagram_representation_of_control_systems

R_+

232121

321

1 HGGHGG

GGG

C

Example-7

Page 30: Lecture 8-9 block-diagram_representation_of_control_systems

Example 8

Find the transfer function of the following block diagram

2G 3G1G

4G

1H

2H

)(sY)(sR

Page 31: Lecture 8-9 block-diagram_representation_of_control_systems

1. Moving pickoff point A ahead of block2G

2. Eliminate loop I & simplify

324 GGG B

1G

2H

)(sY4G

2G

1H

AB3G

2G

)(sR

I

Solution:

Page 32: Lecture 8-9 block-diagram_representation_of_control_systems

3. Moving pickoff point B behind block324 GGG

1GB)(sR

21GH 2H

)(sY

)/(1 324 GGG

II

1GB)(sR C

324 GGG

2H

)(sY

21GH

4G

2GA

3G 324 GGG

Page 33: Lecture 8-9 block-diagram_representation_of_control_systems

4. Eliminate loop III

)(sR

)(1

)(

3242121

3241

GGGHHGG

GGGG

)(sY

)()()(

)()(

32413242121

3241

1 GGGGGGGHHGG

GGGG

sR

sY

)(sR1G

C

324

12

GGG

HG

)(sY324 GGG

2H

C

)(1 3242

324

GGGH

GGG

Page 34: Lecture 8-9 block-diagram_representation_of_control_systems

2G 4G1G

4H

2H

3H

)(sY)(sR

3G

1H

Example 9

Find the transfer function of the following block diagrams

Page 35: Lecture 8-9 block-diagram_representation_of_control_systems

Solution:

2G 4G1G

4H)(sY

3G

1H

2H

)(sRA B

3H4

1

G

4

1

G

I1. Moving pickoff point A behind block

4G

4

3

G

H

4

2

G

H

Page 36: Lecture 8-9 block-diagram_representation_of_control_systems

2. Eliminate loop I and Simplify

II

III

443

432

1 HGG

GGG

1G)(sY

1H

B

4

2

G

H

)(sR

4

3

G

H

II

332443

432

1 HGGHGG

GGG

III

4

142

G

HGH

Not feedbackfeedback

Page 37: Lecture 8-9 block-diagram_representation_of_control_systems

)(sR )(sY

4

142

G

HGH

332443

4321

1 HGGHGG

GGGG

3. Eliminate loop II & IIII

143212321443332

4321

1 HGGGGHGGGHGGHGG

GGGG

sR

sY

)()(

Page 38: Lecture 8-9 block-diagram_representation_of_control_systems

Example-10: Reduce the Block Diagram.

Page 39: Lecture 8-9 block-diagram_representation_of_control_systems

Example-10: Continue.

Page 40: Lecture 8-9 block-diagram_representation_of_control_systems

Example-11: Simplify the block diagram then obtain the close-loop transfer function C(S)/R(S). (from Ogata: Page-47)

Page 41: Lecture 8-9 block-diagram_representation_of_control_systems

Example-11: Continue.

Page 42: Lecture 8-9 block-diagram_representation_of_control_systems

Superposition of Multiple Inputs

Page 43: Lecture 8-9 block-diagram_representation_of_control_systems

Example-12: Multiple Input System. Determine the output C due to inputs R and U using the Superposition Method.

Page 44: Lecture 8-9 block-diagram_representation_of_control_systems

Example-12: Continue.

Page 45: Lecture 8-9 block-diagram_representation_of_control_systems

Example-12: Continue.

Page 46: Lecture 8-9 block-diagram_representation_of_control_systems

Example-13: Multiple-Input System. Determine the output C due to inputs R, U1 and U2 using the Superposition Method.

Page 47: Lecture 8-9 block-diagram_representation_of_control_systems

Example-13: Continue.

Page 48: Lecture 8-9 block-diagram_representation_of_control_systems

Example-13: Continue.

Page 49: Lecture 8-9 block-diagram_representation_of_control_systems

Example-14: Multi-Input Multi-Output System. Determine C1 and C2 due to R1 and R2.

Page 50: Lecture 8-9 block-diagram_representation_of_control_systems

Example-14: Continue.

Page 51: Lecture 8-9 block-diagram_representation_of_control_systems

Example-14: Continue.

When R1 = 0,

When R2 = 0,

Page 52: Lecture 8-9 block-diagram_representation_of_control_systems

Block Diagram of Armature Controlled D.C Motor

Va

iaT

Ra La

J

c

eb

V f=constant

(s)IK(s)cJs

(s)V(s)K(s)IRsL

am

abaaa

Page 53: Lecture 8-9 block-diagram_representation_of_control_systems

Block Diagram of Armature Controlled D.C Motor

(s)V(s)K(s)IRsL abaaa

Page 54: Lecture 8-9 block-diagram_representation_of_control_systems

Block Diagram of Armature Controlled D.C Motor

(s)IK(s)cJs ama

Page 55: Lecture 8-9 block-diagram_representation_of_control_systems

Block Diagram of Armature Controlled D.C Motor

Page 56: Lecture 8-9 block-diagram_representation_of_control_systems

END OF LECTURES-8-9

To download this lecture visithttp://imtiazhussainkalwar.weebly.com/


Recommended