+ All Categories
Home > Documents > Lecture about TMM

Lecture about TMM

Date post: 02-Jun-2018
Category:
Upload: janderson13
View: 221 times
Download: 0 times
Share this document with a friend

of 18

Transcript
  • 8/10/2019 Lecture about TMM

    1/18

    Layered structures:transfer matrix formalism

    Petr Kuel Interfaces between LHI media

    Transfer matrix formalism Practically only one formula is to be known in order to calculate any

    structure

    Applications:

    Antireflective coatings

    Dielectric mirrors, Chirped mirrors

    Laser output couplers

    Beam-splitters Beam-splitting mirrors

    Interference filters

    http://lecture5.pdf/http://lecture5.pdf/
  • 8/10/2019 Lecture about TMM

    2/18

    Transfer matrix formalism

    ( )

    ( )=+=

    =+=

    11120

    1112

    11010

    1101

    ri

    ri

    st

    st

    EEH

    EEE

    EEH

    EEE

    =

    =

    irs

    iti

    eEE

    eEE

    11

    11

    ==

    =

    11111

    11

    cos2

    cos

    dnkd

    n

    z

    n0

    n1

    k

    0 0 0

    1

    E

    E

    E

    H

    H

    H

    Ei0 Er0

    Et1 Es1

    Ei1 Er1

    n2

    x

    y

    z

    E01

    E12

    k+0

    k1 k

    +1

    (tangential)

    (tangential)

    TE polarization

  • 8/10/2019 Lecture about TMM

    3/18

    Introduction of transfer matrix

    =

    12012

    010

    01

    cossin

    sincos

    H

    E

    i

    i

    H

    E

    =

    =

    jjj

    j

    j

    j

    i

    i

    mm

    mmM

    cossin

    sincos

    2221

    1211

    Transfer matrix connects tangential fields on both ends of a layer

    Forj-th layer:

    For the whole structure:

    =

    =

    +

    +

    +

    +

    1,0

    1,

    1,0

    1,

    21010

    01

    NN

    NN

    totNN

    NN

    N

    H

    EM

    H

    EMMM

    H

    E!

  • 8/10/2019 Lecture about TMM

    4/18

    Reflection and transmission

    coefficients

    =

    =

    +=

    +

    +1,0

    1,

    000

    00

    010

    01

    )( NN

    NNtot

    tt

    ttot

    ri

    ri

    HEM

    EEM

    EEEE

    HE

    2221120110

    0

    2221120110

    2221120110

    2

    mmmm

    t

    mmmm

    mmmmr

    tt

    tt

    tt

    +++

    =

    ++++

    =

    polarisation TE: jjj n = cos cdn jjjj /cos=

    polarisation TM: jjj n = cos cdn jjjj /cos=

    normal incidence: jj n= cdn jjj /=

  • 8/10/2019 Lecture about TMM

    5/18

    GeneralizationThe formalism is also valid for

    absorbing layers;j-th layer absorbs:Nj=njij

    j

    j

    jN

    nN 02202 sincos =

    layers where total reflection occurs; total reflection onj-th layer:

    j

    j

    jn

    nni

    20

    20 sin

    cos

    =

    jand

    jbecome imaginary; one introduces:

    j= i

    jand

    j= i

    j,

    where jand jare real. The transfer matrix becomes:

    =jjj

    j

    j

    j

    ji

    iM

    chsh

    shch

  • 8/10/2019 Lecture about TMM

    6/18

  • 8/10/2019 Lecture about TMM

    7/18

    Antireflective single layerLets try /4-layer (then waves with /2 phase delay will interfere)

    MgF2

    BK7 glass

    /4

    ns=1.51

    n1=1.38n0=1

    =0

    0

    1

    1

    iiM

    21

    2

    1210

    2

    10

    nnnnr

    s

    s

    s

    s

    +=+ =

    snn =1

    400 500 600 700 800

    Wavelength (nm)

    6

    4

    2

    0

    R(%) Antireflective coating

    (for 550 nm)

    /4

    ns= 1.51

    glass (not treated)

    Broadband

    Less efficient (no degreeof freedom for n1)

  • 8/10/2019 Lecture about TMM

    8/18

    Antireflective bilayer quarter-wave(/4-/4) bilayer

    =

    21

    12

    00M

    21

    22

    21

    22

    210

    22

    210

    22

    nnn

    nnn

    rs

    s

    s

    s

    +

    =+

    =

    snn

    n =1

    2

    400 500 600 700 800

    Wavelength (nm)

    6

    4

    2

    0

    R(%)

    Antireflective coating

    (for 550 nm)

    /4/4-/4

    ns= 1.51

    glass (not treated)

    n1= 1.65

    ZrO2

    BK7 glass

    CeF3/4

    /4

    ns=1.51

    n2= 2.1

    V-like shape (narrow

    frequency range)

    More efficient (one degree

    of freedom for n1, n2)

  • 8/10/2019 Lecture about TMM

    9/18

    Broadband AR coating trilayer structure(/4-/4-/4)

    =0

    0

    2

    31

    31

    2

    i

    iM

    snn

    nn

    =2

    31

    23

    21

    22

    23

    21

    22

    23

    210

    22

    23

    210

    22

    nnnn

    nnnnr

    s

    s

    s

    s

    +

    =+

    =

    n3=1.8

    BK7 glass

    n2=2.0

    /4

    /4

    ns=1.51

    n1=1.38

    /4

  • 8/10/2019 Lecture about TMM

    10/18

    Broadband AR coating trilayer structure(/4-/2-/4): similar to a quarter-wave bilayer at

    the resonant wavelength

    half-wave layer helps to extend the antireflective range

    snn

    n=

    1

    3

    = 3113

    0

    0M

    2

    1

    2

    3

    23

    21

    2

    10

    2

    3

    210

    23

    nnn

    nnnr

    s

    s

    s

    s

    +

    =

    +

    +=

    n3=1.7

    BK7 glass

    n2=2.2

    /4

    /4

    ns=1.51

    n1=1.38

    /2

  • 8/10/2019 Lecture about TMM

    11/18

    Antireflective coating: summary

    400 500 600 700 800Wavelength (nm)

    10

    8

    6

    4

    2

    0

    R(%)

    Antireflective coating

    for 550 nm

    /4/4-/4/4-/2/4-/4-/4

    /4-/2-/4

    ns= 1.51

    glass (not treated)

  • 8/10/2019 Lecture about TMM

    12/18

    Dielectric mirrors

    nH

    nL

    /4

    ns

    nH

    /4

    nL

    nH

    nL

    1 bilayer (nL

  • 8/10/2019 Lecture about TMM

    13/18

    Dielectric mirrors: example

    400 600 800 1000 1200 1400 1600

    Wavelength (nm)

    1

    0.8

    0.6

    0.4

    0.2

    0

    R

    0.9104 1.1104 1.3104 1.5104

    Wavenumber (cm-1)

    1

    0.6

    0.2

    -0.2

    -0.6

    -1

    Phasechang

    e

    Dielectric mirrors for 800 nm

    Number of bilayers (ZnS/MgF2):

    20

    8

    3

  • 8/10/2019 Lecture about TMM

    14/18

    Chirped dielectric mirrorsThe resonant wavelength is linearly tuned along the stack of bilayers

    Different wavelengths are reflected at different depths differentoptical paths

    Adding or compensating of a chirp of the pulses

    1.1104 1.2104 1.3104 1.4104

    Wavenumber (cm-1)

    0.3

    0.2

    0.1

    0

    -0.1

    -0.2D

    eparturefrom

    the

    linearphaseshift Mirrors for 800 nm (12500 cm

    -1)

    (20 bilayers)

    Standard dielectric mirror

    Chirped mirror (10 nm step)

  • 8/10/2019 Lecture about TMM

    15/18

    Laser output coupler

    R01 Rx< 1

    =514.5 nm

    Rx

    AR coating

    Reflective (~ 90%) coating

  • 8/10/2019 Lecture about TMM

    16/18

    Beamsplitter

    80%

    20%

    45 ns

    nR, dR

    n1, d1

    n2

    , d2

  • 8/10/2019 Lecture about TMM

    17/18

  • 8/10/2019 Lecture about TMM

    18/18

    Interference band-pass filtersContain:

    Stacks of high-reflecting bilayers

    Antireflective coatings

    Fabry-Prot cavities

    Detuning of the resonant wavelength is also often used for

    smoothing of the interferences


Recommended