+ All Categories
Home > Documents > Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of...

Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of...

Date post: 18-Dec-2015
Category:
Upload: neal-hubbard
View: 216 times
Download: 1 times
Share this document with a friend
Popular Tags:
43
Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband Dielectric Spectroscopy (BDS) (THz - <=mHz). What is a relaxation process? Debye –relaxation What is the information content of dielectric spectra? What states the Langevin equation Examples of dielectric loss processes
Transcript
Page 1: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Lecture "Molecular Physics/Solid State physics"Winterterm 2013/2014Prof. Dr. F. Kremer

Outline of the lecture on 7.1.2014

• The spectral range of Broadband Dielectric Spectroscopy (BDS) (THz - <=mHz).

• What is a relaxation process?• Debye –relaxation• What is the information content of dielectric spectra?• What states the Langevin equation • Examples of dielectric loss processes

Page 2: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

The spectrum of electro-magnetic waves

UV/VIS IR Broadband Dielectric Spectroscopy (BDS)

Page 3: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

What molecular processes take place in the spectral range from THz to mHz and below?

Page 4: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Dcurl H j

t

0D E j E (Ohm‘s law)

The linear interaction of electromagnetic fields with matter is described by one of Maxwell‘s equations

(Current-density and the time derivative of D are equivalent)

0i

i i

Basic relations between the complex dielectric function * and the complex conductivity *

Page 5: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Effect of an electric field on a unpolar atom or molecule:

In an atom or molecule the electron cloud is deformed with respect to the nucleus, which causes an induced polarisation; this response is fast (psec), because the electrons are light-weight

+

-

+

-

-

Electric FieldElectric Field

Page 6: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Effects of an electric field on an electric dipole :

An electric field tries to orient a dipole but the thermal fluct-uationsof the surrounding heat bath counteract this effect; as result orientational polarisation takes place, its time constant is characteristic for the molecular moiety under study and may vary between 10-12s – 1000s and longer.

-e

+e

Electric field

-e

+e

Electric field

Page 7: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Effects of an electric field on (ionic) charges:

Charges (electronic and ionic) are Charges (electronic and ionic) are displaced in the direction of theapplied field. The latter gives rise to a resultant polarisation of the sample as a whole.

-

-

-

-

--

-

-

+

+

++

+

+

+ +

Electric fieldElectric field

+

+

+

+

+

+

+

+-

-

-

-

-

-

-

-

Page 8: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

What molecular processes take place in the spectral range from THz to mHz and below?

1. Induced polarisation

2. Orientational polarisation

3. Charge tansport

4. Polarisation at interfaces

Page 9: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

What is a relaxation process?

Relaxation is the return of a perturbed system into equilibrium. Each relaxation process can be characterized by a relaxation time τ. The simplest theoretical description of relaxation as function of time t is an exponential law . In many real systems a Kohlrausch law with and a “streched exponential” is observed.exp( / )t

exp( / )t

Page 10: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

What is the principle of Broadband Dielectric Spectroscopy?

Page 11: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

2( )1

s

2( )1

s

*

(1 )s

i

2,0

2,4

2,8

3,2

3,6

100 101 102 103 104 105 106

0,0

0,2

0,4

0,6

0,8

'=s

'=?

=s-

?

'

''max

max

''

[rad s-1]

0 20 40 60

0

1

2

orientational polarization

induced polarization

= S-

00

S

00

(t)=

(P(t

) -

P)

/

E

Time

E

E (

t)Capacitor with N permanent

dipoles, dipole Moment Debye relaxation

complex dielectric function

A closer look at orientational polarization:

2( )1

s

*( , )T

( ) ( *( , ) 1)oP T E

Page 12: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

P. Debye, Director (1927-1935) of the Physical Institute at the university of Leipzig (Nobelprize in Chemistry 1936)

Page 13: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

What are the assumptions of a Debye relaxation process?

1. The (static and dynamic) interaction of the „test-dipole“ with the neighbouring dipoles is neglected.2. The moment of inertia of the molecular system in response to the external electric field is neglected.

Page 14: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

The counterbalance between thermal and electric ennergy

Capacitor with N permanent Dipoles, Dipole Moment

Polarization : PμV

NPμ

V

1P i

Mean Dipole Moment

0 20 40 60

0

1

2

orientational polarization

induced polarization

= S-

00

S

00

(t)=

(P(t

) -

P)

/

E

Time

E

E (

t)

Dipole moment

Mean Dipole Moment: Counterbalance

EWel

kTWth

Thermal Energy Electrical Energy

4

4

d)kT

Eexp(

d)kT

E(exp

Boltzmann Statistics:

The factor exp(E/kT) d gives the probability that the dipole moment vector has an orientationbetween and + d.

Page 15: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Spherical Coordinates:

Only the dipole moment component whichis parallel to the direction of the electric field contributes to the polarization

dsin2

1)

kT

cosE(exp

dsin2

1)

kT

cosE(expcos

0

0

x = ( E cos ) / (kT)a = ( E) / (kT)

)a(a

1

)aexp()aexp(

)aexp()aexp(

dx)xexp(

dx)xexp(x

a

1cos

a

a

a

a

Langevin function

0 2 4 6 8 100.0

0.2

0.4

0.6

0.8

1.0(a)=a/3

Langevin function

a

(a)

(a)a/3 ETk3

2

Debye-FormulaV

N

Tk3

1 2

0S

1.0kT

Ea

Tk1.0E

0 - dielectric permittivity of vacuum = 8.854 10-12 As V-1 m-1

The Langevin-function

Page 16: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

10-2

10-1

100

101

102

103

104

105

106

100

101

102

103

104

105

235 K220 K

205 K

190 K

propylene glycol

´

frequency [Hz]

10-2

10-1

100

101

102

103

104

105

106

100

101

102

103

104

´

frequency [Hz]

Analysis of the dielectric data

Page 17: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.
Page 18: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Brief summary concerning the principle of Broadband Dielectric Spectroscopy (BDS):

1. BDS covers a huge spectral range from THz to mHz and below.

2. The dielectric funcion and the conductivity are comlex because the exitation due to the external field and the response of the system under study are not in phase with each other.

3. The real part of the complex dielectric function has the character of a memory function because different dielectric relaxation proccesses add up with decreasing frequency

4. The sample amount required for a measurement can be reduced to that of isolated molecules.

(With these features BDS has unique advantages compared to other spectroscopies (NMR, PCS, dynamic mechanic spectroscopy).

Page 19: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

1. Dielectric relaxation

(rotational diffusion of bound charge carriers (dipoles) as determined from

orientational polarisation )

Page 20: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

10-2

10-1

100

101

102

103

104

105

106

100

101

102

103

104

105

235 K220 K

205 K

190 K

propylene glycol

´

frequency [Hz]

10-2

10-1

100

101

102

103

104

105

106

100

101

102

103

104

´

frequency [Hz]

Analysis of the dielectric data

Page 21: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Relaxation time distribution functions according to Havriliak-Negami

Page 22: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

3.0 3.5 4.0 4.5 5.0 5.5 6.0-2

0

2

4

6

8

10

experimental data: propylene glycol bulk VFT-fit: 1/=A exp(DT0/(T-T0))

log 1

0(1/ ma

x [H

z])

1000/T [K-1]

Analysis of the dielectric data

Page 23: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Summary concerning Broadband Dielectric Spectroscopy (BDS) as applied to dielectric relaxations

1.: BDS covers a huge spectral range of about 15 decades from THz to below mHz in a wide range of temperatures.2.: The sample amount required for a measurement can be reduced to that of isolated molecules. 3.: From dielectric spectra the relaxation rate of fluctuations of a permanent molecular dipole and it´s relaxation time distribution function can be deduced. The dielectric strength allows to determine the effective number-density of dipoles.4.: From the temperature dependence of the relaxation rate the type of thermal activation (Arrhenius or Vogel-Fulcher- Tammann (VFT)) can be deduced.

Page 24: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

2. (ionic) charge transport

(translational diffusion of charge carriers (ions))

Page 25: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Dcurl H j

t

0D E j E (Ohm‘s law)

The linear interaction of electromagnetic fields with matter is described by Maxwell‘s equations

(Current-density and the time derivative of D are equivalent)

0i

i i

Basic relations between the complex dielectric function * and the complex conductivity *

Page 26: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Dielectric spectra of MMIM Me2PO4 ionic liquid

2

4

6

-20246

0 2 4 6 8-12-10-8-6-4

0 2 4 6 8-12-10-8-6-4

268 K 258 K 248 K 238 K 228 K 218 K 208 Klo

g '

log ''

log '

[S/c

m]

log '' [S/cm

]

log f [Hz]

Strong temperature dependence of the charge transport processes and electrode polarisation

Page 27: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

for the ionic liquid (OMIM NTf2)

2 4 6 8-12

-10

-8

-6

-4

300 K 260 K 240 K 220 K 210 K 200 K 190 K

log

('

/S c

m-1

)

log (/s-1)

0

OMIM NTf2

c

-4

0

4-4 0 4

log (/c)

log

('/ 0

)

( , )T

There are two characteristic quantities 0 and c which enable one to scale all spectra!

Page 28: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Basic relations between rotational and translational diffusion

Maxwell‘s relation:

Stokes-Einstein relation:

Einstein-Smoluchowski relation:

G

D kT D: diffusion coefficient, (=6 a) : frictional coefficient,T: temperature, k: Boltzmann constant, a: radius of molecule

G: instantaneous shear modulus (~ 108 - 1010

Pa): viscosity,: structural relaxation time

2

2cD

: characteristic (diffusion) length c: characteristic (diffusion) rate

Basic electrodynamics and Einstein relation:2

0 0 c

q Dq n n

kT

0: : dc conductivity, : mobility ; q:

elementary charge, n: effective number density of charge carriers

Page 29: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Predictions to be checked experimentally:

2 2

s

kTP

2 G a

1.:

2.:

3.:

2

2cD

Measurement techniques required: Broadband Dielectric Spectroscopy (BDS);Pulsed Field Gradient (PFG)-NMR; viscosity measurements;

c: characteristic (diffusion) rate: structural relaxation rateG: instantaneous shear modulus (~ 108 Pa

for ILs), as : Stokes‘ hydrodynamic radius ~,

k: Boltzmann constant, : characteristic diffusion length ~ .2 nmD : molecular diffusion coefficient

~ c

cP

(Barton-Nakajima-Namikawa (BNN) relation)

Page 30: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

1. Prediction: with P ~ 1cP

c: characteristic (diffusion) rate: structural relaxation rateG: instantaneous shear modulus (~ 108 Pa for ILs),

Broadband Dielectric Spectroscopy

(BDS)

Mechanical Spectroscopy

Page 31: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Random Barrier Model (Jeppe Dyre et al.)

• Hopping conduction in a spatially randomly varying energy landscape

• Analytic solution obtained within Continuous-Time-Random Walk (CTRW) approximation

• The largest energy barrier determines Dc conduction• The complex conductivity is described by:

0 ln 1e

e

i

i

is the characteristic time related to the attempt frequency to overcome the largest barrier determining the Dc conductivity. „Hopping time“.

e

Page 32: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Random Barrier Model (RBM) used to fit the conductivity spectra of ionic liquid (MMIM Me2PO4)

1/c e The RBM fits quantitatively the data;

2 4 6 8-12

-10

-8

-6

-4

300 K 260 K 240 K 220 K 210 K 200 K 190 K

log

('

/S c

m-1

)

log (/s-1)

0

OMIM NTf2

c

Page 33: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Scaling of invers viscosity 1/ and conductivity s0 with

temperature

The invers viscosity 1/ has an identical temperature dependence as 0 and scales with Tg.

0,8 1,0

-12

-8

-4

0

log

[1/ (

Pa-1

s-1

)

Tg/T

0.6 0.8 1.010-13

10-9

10-5

10-1

10-14

10-10

10-6

10-2

HMIM BF4

HMIM PF6

HMIM I HMIM Br HMIM Cl

(1/)

(P

a-1 s

-1)

Tg/T

Full symbols: 1/

0 ( S

/cm

)

Page 34: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Correlation between translational and rotational

diffusion

Stokes-Einstein, Einstein-Smoluchowski and Maxwell relations:

ηc Pω ω

Typically: G 0.1 GPa; .2 nm; as .1 nm;

J. R. Sangoro et al.(2009) Phys. Chem. Chem. Phys.

3,6 4,0 4,4 4,8 5,2 5,610-2

100

102

104

106

108

c BMIM BF

4

HMIM PF6

HMIM BF4

c (s-1

), (s

-1)

1000/T (K-1)

Measured Ginf

BMIM BF4 (0.07 GPa)HMIM PF6 (0.07 GPa)HMIM BF4 (0.04 GPa)

2 2s

kTP

2G G1

a

Page 35: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Correlation between translational and rotational diffusion

0

2

4

6

0 2 4 6

log (s-1)

log

c (

s-1)

Stokes-Einstein, Einstein-Smoluchowski and Maxwell relations:

2 2s

kTP

2G G1

a

Typically: G 0.1 GPa; .2 nm; as .1 nm;

J. R. Sangoro et al.Phys. Chem. Chem. Phys, DOI: 0.1039/b816106b,(2009) .

ηc Pω ω

Page 36: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Prediction checked experimentally:

2 2s

kTP

2G G1

a

1.: c: characteristic (diffusion) rate: structural relaxation rateG: instantaneous shear modulus

(~ 108 Pa for ILs), as : Stokes‘ hydrodynamic radius ~,

k: Boltzmann constant, : characteristic diffusion length ~ .2 nm

cP

Page 37: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

2. Prediction: 2

( ) ~2 ( ) c

e

D TT

Pulsed-Field-Gradient NMRBroadband Dielectric Spectroscopy (BDS)

Page 38: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Comparison with Pulsed-Field-Gradient NMR and deter-mination of diffusion coefficients from dielectric spectra

3,5 4,0 4,5 5,0

-20

-18

-16

-14

-12

-10

DNMR

DE

log

D [m

2s-1

]

1000/T (K-1)

2

( ) ~2 ( ) c

e

D TT

Based on Einstein-Smoluchowski relation and using PFG NMR measurements of the diffusion coefficients enables one to determine the diffusion length :

Quantitative agreement betweenPFG-NMR measurements and the dielectric determination of diffusion coefficients. Hence mass diffusion (PFG-NMR) equalscharge transport (BDS)..

Page 39: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

3,5 4,0 4,5 5,0

-20

-18

-16

-14

-12

-10

DNMR

DE

log

D [m

2s-1

]

1000/T (K-1)

2

0

2( )( ) ~

2

( )( ) ( ) ( )

( ) ce

D Tq n T qq n T q

kT kT T

Tn T

T

From Einstein-Smoluchowski and basic electrodynamic definitions it follows:

(n(T):number-density of charge carriers; µ(T):mobility of charge carriers)

Comparison with Pulsed-Field-Gradient NMR and deter-mination of diffusion coefficients from dielectric spectra

1. The separation of n(T) and µ(T) from 0 (T) is readily possible.

2. The empirical BNN-relation is an immediate consequence.

Page 40: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Separation of n(T) and µ(T) from 0 (T)

3,5 4,0 4,5 5,0

-20

-18

-16

-14

-12

-103,5 4,0 4,5 5,0

-20

-18

-16

-14

-12

-10 DNMR

DE

log

D [m

2s-1

]

1000/T (K-1)

4.0 4.4 4.8

25

26

27

log N [1/m

3]

1000/T [1/K]

log

µ [m

2 V-1

s-1]

MMIM Me2PO4

J. Sangoro, et al., Phys. Rev. E 77, 051202 (2008)

1.: µ(T) shows a VFT temperature dependence

2.. n(T) shows Arrhenius-type temperature dependence

3.: the 0 (T) derives its

dependence from µ(T)

Page 41: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Predictions checked experimentally:

2.:

3.:

2

2cD

c: characteristic (diffusion) rate: characteristic diffusion length ~ .2 nmD : molecular diffusion coefficient : Dc conductivity

~ c (Barton-Nishijima-Namikawa (BNN) relation)

Applying the Einstein-Smoluchowski relation enables one to deduce the root mean square diffusion distance from the comparison between PFG-NMR and BDS measurements. A value of ~ .2 nm is obtained. Assuming to be temperature independent delivers from BDS measurements the molecular diffusion coefficient D.Furthermore the numberdensity n(T) and the mobility (T) can be separated and the BNN-relation is obtained.

Page 42: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Summary concerning Broadband Dielectric Spectroscopy (BDS) as applied to ionic charge transport

1.: The predictions based on the equations of Stokes-Einstein and Einstein-Smoluchowski are well fullfilled in the examined ion- conducting systems. 2.: Based on dielectric measurements the self-diffusion coefficient of the ionic charge carriers and their temperature dependence can be deduced.3.: It is possible to separate the mobility (T) and the effective numberdensity n(T). The former has a VFT temperature- dependence, while the latter obeys an Arrehnius law. 4.: The Barton-Nishijima-Namikawa (BNN) relation turns out to be a trivial consequence of this approach.

Page 43: Lecture "Molecular Physics/Solid State physics" Winterterm 2013/2014 Prof. Dr. F. Kremer Outline of the lecture on 7.1.2014 The spectral range of Broadband.

Kontrollfragen 7.1.2014

103.Was ist ein Relaxationsprozess? Wie unterscheidet er sich von einer Schwingung?103.Welche Annahmen liegen der Debye Formel zugrunde?104.Was besagt die Langevin Funktion?105.Was ist der Informationsgehalt dielektrischer Spektren?106.Nennen Sie Beispiele für dielektrisch aktive

Verlustprozesse.


Recommended