+ All Categories
Home > Documents > Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline...

Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline...

Date post: 31-Jul-2020
Category:
Upload: others
View: 2 times
Download: 0 times
Share this document with a friend
16
1 ESE 570: Digital Integrated Circuits and VLSI Fundamentals Lec 20: April 4, 2019 Dynamic Logic, Charge Sharing and Leakage, Memory Overview Penn ESE 570 Spring 2019 – Khanna Lecture Outline ! Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview 2 Penn ESE 570 Spring 2019 – Khanna Dynamic Logic 3 Penn ESE 570 Spring 2019 – Khanna Logic Comparison Overview 4 Penn ESE 570 Spring 2019 – Khanna DYNAMIC LOGIC GATES: valid logic level are not steady-state op points and depend on temporary storage of charge on parasitic node capacitances. Outputs are generated in response to input voltage levels and a clock. Requires periodic updating or refresh. Logic Comparison Overview 5 Penn ESE 570 Spring 2019 – Khanna DYNAMIC LOGIC GATES: valid logic level are not steady-state op points and depend on temporary storage of charge on parasitic node capacitances. Outputs are generated in response to input voltage levels and a clock. Requires periodic updating or refresh. CS M1 BL WL CBL bit bit_b N1 N2 P1 A P2 N3 N4 A_b word Comparison of Logic Implementations 6 Penn ESE 570 Spring 2019 – Khanna CMOS
Transcript
Page 1: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

1

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lec 20: April 4, 2019 Dynamic Logic, Charge Sharing and

Leakage, Memory Overview

Penn ESE 570 Spring 2019 – Khanna

Lecture Outline

!  Dynamic Logic !  Charge Sharing and Leakage !  Memory Overview

2 Penn ESE 570 Spring 2019 – Khanna

Dynamic Logic

3 Penn ESE 570 Spring 2019 – Khanna

Logic Comparison Overview

4 Penn ESE 570 Spring 2019 – Khanna

DYNAMIC LOGIC GATES: valid logic level are not steady-state op points and depend on temporary storage of charge on parasitic node capacitances. Outputs are generated in response to input voltage levels and a clock. Requires periodic updating or refresh.

Logic Comparison Overview

5 Penn ESE 570 Spring 2019 – Khanna

DYNAMIC LOGIC GATES: valid logic level are not steady-state op points and depend on temporary storage of charge on parasitic node capacitances. Outputs are generated in response to input voltage levels and a clock. Requires periodic updating or refresh.

CSM1

BL

WL

CBL

WL

X

BL

VDD−VT

VDD/2

VDD

GND

Write "1" Read "1"

sensingVDD/2

ΔV VBL VPRE– VBIT VPRE–( )CS

CS CBL+------------------------= =

Write: CS is charged or discharged by asserting WL and BL.Read: Charge redistribution takes places between bit line and storage capacitance

Voltage swing is small; typically around 250 mV.

bit bit_b

N1

N2P1

A

P2

N3

N4

A_b

word

Comparison of Logic Implementations

6

Y

Ratioed

Penn ESE 570 Spring 2019 – Khanna

CMOS

Page 2: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

2

Comparison of Logic Implementations

7

Y

Ratioed

Penn ESE 570 Spring 2019 – Khanna

CMOS

Comparison of Logic Implementations

8

Y

Ratioed

Penn ESE 570 Spring 2019 – Khanna

CMOS

Comparison of Logic Implementations

9

Y

Ratioed

1

1

1

VDD more robust

Penn ESE 570 Spring 2019 – Khanna

CMOS

Dynamic CMOS Precharge

10

VDD

A

CK

Mp

Me

Z

Penn ESE 570 Spring 2019 – Khanna

Dynamic CMOS Precharge

11

Z

Z

of C is complete

Penn ESE 570 Spring 2019 – Khanna

Dynamic (Clocked) Logic: Example

12

CK = 0 => Z = ? CK = 1 => Z = ?

Penn ESE 570 Spring 2019 – Khanna

Page 3: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

3

Comparison of Static and Dynamic Logic

13

ADVANTAGES ?

DISADVANTAGES ?

Penn ESE 570 Spring 2019 – Khanna

14

Comparison of Static and Dynamic Logic

Penn ESE 570 Spring 2019 – Khanna

15

Comparison of Static and Dynamic Logic

Penn ESE 570 Spring 2019 – Khanna

Cascaded Dynamic Logic

16 Penn ESE 570 Spring 2019 – Khanna

Cascaded Dynamic Logic

17 Penn ESE 570 Spring 2019 – Khanna

Cascaded Dynamic Logic

18 Penn ESE 570 Spring 2019 – Khanna

Page 4: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

4

Cascaded Dynamic Logic

19 Penn ESE 570 Spring 2019 – Khanna

Cascaded Dynamic Logic

20 Penn ESE 570 Spring 2019 – Khanna

Domino Logic

21 Penn ESE 570 Spring 2019 – Khanna

Requirements

!  Single transition "  Once transitioned, it is done # like domino falling

!  All inputs at 0 during precharge "  ‘Outputs’ pre-charged to 1 then inverted to 0

"  I.e. Inputs are pre-charge to 0

!  Non-inverting gates

22 Penn ESE 570 Spring 2019 – Khanna

Cascaded Domino CMOS Logic Gates

23 Penn ESE 570 Spring 2019 – Khanna

Cascaded Domino CMOS Logic Gates

24

propagating

Penn ESE 570 Spring 2019 – Khanna

Page 5: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

5

Cascaded Domino CMOS Logic Gates

25

propagating

Penn ESE 570 Spring 2019 – Khanna

Charge Leakage

Penn ESE 570 Spring 2019 – Khanna

CMOS Dynamic D Latch

27

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Cx is usually a parasitic

capacitance

-  Positive level-sensitive

-  Inverting

D Q

NMOS PMOS

Penn ESE 570 Spring 2019 – Khanna

Comparison CMOS Static & Dynamic D-Latch

28

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Data bit stored on Cx when CK = 1 → 0

Dynamic D-Latch

NMOS PMOS

Penn ESE 570 Spring 2019 – Khanna

Comparison CMOS Static & Dynamic D-Latch

29

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Data bit stored on Cx when CK = 1 → 0

Dynamic D-Latch

ϕ1

ϕ1

Static D-Latch

Data bit stored in bistable-loop when

ϕ1 = 1 → 0

NMOS PMOS

Penn ESE 570 Spring 2019 – Khanna Penn ESE 570 Spring 2019 – Khanna

30

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

NOTE: No cross-coupled inverters)

Flip-Flop

Latch circuit:

Latch

Page 6: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

6

Penn ESE 570 Spring 2019 – Khanna

31

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Penn ESE 570 Spring 2019 – Khanna

32

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Penn ESE 570 Spring 2019 – Khanna

33

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vy ≤ VT0n,M3 = 1.0 V;

Penn ESE 570 Spring 2019 – Khanna

34

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vy = VT0n = 1V (VGD > VT0p)

Vy ≤ VT0n,M3 = 1.0 V;

Penn ESE 570 Spring 2019 – Khanna

35

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vy = VT0n = 1V (VGD > VT0p)

Vy ≤ VT0n,M3 = 1.0 V;

Penn ESE 570 Spring 2019 – Khanna

36

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vy = VT0n = 1V (VGD > VT0p)

Vy ≤ VT0n,M3 = 1.0 V;

Page 7: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

7

Penn ESE 570 Spring 2019 – Khanna

37

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vy = VT0n = 1V (VGD > VT0p)

Vy ≤ VT0n,M3 = 1.0 V;

i.e. Vx can drop from Vx-max = VDD – VTMP to Vx-min = 2.55 V due to charge leakage before VQ is effected (i.e. the output changes state).

EXTRA: Charge Storage and Leakage

!  Assume logic-high is stored onto Vx during active phase (CK=1)

!  When CK=0, Vin#0

38 Penn ESE 570 Spring 2019 – Khanna

EXTRA: Charge Storage and Leakage

39 Penn ESE 570 Spring 2019 – Khanna

40

Cext

Cext

EXTRA: Charge Storage and Leakage

interconnect

Penn ESE 570 Spring 2019 – Khanna

EXTRA: Junction Capacitance

41

Cext

Cext Ileakage =Cx

dVxdt

Vx-max to Vx-min due to leakage.

min(thold ) = Δt =Cx−min

Ileakage−maxΔVx =

Cx−min

Ileakage−max(Vx−max −Vx−min )

Vx−max =VDD −VTn,MP Vx−min = 2.55V

Cx−min =Cext +Cj,min =Cext +Cj (V =Vx−max )Penn ESE 570 Spring 2019 – Khanna

ESTIMATE

EXTRA: Example

42

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vx-max. Assume

VDD

leakage-max

Vx−max =VDD −VTn,MP Vx−min = 2.55VPenn ESE 570 Spring 2019 – Khanna

Page 8: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

8

EXTRA: Example

43

Cn+p+ = CJSW Pn+p+ = 0.200 fF/µm (18 µm + 6 µm + 2 µm) = 5.20 fF Cn+p = CJ An+p = 0.095 fF/µm2 (36 µm2 + 12 µm2) = 4.56 fF

Penn ESE 570 Spring 2019 – Khanna

EXTRA: Example

44

min(thold ) = Δt =Cx−min

Ileakage−maxΔVx =

Cx−min

Ileakage−max(Vx−max −Vx−min )

Cx−min =Cext +Cj,min =Cext +Cj (V =Vx−max )

Vx−max =VDD −VTn,MP ≈ 4V Vx−min = 2.55V

Cj (V ) =A ⋅Cj0

1+Vφ0

+P ⋅Cj0sw

1+Vφ0sw

Cj (Vx−max = 4V ) =4.56 fF

1+4V0.88

+5.20 fF

1+4V0.95

= 4.21 fF

VDD = 5.0 V VT0 = 1.0 V PB = 0.88 V PBsw = 0.95 V Ileakage,max = 0.85 pA

Penn ESE 570 Spring 2019 – Khanna

EXTRA: Example

45

min(thold ) = Δt =Cx−min

Ileakage−maxΔVx =

Cx−min

Ileakage−max(Vx−max −Vx−min )

Cx−min =Cext +Cj,min =Cext +Cj (V =Vx−max )Cx−min = 0.52 fF + 0.90 fF + 2.42 fF + 4.21 fF = 8.05 fF

VDD = 5.0 V VT0 = 1.0 V PB = 0.88 V PBsw = 0.95 V Ileakage,max = 0.85 pA

min(thold ) =8.05 fF0.85pA

(4V − 2.55V ) =13.73ms

Penn ESE 570 Spring 2019 – Khanna

EXTRA: Example Overview: Min Hold Time

!  Find min voltage value for storage node to maintain data "  Vx = voltage across storage capacitor

!  With dimensions of switch MOS and load MOS "  Calculate Cext = Cgb+ Cint = Cgb + Cpoly + Cmetal

"  Calculate Cj = junction capacitance

!  With max leakage value "  Calculate min hold time (i.e. min time for storage

capacitor to leak to min Vx)

Penn ESE 570 Spring 2019 - Khanna 46

min(thold ) = Δt =Cx−min

Ileakage−maxΔVx =

Cx−min

Ileakage−max(Vx−max −Vx−min )

Charge Sharing

Penn ESE 570 Spring 2019 – Khanna

Shift Register

!  Shift registers store and delay data !  Simple design: cascade of latches

48

DD-

Latch D-

Latch D-

Latch

Out

ϕ1 ϕ1 ϕ2

Penn ESE 570 Spring 2019 – Khanna

Page 9: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

9

Shift Register with Dynamic D Latches

49

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

When Vout(i) = 0V (or 5V) and Vin(i+1) = 5V (or 0V) for i = 1,2 (stage)

“Charge Sharing” is an issue when ϕ1/ϕ2 close. Penn ESE 570 Spring 2019 – Khanna

Shift Register with Dynamic D Latches

50

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

When Vout(i) = 0V (or 5V) and Vin(i+1) = 5V (or 0V) for i = 1,2 (stage)

“Charge Sharing” is an issue when ϕ1 or ϕ2 close pass gate switches.

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing

51

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vb >> Va

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing

52

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vb >> Va

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing

53

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vb >> Va

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing

54

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vb >> Va

Penn ESE 570 Spring 2019 – Khanna

Page 10: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

10

Charge Sharing

55

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

“Rule of Thumb” make Cout1 = 10 Cin2

Vb >> Va

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing

56

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vb << Va

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing

57

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vb << Va

If Vb = 0 and Va >> Vb # VR ≈Cin2VDDCout1 +Cin2

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing

58

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Vb << Va

If Vb = 0 and Va >> Vb # VR ≈Cin2VDDCout1 +Cin2

If Cout1 >> Cin2 # VR ≈Cin2VDDCout1

<<VDDPenn ESE 570 Spring 2019 – Khanna

Charge Sharing

59

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

“Rule of Thumb” make Cout1 = 10 Cin2

Vb << Va

If Vb = 0 and Va >> Vb # VR ≈Cin2VDDCout1 +Cin2

If Cout1 >> Cin2 # VR ≈Cin2VDDCout1

<<VDDPenn ESE 570 Spring 2019 – Khanna

Domino Logic Design Considerations

Penn ESE 570 Spring 2019 – Khanna

Page 11: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

11

Requirements

!  Single transition "  Once transitioned, it is done # like domino falling

!  All inputs at 0 during precharge "  ‘Outputs’ pre-charged to 1 then inverted to 0

"  I.e. Inputs are pre-charge to 0

!  Non-inverting gates

61 Penn ESE 570 Spring 2019 – Khanna

Cascaded Domino CMOS Logic Gates

62

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

propagating

Penn ESE 570 Spring 2019 – Khanna

Pre-charge Leakage

63

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

“weak keeper”

(W/L)p-keeper < (W/L)n-min

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing within PDN

64

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing within PDN

65

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Penn ESE 570 Spring 2019 – Khanna

Charge Sharing within PDN

66

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Penn ESE 570 Spring 2019 – Khanna

Page 12: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

12

67

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Charge Sharing within PDN

Penn ESE 570 Spring 2019 – Khanna

1

2

68

Kenneth R. Laker, University of Pennsylvania,

updated 25Mar15

Charge Sharing within PDN

Penn ESE 570 Spring 2019 – Khanna

69

Since all nodes are pre-charged there is no charge-

sharing.

C4

C3

C2

C1

Z4

Z3

Z2

Z1

P0

Z1 = G1 + P1 * P0 Z2 = G2 + P2 * G1 + P2 * P1 * P0 = G2 + P2 * Z1 Z3 = G3 + P3 * G2 + P3 * P2 * G1 + P3 * P2 * P1 * P0 = G3 + P3 * Z2 Z4 = G4 + P4 * G3 + P4 * P3 * G2 + P4 * P3 * P2 * G1 + P4 * P3 *P1 * P0 = G4 + P4 * Z3

Charge Sharing within PDN

Penn ESE 570 Spring 2019 – Khanna

CMOS Logic

!  Best option in the majority of CMOS circuits !  Advantages:

"  Noise-immunity not sensitive to kn/kp

"  does not involve pre-charging of nodes "  dissipates no DC power "  layout can be automated

!  Disadvantages: "  Large fan-in gates lead to complex circuit structures (2N

transistors) "  larger parasitics "  slower and higher dynamic power dissipation than alternatives "  no clock and no synchronization.

70 Penn ESE 570 Spring 2019 – Khanna

Pseudo-nMOS/Ratioed Logic

!  Finds widest utility in large fan-in gates !  Advantages:

"  Requires only N+1 transistors for N fan-in "  smaller parasitics "  faster and lower dynamic power dissipation than full

CMOS

!  Disadvantages: "  Noise-immunity sensitive to kn/kp

"  dissipates DC power when pulled down "  not well-suited for automated layout "  no clock and no synchronization.

71 Penn ESE 570 Spring 2019 – Khanna

CMOS domino-logic

!  Used for low-power, high-speed applications. !  Advantages:

"  Requires N+k transistors for N fan-in (size advantages of pseudo-nMOS)

"  dissipates no DC power "  noise immunity not sensitive to kn/kp "  use of clocks enables synchronous operation

!  Disadvantages: "  Relies on storage on soft nodes "  will require thorough simulation at all the process corners to insure

proper operation "  some of the speed advantage over static gates is diminished by the

required pre-charge (pre-discharge) time

72 Penn ESE 570 Spring 2019 – Khanna

Page 13: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

13

Memory Overview

Penn ESE 570 Spring 2019 – Khanna

CPU Memory Hierarchy

Kenneth R. Laker, University of Pennsylvania,

updated 02Apr15

74 Penn ESE 570 Spring 2019 – Khanna

Locality and Cacheing

!  Memory hierarchies exploit locality by cacheing (keeping close to the processor) data likely to be used again

!  This is done because we can build "  large, slow memories OR "  small, fast memories BUT "  we can’t build large, fast memories

!  If hierarchy works, we get the illusion of SRAM access time with disk based memory capacity. "  SRAM (static RAM) -- 5-20 ns access time, very expensive (on-CPU

faster) "  DRAM (dynamic RAM) -- 60-100 ns, cheaper "  Disk -- access time measured in milliseconds, very cheap

75 Penn ESE 570 Spring 2019 – Khanna

Semiconductor Memory Classification

RWM NVRWM ROM

EPROM

E2PROM

FLASH

RandomAccess

Non-RandomAccess

SRAM

DRAM

Mask-Programmed

Programmable (PROM)

FIFO

Shift Register

CAM

LIFO

Penn ESE 570 Spring 2019 - Khanna

Memory Architecture: Core

Word 0Word 1

Word 2

Word N-1

Word N-2

Input-Output

S0S1S2

SN-2SN_1

(M bits)

StorageCell

M bits

N W

ords

Word 0Word 1

Word 2

Word N-1

Word N-2

Input-Output(M bits)

StorageCell

M bits

Dec

oder

A0

A1

AK-1

S0

N words => N select signalsToo many select signals

Decoder reduces # of select signalsK = log2N

Penn ESE 570 Spring 2019 - Khanna

Memory Architecture: Decoders

Penn ESE 570 Spring 2019 - Khanna

Word 0Word 1

Word 2

Word N-1

Word N-2

Input-Output

S0S1S2

SN-2SN_1

(M bits)

StorageCell

M bits

N W

ords

Word 0Word 1

Word 2

Word N-1

Word N-2

Input-Output(M bits)

StorageCell

M bits

Dec

oder

A0

A1

AK-1

S0

N words => N select signalsToo many select signals

Decoder reduces # of select signalsK = log2N

Page 14: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

14

Array-Structured Memory Architecture

Input-Output(M bits)

Row

Dec

oder

AK

AK+1

AL-1

2L-K

Column Decoder

Bit Line

Word Line

A0

AK-1

Storage Cell

Sense Amplifiers / Drivers

M.2K

Problem: ASPECT RATIO or HEIGHT >> WIDTH

Amplify swing torail-to-rail amplitude

Selects appropriateword

Penn ESE 570 Spring 2019 - Khanna

ROM Memories

Penn ESE 570 Spring 2019 - Khanna 80

MOS NOR ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

GND

GND

VDD

Pull-up devices

Penn ESE 570 Spring 2019 - Khanna

MOS NOR ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

GND

GND

VDD

Pull-up devices

Penn ESE 570 Spring 2019 - Khanna

MOS NOR ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

GND

GND

VDD

Pull-up devices

Penn ESE 570 Spring 2019 - Khanna

MOS NOR ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

GND

GND

VDD

Pull-up devices

0 1 1 1

Penn ESE 570 Spring 2019 - Khanna

Page 15: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

15

MOS NOR ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

GND

GND

VDD

Pull-up devices

0 1 1 1

1 1 0 0

0 1 0 1

1 1 1 1

Penn ESE 570 Spring 2019 - Khanna

MOS NAND ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

VDD

Pull-up devices

All word lines high by default with exception of selected row

Penn ESE 570 Spring 2019 - Khanna

MOS NAND ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

VDD

Pull-up devices

All word lines high by default with exception of selected row

Penn ESE 570 Spring 2019 - Khanna

MOS NAND ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

VDD

Pull-up devices

All word lines high by default with exception of selected row

1 0 0 0

Penn ESE 570 Spring 2019 - Khanna

MOS NAND ROM

WL[0]

WL[1]

WL[2]

WL[3]

BL[0] BL[1] BL[2] BL[3]

VDD

Pull-up devices

All word lines high by default with exception of selected row

0 0 1 1

1 0 1 0

0 0 0 0

1 0 0 0

Penn ESE 570 Spring 2019 - Khanna

Ideas

!  Dynamic/clocked logic "  Only build/drive one pulldown network "  Fast transition propagation "  Domino Logic allows for cascading

!  Domino Logic allows for cascading !  Charge Leakage

"  Constrains min/max clock frequency

!  Charge Sharing with pass gates "  Need to size carefully

!  Memory Architecture "  Share circuitry and minimize area per bit

90 Penn ESE 570 Spring 2019 – Khanna

Page 16: Lecture Outline VLSI Fundamentals - Penn Engineeringese570/spring2019/... · Lecture Outline !Dynamic Logic ! Charge Sharing and Leakage ! Memory Overview Penn ESE 570 Spring 2019

16

Admin

!  HW 7 due tomorrow 4/5 "  Extended to Sunday 4/7

!  HW 8 released Friday "  1 week to turn-in "  Will count as Extra Credit

!  Final Project released Tuesday next week "  Work in pairs – start pairing off "  Design and layout memory "  Due 4/30 (last day of class)

"  Everyone gets an extension until 5/7

91 Penn ESE 570 Spring 2019 – Khanna


Recommended