+ All Categories
Home > Documents > Lesson 14Turbomachinery Design Considerations

Lesson 14Turbomachinery Design Considerations

Date post: 02-Jun-2018
Category:
Upload: ysape
View: 216 times
Download: 0 times
Share this document with a friend

of 36

Transcript
  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    1/36

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    2/36

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    3/36

    Euler Pump Equation

    titeiieec

    c hhmvrvrg

    mW

    ..

    .

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    4/36

    Compressor

    Axial Schematic

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    5/36

    Compressor

    Centrifugal Schematic

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    6/36

    Compressor Typical Velocity Diagram

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    7/36

    Compressor Repeating Row Nomenclature

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    8/36

    Airfoil Pressure and Velocity

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    9/36

    Important Parameters

    Compressor Efficiency, c

    Stage Efficiency, s

    Polytropic Efficiency, ec

    Stage Pressure Ratio, s

    Overall Pressure Ratio, c

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    10/36

    Degree of Reaction

    Desirable value around 0.5

    13

    12

    hh

    hh

    riseenthalpystaticstage

    riseenthalpystaticrotor

    Rco

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    11/36

    Diffusion Factor

    Quantifies the correlation between total pressureloss and deceleration (diffusion) on the upper(suction) surface of blade (rotor and stator)

    is the soliditythe ratio of airfoil chord tospacing

    i

    ei

    i

    e

    avg

    e

    V

    vv

    V

    VDasdefine

    V

    VVD

    21m ax

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    12/36

    Diffusion Factor Data

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    13/36

    Hub, Mean, and Tip Velocity Diagrams

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    14/36

    Stall and Surge

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    15/36

    Parameters Affecting Turbine Blade

    DesignVibration Environment

    Tip Shroud

    Inlet Temperature

    Blade Cooling

    Material

    Number of Blades

    Airfoil Shape

    Trailing-Edge Thickness

    Allowable Stress Levels (AN2)

    (N = Speed, RPM)

    Service Life Requirements

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    16/36

    Turbine Prel im Design Focuses on Defining a

    Flowpath that Meets Customer RequirementsCustomer Reqts/Desires

    Performance Mission Cost & Risk

    FN, SFC Reqts

    Aero Technology

    Life Reqts Mech. &

    Cooling Technologies

    PerformanceCycle Design Combustor

    Design

    MaterialSelections

    Turbine

    Aero Design

    Manufacturing

    Component

    Temp to other

    areas

    Preliminary Design = Frozen Turbine Flowpath

    Turbine

    Mech DesignAN2

    rh

    a,bWcClearance

    NoNo

    Yes Meet Requirements

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    17/36

    Turbine Mechanical Detailed Design

    Detailed Design Accomplishes Two Functions: Verify Assumptions/Choices Made in Preliminary Design

    Provide Detailed Geometry Required to Achieve Preliminary Design

    Goals

    Detail Mechanical Design Disciplines: Materials Selection - satisfy life/performance goals

    Secondary Flow Analysis - define/control nonflowpath air (e.g. cooling)

    Heat Transfer - component temperature definition

    Stress Analysis - component stresses

    Vibration Analysis - design to avoid natural frequencies

    Life Analysis - define component life for all failure modes

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    18/36

    Turbine Nomenclature

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    19/36

    50% Reaction Turbine

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    20/36

    0% Reaction or Impulse Turbine

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    21/36

    Hub, Mean and Tip Velocity Diagrams

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    22/36

    Velocity Triangles

    a1V1

    rr

    V2

    V2R

    u2

    v2V2

    b2

    a2

    1 2 3

    a3

    rV3R

    V3

    b3

    V3R

    u3

    v3R= v3 + r

    ABSOLUTE FLOW ANGLEStan

    tan

    a

    a

    22

    2

    33

    3

    v

    u

    v

    u

    RELATIVE BLADE ANGLES

    tan

    tan

    b

    b

    22

    2

    2

    2

    33

    3

    3

    3

    v

    u

    v r

    u

    v

    u

    v r

    u

    R

    R

    Relating as and bs

    v u r u

    v u r u

    2 2 2 2 2

    3 3 3 3 3

    tan tan

    tan tan

    a b

    a b

    tan tan tan tana a b b23

    2

    3 23

    2

    3 u

    u

    u

    u

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    23/36

    TURBINE ANALYSIS

    Velocity Triangles

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    24/36

    TURBINE ANALYSIS

    Euler Turbine Equation:

    Torque m

    gr v r v

    W mg

    r v r v mc T T

    ci i e e

    tc

    i i e e p ti te

    v2V2

    u2

    inlet, i

    v3u3

    exit, e

    V3convention:

    v3= -vealso, ri= re= r

    rg

    v v c T Tc

    p t t2 3 2 3

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    25/36

    TURBINE ANALYSIS

    Turbine Efficiency:Adiabatic (Isentropic)

    Polytropic

    Stage Loading Coefficient, y:

    Typical values: 1.3 - 2.2

    t

    s

    s t t

    1

    1 1

    s s

    et t t 1

    Stage work / mass

    (Rotor Speed)2

    g h

    r

    c t

    2

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    26/36

    TURBINE ANALYSIS

    axial velocity enter ing rotor

    rotor speed

    u

    r2

    Flow Coefficient, : Typical values 0.5 - 1.1

    Degree of Reaction, R:

    Rt= 0 Impulse turbine

    Reaction turbine

    R

    h h

    h h

    T T

    T Tt t t t t

    enthalpy ri se in rotor

    total enthalpy rise for stage

    2 3

    1 3

    2 3

    1 3

    Rt0

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    27/36

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    28/36

    Turbine Mechanical Design

    AN2

    : Rotor Exit Annulus Area x [Max Physical Speed]2

    Units: in2x RPM2x 1010, typical values: 0.5

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    29/36

    Turbine Mechanical Design

    Hub and Tip Speed Limits rh

    2: Hub radius x 2/60 x Max Physical RPM

    Units: ft/s

    Typical Values:

    HPT - 1000 ft/s < rh2< 1500 ft/s

    LPT - 500 ft/s < rh2< 1000 ft/s

    Use max physical RPM; not design point or TO speed

    Disk Stress is Driven Primarily by rh

    2 Disk and Blade Attachment Stresses are a function of

    rh2 and AN2

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    30/36

    Structures

    - Rotational Stress (Centr i fugal Stress)- Bending Stress due to the lift of airfoils

    - Buffet/Vibrational Stress

    - Flutter due to resonant response- Torsion from shaft torque

    - Thermal Stress due to temperature gradients

    - FOD

    - Erosion, Corrosion, and Creep

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    31/36

    Structures

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    32/36

    Structures

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    33/36

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    34/36

    Structures - Stress Calculations

    - Rotational Stress (Centr i fugal Stress)-- Same as for compressor, c, blade

    -Disk Thermal Stress, t-- assume T = T(r) = T0+ T(r/rH)

    -- a- coef of linear thermal expansion-- E - Modulus of Elasticity 0 rH

    T

    T0

    T+T

    r

    rH

    Disk

    r q

    H

    tr

    r

    rTE1

    3

    a

    H

    t

    r

    rTE21

    3

    a

    q

    radial stress

    tangential stress

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    35/36

  • 8/10/2019 Lesson 14Turbomachinery Design Considerations

    36/36


Recommended