+ All Categories
Home > Documents > Liquid metal flow under inhomogeneous magnetic field

Liquid metal flow under inhomogeneous magnetic field

Date post: 03-Jan-2016
Category:
Upload: brennan-saunders
View: 50 times
Download: 1 times
Share this document with a friend
Description:
Liquid metal flow under inhomogeneous magnetic field. O. Andreev, E. Votyakov, A. Thess, Y. Kolesnikov. TU Ilmenau, Germany. Electromagnetic Brake (EMBR). magnet system. Main goal. Avoid flow instability. 1. Smooth mean velocity profile. Avoid sources of instability. - PowerPoint PPT Presentation
Popular Tags:
21
Liquid metal flow under inhomogeneous magnetic field O. Andreev, E. Votyakov, A. Thess, Y. Kolesnikov TU Ilmenau, Germany
Transcript
Page 1: Liquid metal flow under inhomogeneous magnetic field

Liquid metal flow under inhomogeneous magnetic

field O. Andreev, E. Votyakov,A. Thess, Y. Kolesnikov

TU Ilmenau, Germany

Page 2: Liquid metal flow under inhomogeneous magnetic field

ElectromagneticBrake (EMBR)

magnet system

Page 3: Liquid metal flow under inhomogeneous magnetic field

Main goal

1. Smooth meanvelocity profile

Avoid flow instability

Avoid sources of instability

2. Brake generated and introduced velocity fluctuations

Page 4: Liquid metal flow under inhomogeneous magnetic field

Experimental setup

y

permanentmagnet

honeycomb

Plexiglas cover blocks

Bz magnetic field

Vivesprobe

potentialprobe

In- Ga -Sn

outletdiffuser

inletcontractor

N

S

lx

top viewly

side view

lx

N

S

30 mm

Page 5: Liquid metal flow under inhomogeneous magnetic field

Permanent magnet

Channel: S = 210 cm L = 90 cm

Coordinate system

Liquid metal: GaInSn

General view of test-section

Page 6: Liquid metal flow under inhomogeneous magnetic field

M-shape velocity profile

0,25

0,5

-105 -75 -45 -15 15 45 75 105

-50

-25

0

25

50

0,5

Y, mm

X, mm

zyx BjF ~

maxB

Bz

/jBV

Flow

0,25

B

Page 7: Liquid metal flow under inhomogeneous magnetic field

Governing parameters

Reynolds number:

Re=U0H/ Re<15000

Hartmann number:

Ha=B0H(/)1/2 Ha=400

MHD interaction parameter:

N=Ha2/Re N>40

U0 < 35cm/s, B0=0.5T, H=2cm

Page 8: Liquid metal flow under inhomogeneous magnetic field

Flow

x= - 106 mm - 29

0

20

0

0,01

0,02

0,03

0,05

0,06

0,07

0,08

-50 -40 -30 -20 -10 0 10 20 30 40 50

X, mm

0E

Ey

(b)

-0,5

0

0,5

1

2

2,5

3

3,5

-50 -40 -30 -20 -10 0 10 20 30 40 50 Y, mm

0EEy

(a)

Streamwise velocity in the middle plane of channel

potential velocimetry Re 4000

Page 9: Liquid metal flow under inhomogeneous magnetic field

U

Streamwise velocity in the middle plane of channel

ultrasound velocimetry Re 4000magnet

flow

flow

Page 10: Liquid metal flow under inhomogeneous magnetic field

Decay of velocity fluctuations under the external magnetic field

Mag

net

Flow

Re =4000I.

turbulence suppression

region

II.vorticalregion

III.wall jet region

u´/U0%

5.0

7.5

2.5

10

0-5 -2.5 0 2.5 7.55 10

on the axes

12.5

near walls

15

B

Page 11: Liquid metal flow under inhomogeneous magnetic field

Accuracy of

potential velocimetryin the region of

inhomogeneousmagnetic field

is ?!

Page 12: Liquid metal flow under inhomogeneous magnetic field

Principles of potential velocimetry

zy BUy

j

from

Ohm’s law

streamwisevelocity

z

y

z B

j

yBU

1

measurablevalues

physical

ERRORof the potential velocimetry

y

x

Page 13: Liquid metal flow under inhomogeneous magnetic field

electrical current in the middle

plane

spanwiseJy

electricalcurrent

negative values of el.current

positivevalues of el.current

positivevalues of el.current

z

y

z B

j

yBU

1

overestimatedvalues of velocity

overestimatedvalues of velocityunder

estimatedvalues

directnumericalsimulation

byE. Votyakov,

E. Zienike

Page 14: Liquid metal flow under inhomogeneous magnetic field

voltmeter

flow

potential difference between the side walls

dyjBBH

Qy

zz 11

flow rate through the channel integral estimation of

error

movable electrodes onthe side walls

Page 15: Liquid metal flow under inhomogeneous magnetic field

0

0.5

1

1.5

2

2.5

3

3.5

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6x/H, dimensionless streamwise coordinate

Re=271640145312661179099207105051180413102Magnetic field

overestimatedvalues of flow rate

overestimatedvalues of flow rate

underestimated

valuesQB

H

z

flow

potentialdifference

flow rate

Page 16: Liquid metal flow under inhomogeneous magnetic field

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-50 -30 -10 10 30 50

X/H=0streamwise

velocity

0U

UDOP2000

potentialprobe

Comparison of ultrasound and potential velocimetry

flowRe 4000

Page 17: Liquid metal flow under inhomogeneous magnetic field

0

0.5

1

1.5

2

2.5

3

3.5

4

-50 -30 -10 10 30 50

X/H=-3streamwise

velocity

0U

U

DOP2000

potentialprobe

Comparison of ultrasound and potential velocimetry

flowRe 4000

Vivesprobe

Page 18: Liquid metal flow under inhomogeneous magnetic field

0

1

2

3

4

5

6

7

8

9

-50 -30 -10 10 30 50

X/H=2streamwise

velocity

0U

U

DOP2000

potentialprobe

Comparison of ultrasound and potential velocimetry

flowRe 4000

Vivesprobe

Page 19: Liquid metal flow under inhomogeneous magnetic field

0

1

2

3

4

5

6

7

-50 -30 -10 10 30 50

X/H=6streamwise

velocity

0U

U

DOP2000

flowRe 4000

Vivesprobe

Comparison of ultrasound and potential velocimetry

potentialprobe

Page 20: Liquid metal flow under inhomogeneous magnetic field

0

0.5

1

1.5

2

2.5

3

3.5

-50 -30 -10 10 30 50

X/H=8streamwise

velocity

0U

UDOP2000

flowRe 4000

Vivesprobe

Comparison of ultrasound and potential velocimetry

Page 21: Liquid metal flow under inhomogeneous magnetic field

Summary remarks• The laboratory flow was investigated in the

following range of the governing parameters:

Ha = 400, Re<15000, N>10.

• Potential probe qualitatively reproduces velocity field within the region of two magnet gaps in streamwise direction.

• Vives probe is strongly influenced by the external electric potential and could be applied on the distance which exceeds 5-6 gaps of magnet.


Recommended