+ All Categories
Home > Documents > Lng and FLNG process design

Lng and FLNG process design

Date post: 02-Oct-2015
Category:
Upload: gcastan1
View: 538 times
Download: 69 times
Share this document with a friend
Description:
design of floating liquefaction facilityLNG safetyturbinesAmerican bureau of shippingCFD in LNG designNFPA 59Aequipmentdistillation tower design for FLNGliquefaction process selectionDMR processdual mixed refrigerant process
Popular Tags:
111
Liquefied Natural Gas and Floating LNG A technology review Gabriel Castaneda, P.E. (713) 873 1708 Gabriel @gabcheminc.com [email protected] LNG LNG
Transcript
  • Liquefied Natural Gasand Floating LNGA technology reviewGabriel Castaneda, P.E.(713) 873 1708Gabriel @[email protected]

    LNGLNG

  • Construction CostsLNGKing & Spalding 2014Gabriel Castaneda, P.E.

    Gorgon $52 Billion dollars

  • Approved and proposed projects in North AmericaSpecificationsTurbines in LNGEmissionsProcess Safety 49 CFR 193, 33 CFR 127 and NFPA 59ARefrigeration and Liquefaction TechnologiesFLNG Design ConsiderationsFLNG Technologies selected for projectsFLNG Projects in the pipeline, or in the boat?

    TABLE OF CONTENTSLNGGabriel Castaneda, P.E.

  • Approved LNG PlantsLNGGabriel Castaneda, P.E.FERC

  • Proposed LNG Plants in North AmericaLNGGabriel Castaneda, P.E.FERC, Feb 5 2015

  • LNG SpecificationsLNGGabriel Castaneda, P.E.LNG temp-161oC-258oF

    componentlimitcommentsCO250 ppmfreezingH2S3.5 ppmLNG Spectotal sulfur20-25 mg/m3LNG Specmercury.01 mg/Nm3aluminum exchangersC5+

  • Turbines in LNGLNGGabriel Castaneda, P.E.

  • Trends in LNG Train Size, MTPYLNG Refrigerant Compressor DrivesGas Turbines Driver BenefitsAeroderivative vs Industrial TurbinesInlet Turbine Cooling

    Turbines in LNG Table of ContentsLNGGabriel Castaneda, P.E.

  • Buonocristiano et al, GE5 MTPY, 86MW turbine, GE Frame 7EA8 MTPY, 123 MW turbine, GE Frame 9ETrends in LNG Train Size, MTPYLNGGabriel Castaneda, P.E.

  • Marybeth Nored, Apache CorporationDriver EfficiencyAeroderivative 40/60%GT 30-50%LNG Refrigerant Compressor DrivesLNGGabriel Castaneda, P.E.

  • Smaller plot spaceShorter delivery timeLower transportation costsLower installation costsLower foundation costsNo need for boiler feed water treatmentNo need for cooling water

    Cyrus Meher et al, BechtelGas Turbines Driver BenefitsLNGGabriel Castaneda, P.E.

  • Aeroderivative vs Industrial TurbineIndustrial Frame 9E, 123 MWAeroderivative LMS 100, 100 MWGeneral ElectricLNG

    LM2500 or LM6000

    Frame 7 190MW*

  • water injection in combustion chamber lowers NOXLawrence Kaempffer, P.Eng.Amin AlmasiAeroderivative vs Old Industrial TurbinesLNGGabriel Castaneda, P.E.Firing temperature from 1149oC to 1400oCEfficiencies from 30/50% to 40/60%New turbines have integrated a lot of the aeroderivative benefits but they need to be requested

    Old Heavy IndustrialAeroderivativespeedslowerfasterstarting time10-15min5 minloading time6-10% per minute, some in 13 min10 minmaintenance timemorelessbearingshydrodynamicantifrictiontechnologyconventionalaerospacemodularitynonehighly modularefficiencyless 10-15% moretemperaturelowerhigheremissionshigher lower25 ppmsome below 15 ppm NOXcompression ratiolower, 10higher, 18reliabilitylowerhigherload rangenarrowwideroperational expenseshigher lowerprice20-30% lowerhigherair inlet system requirementslow inlet Mach numberhigh inlet Mach numberfuel requirementswider range of fuelsnarrower range of fuelsfootprintbiggerless than 50%weightmoreless than 40%

  • Increased LNG production

    Assuming that the plant is designed such that the gas turbine driver becomes a production bottleneck during hot weather. More stable liquefaction process, minimizes production swings Possible optimization of compressor selections for the liquefaction process. Chilled water-glycol loop0.7%/oC heavy duty, 1%/oC for aeroderivative Technology is commonly used in Power Plants 11 LNG COP Optimized Cascade Process plants Cyrus Meher- HomjiShell, GEMehaboob Basha et alJohn Forsyth, P.Eng.Chilling UnitHeatExchangerTurbine Inlet Cooling, TIC BenefitsLNGGabriel Castaneda, P.E.

    Typically the compressors used in the liquefaction process that are driven by gas turbines need to be selected to operate across a fairly wide band of power inputs due to the varying power produced by the GT drivers as the ambient temperature varies. As the use of an appropriately sized TIC system allows the GT to produce a much more constant output, the compressor can be selected and optimized for operation across a much narrower power band.*

  • Emissions in LNG Table of ContentsLNGGabriel Castaneda, P.E.Causes and mitigation measuresRelative CO2 emissions of gas turbinesNOX emissionsBOG compressors

    Australia Pacific LNG Project Greenhouse Gas Management Plan LNG Facility*

  • CO2 Emission Causes Mitigation MeasuresLNGGabriel Castaneda, P.E.Gas to be flared comes from fired heaters, incinerators, venting, startup and shutdown conditions, depressurization of plantAustralia Pacific LNG Project

    CausesMitigation MeasuresUse of turbines to power up plantUse aeroderivative/ new efficient turbinesInstall waste heat recovery units, 9% reductionUse a more efficient liquefaction technologyFlaring and ventingUse of boil-off gas compressors during ship loading operationsUse a compressor to capture gas to be flared and route it to be used as fuel gas FurnacesInstall high efficiency burners in furnaces

    Australia Pacific LNG Project Greenhouse Gas Management Plan LNG Facility*

  • Cyrus Meher- Omji et alBechtelRelative CO2 Emissions From Different Gas TurbinesLNGGabriel Castaneda, P.E.

  • Cyrus Meher-Homji et alBechtelNOX EmissionsLNGGabriel Castaneda, P.E.Equivalence Ratio= (fuel/oxidant)actual(fuel/oxidant)stoichiometric

  • BOG compressorsFlareBOG CompressorsLNGGabriel Castaneda, P.E.

  • 49 CFR-193, 33 CFR 127 and NFPA 59A standardsLNG vapor characteristicsLiquid Spill HazardThermal Radiation HazardOverpressure HazardOverpressure vs. Gas Type

    LNG Process Safety Table of ContentsLNGGabriel Castaneda, P.E.

  • 33 CFR 127Waterfront Facilities Handling Liquefied Natural Gas and Liquefied Hazardous Gas49-CFR-193 LNG Facilities: Federal Safety StandardsNFPA 59A Standard for the Production, (2001)Storage and Handling of LNG

    LNG Process SafetyLNGGabriel Castaneda, P.E.49-CFR-193 is based on NFPA 59A, 2001

  • Protection of persons and property near an LNG facility from :

    Thermal radiation Dispersion and delayed ignitionExplosions arising from an LNG spill

    Reduction of the potential for a catastrophic spill of LNGSets design spill requirements for each specific major area:

    49-CFR-193LNGGabriel Castaneda, P.E.

    - LNG storage tanks- Vaporization areas- Process areas- Transfer Areas

  • Methane is denser than air by a factor of 1.5, propane by about 2, LNG spills will behave as a dense gas.LNG vapor characteristicsLNGGabriel Castaneda, P.E.Vapor FencesPrecast lightweight concrete 8-12ft, 20ft highYield below 1psig thresholdJordan Cove Point LNG

  • 10 min spill Flammable vapor dispersionFLACS vapor dispersion and deflagrationPHAST screening calculation on flow rate, rainout and unobstructed vapor dispersionGexConDNVVapor cloud at LFLLiquid Spill HazardLNGGabriel Castaneda, P.E.

  • Pool firesLNGFIRE349 CFR 193Thermal Radiation HazardLNGGabriel Castaneda, P.E.Predicts thermal radiation from onshore LNG pool firesJordan Cove Point LNG

  • 0.5 psi overpressure in FLACS for safety factorIgnition of vapor clouds in congested areasEffects of Nuclear Weapons, Atomic Energy commission, 1977Overpressure HazardLNGGabriel Castaneda, P.E.DOT requirement is 1psi at facility boundaries

    EffectOverpressure, psiEardrum ruptureThreshold550% (20 or more years old)15-20Lung DamageThreshold12 (8-15)Severe25 (20-37)LethalThreshold40 (30-50)50 percent62 (50-75)100 percent92 (75-115)

  • Kiminori Takahashi et alJGC CorporationMaximum Overpressure vs Gas TypeLNGGabriel Castaneda, P.E.Flammability limits for the different components are taken into consideration in the simulations440360

    290

    220

    145

    70PSIStructural Response analysis Abaqus Simulia / USFOSDNV-RP-C204 Design against accidental loadsSkikda, Algeria, 2004

    Computer Aided DesignComputational fluid dynamics, CFDFinite Element Analysis FEA*

  • Fuel type (reactivity of fuel)Stoichiometry of fuelIgnition source type and locationConfinement and venting (location and size)Initial turbulence level in the cloudBlockage ratiosSize, shape and location of obstaclesNumber of obstacles (for a given blockage ratio)Cloud size

    Explosion effects will depend on maximum pressure, duration of the shock wave and interaction with structuresAutoreagas, FLACS, CFX are standard in Offshore IndustryTNT model is an empirical model and is not used in OffshoreLNG Safety CFD Explosion ModelingHocquet, TechnipLNGGabriel Castaneda, P.E.CFD models should require:

  • Explosion Blast SimulatorsLNGGabriel Castaneda, P.E.Abaqus SimuliaRegas https://www.youtube.com/watch?v=zjRlKTzS5_c

    https://www.youtube.com/watch?v=wWv2MdP-IG0

    https://www.youtube.com/watch?v=QxaKxVAR1g0

    FEAhttps://www.youtube.com/watch?v=jESt5Ipjhu8

    https://www.youtube.com/watch?v=uFSiG7PY23M

    https://www.youtube.com/watch?v=T6PyX8rUyL4

    https://www.youtube.com/watch?v=WGqC0JPFi_Y

    Otherhttps://www.youtube.com/watch?v=fmKKFkREu8Q

    CFD

  • Refrigeration and Liquefaction TechnologiesLNGGabriel Castaneda, P.E.

  • Single RefrigerantMixed RefrigerantRefrigerants and ShaftworkSelection of Mixed Refrigerant CompositionLiquefaction ProcessesNatural Gas Cooling CurvesLiquefaction Technologies General ComparisonLiquefaction Technologies Relative Specific WorkLiquefaction Technologies - FLNGDMR Process - FLNG

    Refrigeration and Liquefaction Technologies Table of ContentsLNGGabriel Castaneda, P.E.

  • Single or Mixed Refrigerant?Refrigerant SelectionLNGGabriel Castaneda, P.E.

  • Frank Del NogalSingle RefrigerantLNGGabriel Castaneda, P.E.

  • Mixed RefrigerantLNGGabriel Castaneda, P.E.

  • Natural gas MR: 8% N2 45% C1,45%C2, 2% C3LeeRefrigerants and ShaftworkLNGGabriel Castaneda, P.E.

  • C1 to C3 and NitrogenLeeNatural gas MR: 8% N2 45% C1,45%C2, 2% C3Selection of Mixed Refrigerant CompositionLNGGabriel Castaneda, P.E.

  • Marybeth Nored Apache CorporationLNG Refrigeration TechnologyLNGGabriel Castaneda, P.E.

    AP-X used in QatarShell DMR used in SakhalinA historical review of turbomachinery for LNG applicationsMarybeth Nored, Andrew Brooks, Apache corporation*

  • C3MRDMRPOCMFCLiquefaction ProcessesLNGGabriel Castaneda, P.E.

  • Single RefrigerantMixed RefrigerantDoubleMixed RefrigerantMixed and Single RefrigerantIl Moon et alNatural Gas Cooling CurvesLNGGabriel Castaneda, P.E.

  • Global Markets Research, Floating LNG, Deutsche Bank, 2009L LowM-MediumH-HighN/A Not applicableLiquefaction Technologies General ComparisonLNGGabriel Castaneda, P.E.AP-X used the recently introduced Frame 9 turbine of GE in Qatar5 MTPA corresponds to a GE Frame 7PHFE plate fin heat exchangerSWHE spiral wound heat exchanger, coil wound heat exchanger

    ProcessSMRCascadeDMRC3-MRAP-XN2 ExpansionCore Heat ExchangerPFHEPFHESWHESWHESWHEPFHEEquipment CountLHLHHLHydrocarbon Refrigeration StorageLHLHHN/ACAPEXLMMHHLCapacity, mtpa2-2.54118112LicensorBV (Prico), APCICOPShell, APCIShell, APCIAPCIKA, Linde, Costain, etc

  • PwagaLiquefaction Technologies Relative Specific WorkWalter Chukwunonso et alLNGGabriel Castaneda, P.E.

    PROCESSFinn et al (relative to Cascade)Dam et al (relative to MFC)Foerg (relative to MFC)Vink et al (relative to C3-MR)Barclay et al ( relative to C3-MR)Pwaga (relative to DMR)Cascade1.01.41.21.2 SMR1.31.11.2 1.1 C3-MR1.21.11.01 1 DMR1 1.0 1 MFC1single N2 Expander2 3.1C3 precooled single N2 expander1.73.3double N2 Expander1.71.4 1.5NICHE LNG1.4

    PgawaSome recent advances in liquefied Natural gas production, spill dispersion and safetyWalter Chukwunonso etalEnergy Fuels 2014, 28(6) pp 3556-3586*

  • APCI mentions that it is safer on FLNG applications as it has less propaneDMR process has less equipment and allows a wider range of operating conditions than C3MRDMR process has more exploitable power than C3MR DMR has more specific capacity than C3MR process

    APCI, Shell, PwagaDMR ProcessRefrigerant Flow Rate

    Cost ComparisonLNGGabriel Castaneda, P.E.

    Sensitivity analysis of proposed LNG liquefaction processes for LNG FPSO, Sultan Seif Pwaga, Norwegian University of Science and Technology, masters thesis, July 2011*

  • Maneenapang Bunnag et al, PTTLNG selection based on capacityLNGGabriel Castaneda, P.E.Based on efficiency, complexity, capital investment, equipment count, safetyMTPA million tons per year

    Capacity, MTPALiquefaction Technology< 0.2Expander processesNitrogen expanderFeed Gas (Niche Process)2 - 3Single Mixed Refrigerant, PRICO> 3DMR

    Sensitivity analysis of proposed LNG liquefaction processes for LNG FPSO, Sultan Seif Pwaga, Norwegian University of Science and Technology, masters thesis, July 2011*

  • Refrigeration and Liquefaction TechnologiesLNGGabriel Castaneda, P.E.

  • Process Design ConsiderationsProcess Flexibility Motion

    Weight and Space LimitsSafetyCommercial FLNG projects

    FLNG Table of ContentsLNGGabriel Castaneda, P.E.

    - Sloshing- Heat Exchange- Distillation- Flow Motion- Separators- Structural Issues

  • Processes need to be flexible as the ship will change location.Changes in gas composition affect the entire process:CO2/H2S removalHRU (demethanizer)CompressorsMixed Refrigerant Compositions

    FLNG Process FlexibilityLNGGabriel Castaneda, P.E.

  • Sloshing leads to high impact pressures on thermal insulation, which translates in maintenance downtimes

    Tanks need to withstand sloshing effects, currently GTT has a membrane based design that is favored by the industry because it is efficient and is cost effective.SloshingGDF Suez LNGLNGGabriel Castaneda, P.E.ExxonmobilGTT

    Delivering Floating LNG in the Timor SeaDominique Pelloux PrayerGDF Suez LNGJournees Annuelles des Hydrocarbures, 23 and 24 of October, 2013 Palais des Congres- Paris

    LNG Technology advances and challengesRR Bowen, SPE et al, Exxonmobil development companyInternational Petroleum Technology ConferenceIPTC12111*

  • Reduction in performance from 10 to 60%Random and structured packing are less sensitive to motion than trays.Mellapack can be three times less affected by motion than pall rings.L/Ds of 2 or less and frequent redistributors. Redistributors may have a higher residence time.50 ppmv CO2 to HRU tower,
  • Distillation - Amine SystemLNGGabriel Castaneda, P.E.UOPSolvent Circulation RateMembrane Stage Effect

    Pretreatment of acid gas in feed for Petronas floating LNG facilityZainab Kayat PetronasMark Schott, et al, UOP*

  • HamworthyFMCNatcoFLNG - Separators LNGGabriel Castaneda, P.E.

  • Layout, check valves and process control should enforce the flow direction within the process

    FLNG - Flow MotionLayout of equipment should follow a homogeneous weight distribution to decrease oscillations/

    improve stabilityLNGGabriel Castaneda, P.E.

  • Eliminates typical wave inducing fatigue loadsMinimal hull deflections (sag/hog) simplifying topside designHull does not need to rotate even in harshest environmental conditionsEliminates turret and swivelTolerant for weather spreading (waves/wind/current from different directions)

    Fredrik MajorSevanMarineMotion Consider Round FPSOLNGGabriel Castaneda, P.E.

    Benefits of a cylindrically shaped floater for an FPSO application in cyclone exposed environmentsFredrik Major, CBDO, Sevan Marine ASAThursday 14 November 2013, Parmelia Hilton Hotel I Perth Australia*

  • Mechanical fatigue on distillation columns and cold boxLoad assessmentsFull mechanical /naval considerations

    FLNG - Structural Issues - FatigueLNGGabriel Castaneda, P.E.

  • 10 times more heat transfer surface per unit volumeTemperature approach of 2oF/1oF (instead of 15oF)Lower capital costs75% less weightLess plant space, about 50% of size of shell and tubeLower compressor powerNo mechanical joints, less prone to leaks

    Chart IndustriesWeight and Space Limits - Core-in-Kettle Heat ExchangersLNGGabriel Castaneda, P.E.

  • American Bureau of Shipping (ABS)Society of International Gas Tanker and Terminal Operations (SIGTTO)Topsides ArrangementsMain Process HazardsMitigation of Explosion HazardsCryogenic Spills Handling

    FLNG Safety Table of ContentsLNGGabriel Castaneda, P.E.

    Rapid phase transitionLNG heats up and gets a new vapor pressure, which is not the current pressure of 14.7psia, therefore it expands explosively.*

  • FLNG Topsides Arrangement LNGGabriel Castaneda, P.E.Ji-Hyun Hwang, SBM OffshoreLNG is stored at -161oCPropane at -42oCButane at -12oC

    Ji-Hyn Hwang, Myung Il Roh, Kyu Yeul LeeDetermination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction processComputers and Chemical Engineering, 49 (2013) 25-36

    Submerged pumps to prevent leaksTurbines not on top of LNG and LPG tanksNo hydrocarbon pump room in subsurface to preent explosions in confined spacesHeliport away from process, helicopter should not fly over process

    No reciprocating equipment (pumps and compressors)All cargo at low pressure

    *

  • - Leak HazardsAsphyxiation RiskExplosion RiskCryogenic Spill RiskEmbrittlement of steel structures (module structure, hull)

    BLEVE Hazard ( C2+ vessels)Management of Rapid Phase TransitionKevlarFLNG Safety Main Process HazardsLNGGabriel Castaneda, P.E.

    Rapid phase transitionLNG heats up and gets a new vapor pressure, which is not the current pressure of 14.7psia, therefore it expands explosively.*

  • Promote ventilationGrated vs Plated Process DecksLimitation of module congestion levelOptimization of module arrangement and ventilation

    Minimizing LPG inventories

    FLNG Safety Explosion/Asphyxiation RiskENI, GavelliLNGGabriel Castaneda, P.E.

  • Minimize leak points (flanges, pumps, valves)

    HSE hydrocarbon release database (HCRD)Collect spill locallyDirect overboardUse polyurethane, wood or concrete insulation to avoid contact with metal structuresUse insulation and spray guards to protect personnelCollect smaller spills locally in drip trays of suitable material (Stainless Steel)

    FLNG Safety Cryogenic Spills RiskDNV VeritasLNGGabriel Castaneda, P.E.Embrittlement of steel structures (module structure, hull) SolutionsEffects

    Floating liquefied gas terminals offshore technical guidance otg-02, DNV Veritas, March 2011*

  • KPMG, September 2014FLNG Projects in the pipeline boatLNGGabriel Castaneda, P.E.

  • FLNG Projects - Under ConstructionLNGGabriel Castaneda, P.E.185 FPSOs in service40 FPSO on orderJapan imported 37% of global LNG in 2013

    ProjectExmarExmar 2PFLNG 1PFLNG 2Preludecapacity, MTPA0.50.61.21.53.6 LNG+0.4 LPG + 1.3 condensatetechnology PRICO SMRPRICO SMRN2 Expansion (AP-NTM)N2 Expansion (AP-NTM)DMRcost, million USD3004142,0002,000-3,00012,000+EPCWison OffshoreWison OffshoreTechnip - DaewooJGC - SamsungTechnip - SamsungFieldLa CrescienteLa CrescienteKanowitRotanPreludeCountryColombiaColombiaMalaysiaMalaysiaAustraliadistance from shore (miles)shoresideshoreside10070130mechanical driversgas turbinegas turbineAGTAGTsteam turbine

    Exmar is using PRICO SMRPFLNG 1 just ship about 771 Million dollars*

  • FLNG TechnologiesGDF SUEZ LNGLNGGabriel Castaneda, P.E.

    Project / EquipmentPreludeKanowit Santos BasinScarboroughBonaparteCapacity (3.6 MTPA + liquids)(1.2 MTPA)(2.7 MTPA + liquids)(6/7 MTPA) (2.4 MTPA)OwnerShell/ Inpex / Kogas /CPCPetronasPetrobras /BGExxonmobil/ BHPGDF SUEZ / SantosEngineering / ShipyardTechnip / SamsungTechnip / DSMETechnip / JGC / Modec?Technip / KBRSBM/ Chiyoda / SAIPEMLiquefaction processDMRN2 Expansion (AP-N)DMRMix RefrigDMRMechanical Driversredesigned steam turbinesgas turbinesgas turbinesgas turbinesgas turbinesContainment SystemMark III membranesNo 96 membranesSPM?membranesLNG Offloadingside by sideside by sidetandemtandemside by side

    Dominique Pelloux PrayerDelivering Floating LNG in the Timor SeaJournees Annuelles des Hydrocarbures, 23 et 24 Octobre 2013 au palais des congress, Paris*

  • FLNG Projects - ProbableLNGGabriel Castaneda, P.E.Clarksons

    Golar PRICO *

  • FLNG Projects - PossibleLNGGabriel Castaneda, P.E.Clarksons

  • Thanks!GraciasLNGGabriel Castaneda, P.E.(713) 873 1708Gabriel @[email protected]

  • Support slides

  • EXPLOSIONS

    *

  • TNT methodTNO multi energy methodBaker Strehlow Tang MethodExplosion pressure modelsLNGGabriel Castaneda, P.E.

    D Bjerketvedt et al/ Journal of Hazardous Materials 52 (1997) 1-150*

  • Blast Damage to Equipment, Structures and InfraestructureLNGGabriel Castaneda, P.E.Handbook of Fire and Explosion Protection Engineering Principles, 2014

    *

  • COSTS

    *

  • Costs of a Base Load LNG DevelopmentNick White, CloughLNGGabriel Castaneda, P.E.185 FPSOs in service40 FPSO on order

    Exmar is using PRICO SMR*

  • LIQUEFACTION COMPARISONS

    *

  • Size Range of Liquefaction PlantsNick White, CloughLNGGabriel Castaneda, P.E.

    Exmar is using PRICO SMR*

  • Comparison of Liquefaction TechnologiesNick White, CloughLNGGabriel Castaneda, P.E.

    Exmar is using PRICO SMR*

  • PwagaLiquefaction Technologies Relative Specific WorkWalter Chukwunonso et alRelative specific work, KJ/ KG LNG LNGGabriel Castaneda, P.E.

    PROCESSFinn et al (relative to Cascade)Dam et al (relative to MFC)Foerg (relative to MFC)Vink et al (relative to C3-MR)Barclay et al ( relative to C3-MR)Pwaga (relative to DMR)Cascade1.0 (1188)1.39 (1382)1.1551.156 (1218)SMR1.25 (1485)1.1421.189 (1253)1.1 (1393)C3-MR1.15 (1366)1.09 (1083)1.0331 (1054)1 (1054)DMR1 (994)1.025 (1080)1 (1271)MFC1single N2 Expander2 (2376)3.1 (3266)C3 precooled single N2 expander1.7 (2020)3.32 (3499)double N2 Expander1.7 (2020)1.35 (1426)1.5 (1912)NICHE LNG1.42 (1800)

    PgawaSome recent advances in liquefied Natural gas production, spill dispersion and safetyWalter Chukwunonso etalEnergy Fuels 2014, 28(6) pp 3556-3586*

  • Wonsub Lim et alLiquefaction Technologies - FLNGLNGGabriel Castaneda, P.E.

    *

  • Maneenapang Bunnag et al, PTTDMR Process vs Expander and SMR

    LNGGabriel Castaneda, P.E.

    Dual N2 ExpanderNiche ProcessSMRHC InventoryNot RequiredNot RequiredRequired for SMRSafety/ Flaring- Only gas phase- Only gas phase- 2 phase- Less flaring- Moderate flaring- High flaring- Higher risk- Refrigerant handlingEfficiency, kWh/kg0.440.440.3Complexity- Low- Low- High - Easier for adjusting by N2 circulation rate- Easier for adjusting by N2 circulation rate- MR blending composition has to be adjusted according to feed gas compositionEquipment count- Low- Low- Higher- Higher compactness compared to dual N2 expander because uses CH4 refrigerant

    Sensitivity analysis of proposed LNG liquefaction processes for LNG FPSO, Sultan Seif Pwaga, Norwegian University of Science and Technology, masters thesis, July 2011*

  • Shell Prelude size comparisonShell3.6 MTPA LNG5.3 MTPA of liquidsCAPEX $12 Billion USD (estimated)LNGGabriel Castaneda, P.E.

  • DMR PROCESS

    *

  • DMR ProcessLNGGabriel Castaneda, P.E.Shell

  • Yuli Amalia Husnil et alDMR Operating ConditionsLNGGabriel Castaneda, P.E.

    Optimizing control structure for dual mixed refrigerant processYuli amali husnil, Bonggu Choi, Jinho Park, Riezqa Andika and Mooonyong LeeAdconip 2014 Hiroshima*

  • Yuli Amalia Husnil et alConceptual Process Flow Diagram DMR ProcessLNGGabriel Castaneda, P.E.

    Optimizing control structure for dual mixed refrigerant processYuli amali husnil, Bonggu Choi, Jinho Park, Riezqa Andika and Mooonyong LeeAdconip 2014 Hiroshima*

  • NFPA 59A, 2001IoMosaicThermal Radiation HazardLNGGabriel Castaneda, P.E.All specific conditions are further defined on NFPA59A

    Thermal Radiation FluxObserved effectBTU/hr ft211,900Sufficient to cause damage to process equipment8000 The minimum energy required to ignite wood at indefinitely long exposure (non piloted)4000 The minimum energy required for piloted ignition of wood, and melting of plastic tubingThis value is typically used as a fatality number2850 Sufficient to cause pain in 8 seconds and 2nd degree burns (blisters ) in 20 seconds 1300 Sufficient to cause pain to personnel if unable to reach cover within 20 seconds1300However, blistering of skin (second degree burns) is likely; 0% lethality500 Will cause no discomfort for long exposure

    Thermal radiation flux Maximum allowed radiation out of property line onBTU/hr ft21600spills of tanks1600ignition of impounding areas affecting outdoor assembly by groups of 50 or more people3,000buildings for assembly, educational, healthcare, detention and correction or residential10,000ignition of impounding areas

    First degree burn superficial burnSecond degree burn- layer of skin blister and popThird degree burn burn goes into every layer of skin and can extend to bloodstream, organs and bones*

  • HEAT EXCHANGERS

    *

  • Heat Exchanger Plate Aluminum Heat ExchangerLindeLNGGabriel Castaneda, P.E.

    PgawaSome recent advances in liquefied Natural gas production, spill dispersion and safetyWalter Chukwunonso etalEnergy Fuels 2014, 28(6) pp 3556-3586*

  • Heat Exchanger Coil Wound Heat ExchangerDuan ZhongdiLNGGabriel Castaneda, P.E.

    A simulation tool for coil wound heat exchanger in LNG processDuan ZhongdiShanghai Jiao Tong University ,China*

  • Inlet Temperature and Ambient Temperature Effect on TurbineGeneral ElectricLNGLNGGabriel Castaneda, P.E.

  • AMERICAN BUREAU OF SHIPPING

    *

  • Hazard and Operability Study (HAZOP)Failure Mode and Effects Analysis (FMEA)Failure Mode, Effects and Criticality Analysis (FMECA)Process Hazard Analysis (PHA)Safety ReviewsChecklistsExperience from previous analyses

    FLNG Safety American Bureau of ShippingLNGGabriel Castaneda, P.E.American Bureau of ShippingRisk Evaluation Methodology

    American Bureau of ShippingRules for building and classing facilities on offshore installationsJanuary 2014*

  • Fire and explosionHydrocarbon releaseBlow-outStructural failureLoss of stabilityLoss of station keeping/mooring

    FLNG Safety American Bureau of ShippingLNGGabriel Castaneda, P.E.American Bureau of ShippingRisk Assessment Identification of HazardsLoss of electrical powerToxicityExtreme weatherEnvironmental factorsDropped objectsShip and helicopter collision

    American Bureau of ShippingRules for building and classing facilities on offshore installationsJanuary 2014*

  • FLNG Projects (2013)Dominique Pelloux-Prayer, GDF Suez LNGLNGComposite Curve Of SystemGabriel Castaneda, P.E.

  • APCI LNG ProcessLNGGabriel Castaneda, P.E.

  • PRICOPRICO ProcessLNGGabriel Castaneda, P.E.

  • PRICOPRICO ProcessLNGGabriel Castaneda, P.E.

  • C3MR ProcessLNGGabriel Castaneda, P.E.

  • PMR ProcessLNGGabriel Castaneda, P.E.

  • AP-X ProcessLNGGabriel Castaneda, P.E.

  • Phillips Optimized Cascade ProcessLNGGabriel Castaneda, P.E.

  • Nitrogen Expansion ProcessLNGGabriel Castaneda, P.E.KJ Vink et al, Shell

    Comparison of Baseload liquefaction processesKJ Vink et alShell*

  • MFC ProcessLNGGabriel Castaneda, P.E.

  • LummusUS 6,637,237LNGEthylene Mixed Refrigerant SystemGabriel Castaneda, P.E.

  • LNGAPCI C3MR ProcessGabriel Castaneda, P.E.

  • LNGCOP Optimized Cascade ProcessGabriel Castaneda, P.E.

  • PettersenLNGNitrogen Expansion ProcessGabriel Castaneda, P.E.

    Jostein Pettersen Natural Gas Liquefaction Gas processing and LNG (TEP 08), November 2010, harmerfes*

  • NICHE LNGCB&ILNGGabriel Castaneda, P.E.

    *

  • LNGAxens LiquefinGabriel Castaneda, P.E.

  • LNGStatoil / Linde mixed fluid cascadeGabriel Castaneda, P.E.

  • LNGBlack & Veatch PRICO ProcessGabriel Castaneda, P.E.

  • Turbines to be used in North American projectsLNGGabriel Castaneda, P.E.

    DominionCove PointGE 7EA DLN1CheniereSavine PassGE LM2500+G4CheniereCorpusGE LM2500+G4SempraCameron LNGGE 7EA Jordan Cove EnergyJordan Cove PointGE LM 6000LNG Canada DevLNG CanadaGE LMS 100PB

  • Composite Curve Of SystemLNGGabriel Castaneda, P.E.

  • ConocophillipsPacking for Towers Belnak ProjectLNGGabriel Castaneda, P.E.

    LM2500 or LM6000

    Frame 7 190MW*Typically the compressors used in the liquefaction process that are driven by gas turbines need to be selected to operate across a fairly wide band of power inputs due to the varying power produced by the GT drivers as the ambient temperature varies. As the use of an appropriately sized TIC system allows the GT to produce a much more constant output, the compressor can be selected and optimized for operation across a much narrower power band.*Australia Pacific LNG Project Greenhouse Gas Management Plan LNG Facility*Australia Pacific LNG Project Greenhouse Gas Management Plan LNG Facility*Computer Aided DesignComputational fluid dynamics, CFDFinite Element Analysis FEA*AP-X used in QatarShell DMR used in SakhalinA historical review of turbomachinery for LNG applicationsMarybeth Nored, Andrew Brooks, Apache corporation*PgawaSome recent advances in liquefied Natural gas production, spill dispersion and safetyWalter Chukwunonso etalEnergy Fuels 2014, 28(6) pp 3556-3586*Sensitivity analysis of proposed LNG liquefaction processes for LNG FPSO, Sultan Seif Pwaga, Norwegian University of Science and Technology, masters thesis, July 2011*Sensitivity analysis of proposed LNG liquefaction processes for LNG FPSO, Sultan Seif Pwaga, Norwegian University of Science and Technology, masters thesis, July 2011*Delivering Floating LNG in the Timor SeaDominique Pelloux PrayerGDF Suez LNGJournees Annuelles des Hydrocarbures, 23 and 24 of October, 2013 Palais des Congres- Paris

    LNG Technology advances and challengesRR Bowen, SPE et al, Exxonmobil development companyInternational Petroleum Technology ConferenceIPTC12111*Pretreatment of acid gas in feed for Petronas floating LNG facilityZainab Kayat PetronasMark Schott, et al, UOP*Benefits of a cylindrically shaped floater for an FPSO application in cyclone exposed environmentsFredrik Major, CBDO, Sevan Marine ASAThursday 14 November 2013, Parmelia Hilton Hotel I Perth Australia*Rapid phase transitionLNG heats up and gets a new vapor pressure, which is not the current pressure of 14.7psia, therefore it expands explosively.*Ji-Hyn Hwang, Myung Il Roh, Kyu Yeul LeeDetermination of the optimal operating conditions of the dual mixed refrigerant cycle for the LNG FPSO topside liquefaction processComputers and Chemical Engineering, 49 (2013) 25-36

    Submerged pumps to prevent leaksTurbines not on top of LNG and LPG tanksNo hydrocarbon pump room in subsurface to preent explosions in confined spacesHeliport away from process, helicopter should not fly over process

    No reciprocating equipment (pumps and compressors)All cargo at low pressure

    *Rapid phase transitionLNG heats up and gets a new vapor pressure, which is not the current pressure of 14.7psia, therefore it expands explosively.*Floating liquefied gas terminals offshore technical guidance otg-02, DNV Veritas, March 2011*Exmar is using PRICO SMRPFLNG 1 just ship about 771 Million dollars*Dominique Pelloux PrayerDelivering Floating LNG in the Timor SeaJournees Annuelles des Hydrocarbures, 23 et 24 Octobre 2013 au palais des congress, Paris*Golar PRICO *

    *D Bjerketvedt et al/ Journal of Hazardous Materials 52 (1997) 1-150*

    *

    *Exmar is using PRICO SMR*

    *Exmar is using PRICO SMR*Exmar is using PRICO SMR*PgawaSome recent advances in liquefied Natural gas production, spill dispersion and safetyWalter Chukwunonso etalEnergy Fuels 2014, 28(6) pp 3556-3586*

    *Sensitivity analysis of proposed LNG liquefaction processes for LNG FPSO, Sultan Seif Pwaga, Norwegian University of Science and Technology, masters thesis, July 2011*

    *Optimizing control structure for dual mixed refrigerant processYuli amali husnil, Bonggu Choi, Jinho Park, Riezqa Andika and Mooonyong LeeAdconip 2014 Hiroshima*Optimizing control structure for dual mixed refrigerant processYuli amali husnil, Bonggu Choi, Jinho Park, Riezqa Andika and Mooonyong LeeAdconip 2014 Hiroshima*First degree burn superficial burnSecond degree burn- layer of skin blister and popThird degree burn burn goes into every layer of skin and can extend to bloodstream, organs and bones*

    *PgawaSome recent advances in liquefied Natural gas production, spill dispersion and safetyWalter Chukwunonso etalEnergy Fuels 2014, 28(6) pp 3556-3586*A simulation tool for coil wound heat exchanger in LNG processDuan ZhongdiShanghai Jiao Tong University ,China*

    *American Bureau of ShippingRules for building and classing facilities on offshore installationsJanuary 2014*American Bureau of ShippingRules for building and classing facilities on offshore installationsJanuary 2014*Comparison of Baseload liquefaction processesKJ Vink et alShell*Jostein Pettersen Natural Gas Liquefaction Gas processing and LNG (TEP 08), November 2010, harmerfes*

    *


Recommended