+ All Categories
Home > Documents > Low Energy and Low Voltage ADC Design Strategy€¦ · Strategy of energy efficient ADC design...

Low Energy and Low Voltage ADC Design Strategy€¦ · Strategy of energy efficient ADC design...

Date post: 27-Jan-2021
Category:
Upload: others
View: 3 times
Download: 0 times
Share this document with a friend
69
1 Low Energy and Low Voltage ADC Design Strategy Akira Matsuzawa Tokyo Institute of Technology
Transcript
  • 1

    Low Energy and Low VoltageADC Design Strategy

    Akira Matsuzawa

    Tokyo Institute of Technology

  • 2Outline

    • Overview of ADCs

    • OpAmp based ADC design

    • Comparator based ADC design : SAR ADCs

    • Flash and sub-ranging ADCs

    • Summary

  • 3ADC performance

    0 10 20 30 401 10 10

    1 10 9

    1 10 8

    1 10 7

    1 10 6

    1 10 5

    1 10 4

    1 10 3

    0.01

    0.1

    1

    6)

    SNR (dB)

    BE

    R

    QPSK 16QAM 64QAM 256QAM

    N

    S

    PPBWC 1log2

    Shannon’s theory to determine capacity

    N

    ADCN

    S

    PP 225.1

    SNR of ADC is

    sNfC

    srate NfD Higher data-rate can be realizedby higher multi-level modulation.It result in increase of ADC resolution.

    2sfBW

    Conversion frequency is determined by signal bandwidth.

    Therefore

    Data rate is proportional to the product of fs and N

    fs: Sampling frequencyN: Resolution

  • 4Performance and architectures of ADCs

    4 6 8 10 12 14 16

    10M

    1M

    100k

    10k

    100M

    1G

    10G

    184 6 8 10 12 14 16

    10M

    1M

    100k

    10k

    100M

    1G

    10G

    18

    Con

    vers

    ion

    freq

    uenc

    y (H

    z) Flash

    Pipeline

    Delta-sigmaSAR

    Sub-ranging

    Resolution (bit)

    ADC has a suitable performance domain.SAR ADC expands the performance area

    OpAmp based

    Comparator based

  • 5Strategy of energy efficient ADC design

    Reducing static powerResistor DAC Capacitor DACOpAmp based Dynamic comparator based

    2DDd CVE

    Reducing capacitance

    Flash Sub-range SAR# of CMP

    TR sizeG

    T CV 1 Large TR Small TR with compensation

    Noise

    CVn

    1

    Use complementally ckt.

    Clock Use self clocking

    Reducing voltageEffective to digital gates

    Use forward or adaptive body biasing

  • 6SNR vs. signal bandwidth

    50

    60

    70

    80

    90

    0.1 1 101 102

    135 dB/Hz

    143 dB/Hz

    150 dB/Hz

    BCDEFGHIJK

    [8] VCO[9] VCO[10]CT[11]DT[12]CT[13]CT/DT[14]DT[15]CT[16]CT[17]DT

    BCDEFGHIJK

    [8] VCO[9] VCO[10]CT[11]DT[12]CT[13]CT/DT[14]DT[15]CT[16]CT[17]DT

    fb (MHz)

    SN

    R (d

    B)

    bfdBSNRdBSNR log10)()( 0

    N

    s

    PPdBSNR log10)(

    bNN fnsityspectrumdePP )('

    bN

    s fPPdBSNR log10'

    log10)(

    SNR0

    bfdBSNRdBSNR log10)()( 0

    SNR of ADCs is inversely proportional to signal bandwidth, fb. Higher bandwidth results in lower SNR and effective resolution.

  • 7SNR vs. signal bandwidth

    143dB

    133dB

    123dB

    Timmy Sundstrom, PhD thesis, Linkoping 2011.

    fs=4fb

    Same tendency to higher BW.

  • 8Fundamental Energy of sampling circuit

    Signal

    Switch Capacitor

    Track Hold

    NFSqn

    qnVVP 2

    22

    21212

    NFS

    qnVV2

    TCVn k21

    21 2

    Sampling circuit

    Electrical energy=Thermal energy

    CTVn

    k2

    Quantization voltage

    Quantization noise power

    qnn PV 2

    2

    22k12FS

    N

    VTC

    C C

    NFSd TCVE

    22 2k242

    Noise balance

    Capacitance

    Pd of sampling circuit

    Ns TE

    22k24Fundamental energy of sampling is often used. However this neglects power for comparison.

  • 9Energy consumption of ADC

    Timmy Sundstrom, PhD thesis, Linkoping 2011.

    Nss TE

    22k24

    Energy of ADC is reaching 100x of the fundamental sampling energy,and 10x of the fundamental ADC energy consumption.

    Consumed energy of ADC is mainly determined by the resolution.

    192 102 NsEEs

    sADC ENE

    EADC

    Conventional fundamental sampling energy

    Fundamental ADC conversion energyinvolving energy consumption of comparator

    192 102 NADC NE

  • 10

    OpAmp based ADC design

  • 11Mega-technology trend of ADCs

    2C

    4C

    8C

    16C

    16CC

    Major conversion scheme is now changing from pipeline to SAR.

    Pipeline ADC

    SAR ADC

    CMPDAC

    -

    -+

    +

    Op amp

    CMPDAC

    -

    -+

    +

    Op amp

    1st stage 2nd stage

    Sample Amplify

    Cf

    Cs

    Cf

    Cs

    1st stage 2nd stage

    OpAmp based design

    Comparator based design

    Consumes static power

    No static power

  • 12Amplifier for pipeline ADC

    Vsig

    VDAC

    Cf

    Vout

    Cs

    -1

    -0.75

    -0.5

    -0.25

    0

    0.25

    0.5

    0.75

    1

    -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

    1stage

    OpAmp

    Vref

    Comp

    DataVsig

    Vou

    t

    221 DACsigDAC

    f

    s

    f

    ssigout

    VVVCC

    CCVV

    Conventionally Cs=Cf=C0

    0,refDAC VV

    Unit conversion circuit

    I/O transfer characteristics

    An OpAmp realizes an accurate voltage amplification.

  • 13Low voltage OpAmp: Headroom and Pd

    n

    VkTVNf

    VIVP

    II

    thn

    effcDDtotDDda

    tot

    25

    25

    2_

    2

    nV

    kTVNfVNfCI

    NfCVIg

    NfCgGBW

    thn

    effceffc

    ceff

    m

    cm

    22

    2

    424

    2_

    02

    02

    2

    0

    2

    VDDVbp

    Out

    Vbn

    In Vs

    Veff

    Veff

    Two stage OpAmp

    gm2

    gm1

    I1

    I2

    I2I1

    n=4

    n

    VkTVNf

    VPPthn

    effcDDdampdpipe 2102 2

    _

    effDDpps VVV 22_ TGSeff VVV

    VVeff 15.0

    Total Pd of ADC

    A two stage cascade OpAmp can realize low voltage operation.However, the output voltage swing become lower at low voltage operation.

    2_

    0 2thnV

    kTnC

    1212 44 IIgg mm

  • 14Required performances

    222

    22

    31

    231

    N

    effDDNsig

    q

    VVVV

    12222_ ENOBqthn VV

    2_

    0 2thnV

    kTnC

    Quantization voltage

    Thermal noise

    Unit capacitance

    31:

    #:2:

    factorfeedbackβ

    sourcesnoiseofntcoefficiennoiseγ

    cNfGBW

    106)( NG dB70dB: 10b94dB: 14b

    N: Resolutionfc: Conversion freq.

    Open loop gain

    ENOB: Effective # of bit

    GBW

    Required gain and bandwidth of OpAmp and capacitance are determined bythe resolution and conversion frequency.

    idealfromnDegradatioENOB :

  • 15C0 and Pd at low voltage operation

    12bit, 100MHz ADC

    Capacitance should be larger at low voltage operation to keep sufficient SNR. This results in rapid increase of power dissipation.

    effDDpps VVV 22_ kTVVC

    kTVC

    SNR effDDpps2

    02_0 22 20 2 effDD VV

    SNRkTC

    eff

    Dmc VC

    ICgGBWf

    00

    2

    20 2 effDDDDeffc

    DDeffcDDDd VVVSNRVTf

    VVfCVIP

    Low voltage doesn’t make sense for pipeline ADC.

    0.4 0.6 0.8 1 1.21 10 12

    1 10 11

    1 10 10

    1 10 9

    Vdd

    C0

    (F)

    20 21

    effDD VVC

    P d(W

    )

    0.4 0.6 0.8 1 1.20.01

    0.1

    1

    10

    Vdd

    22 effDDDD

    d VVVP

  • 16FoM: Figure of Merit of ADC

    222

    2122230

    effDD

    DDeffENOB

    N

    cd VVVVkTnNfP

    Nc

    ENOBd

    ENOBc

    d

    fP

    fPJFoM

    22

    2)(

    idealfromnDegradatioENOB : 22 212

    2230effDD

    DDeffENOB

    ENOB

    VVVVkTnFoM

    0.4 0.6 0.8 1 1.21 10 13

    1 10 12

    1 10 11

    FoM

    (J/c

    onv.

    ste

    ps)

    VDD (V)

    FoM stands for consumed energy normalized by the effective steps.

    12bit, 100MHz ADC

    Low voltage operation for OpAmp based ADC increases FoM.

  • 17

    eff

    Dmc VC

    ICgGBWf

    00

    2

    20 2 effDDDDeffc

    DDeffcDDDd VVVSNRVTf

    VVfCVIP

    FoM vs. VDD

    Nc

    ENOBd

    ENOBc

    d

    fP

    fPJFoM

    22

    2)(

    An OpAmp based ADC consumes much conversion energy

    12bit ADC

    0.4 0.6 0.8 1 1.21 10 15

    1 10 14

    VddVDD (V)

    FoM

    (J/C

    onv.

    ste

    ps)

    SAR ADC 6fJ

    0.4 0.6 0.8 1 1.21 10 13

    1 10 12

    1 10 11

    FoM

    (J/c

    onv.

    ste

    ps)

    VDD (V)

    Pipelined ADC

    150fJ

  • 18

    Comparator based ADC design : SAR ADC

  • 19Basic idea for low energy analog design

    sDDd

    LDD

    stogle

    IVPCVIf

    CML, OpAmp

    VDD

    Vi+ Vi-

    Vo-CL

    RL

    CL

    RLVo+

    Is

    RO

    CL

    Vi Vo

    VDD

    CMOS

    2DDL

    dtogle VC

    Pf

    2

    21

    DDLdd VfCfEP

    Conventional analog circuits consume larger energy. Dynamic circuits doesn’t consume larger energy.

    2

    21

    DDLd VCE

    CMOS: Consumed energy is independent of delay time.

    Lortogle CRTf 11

    Lotogle CRf 1

  • 20SAR ADC

    Vin

    Vref

    Comparator Logic

    Switches

    Capacitors

    S11 S12 S13 S14 S15

    S2

    S0

    2C

    4C

    8C

    16C

    16C

    VrefVin

    NA

    C

    Cn1

    nC

    10 n

    refsigx VnVV VxNA

    Sample 221

    refCVE

    SAR can be designed to consume no static power.

    Generating subtracted signal

    No resistorsNo static current !Potentially full swing

    inCVQ

    SAR can realize larger signal swing compared with pipeline ADC.

    Not OpAmp based,but comparator based

  • 21Performance overview of SAR ADCs

    FoM has lowered rapidly due to the progress of SAR ADC.

    1/200 during three years.

    FoM trend of 10bit ADC

    0.1

    1

    10

    100

    1000

    2005 2006 2007 2008 2009 2010

    Recent FoM rangeFoM

    (fJ/

    conv

    . ste

    ps)

    stepsconvfJseveral ./10

  • 22Issue of comparator for SAR ADCs

    A comparator has noise and this results in conversion error.

    V. Giannini, P. Nuzzo, V. Chironi, A. Baschirotto, G. van der Plas, and J. Craninckx, “An 820uW 9b 40MS/s Noise Tolerant Dynamic-SAR ADC in 90nm Digital CMOS,” IEEE ISSCC 2008, Dig. of Tech. Papers, pp.238-239, Feb. 2008.

  • 23Dynamic comparator

    CLK

    CLK CLK

    CLK

    INP

    SPSN

    INNFN FP

    2iV

    2iVID ID

    CL

    CL

    VDD

    A dynamic comparator is widely used to reduce static power.

    The difference in input voltages causes a difference in discharging speed.

    D. Schinkel, E. Mensink, E. Klumperink, Ed Van Tuijl, B. Nauta,

    “A Double-Tail Latch-Type Voltage Sense Amplifier with 18ps Setup-Hold Time,” ISSCC Dig. of Tech. Papers, pp.314-315, Feb., 2007.

  • 24Deriving noise equation

    12

    2

    eff

    dd

    ds

    Lt V

    VIkTC

    d

    2

    02

    22

    22 1

    d

    d

    t

    nD

    vnD

    Lt dtiII

    C

    22

    222 k,k

    D

    L

    L

    D

    nt

    Ln I

    TC

    CI

    CTv

    d

    1) Sampling noise of Switch

    2) Transistor noise

    dt

    nL

    n dtiCv

    0

    1

    Noise voltage of output by current noisevICtD

    L

    td

    ni

    VDD

    VDD/2

    td

    td

    VL

    time

    Vi VL

    ni ID CL

    S

    VDDimVg

    Equivalent circuit

    TR noiseVoltage and timing

    Transistornoise

    Samplingnoise

    1

    k422

    222

    eff

    dd

    ddL

    eff

    d

    tdeffin V

    VαγVCα

    TVtδ

    αV

    A. Matsuzawa," IEEE 8th International Conference on ASIC(ASICON), pp. 218-221, Oct. 2009.

  • 25Match with noise simulation

    DDL

    effin VC

    kTVV

    2

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    0 10 20 30 40

    CL [fF]

    δV

    in(σ

    ) [

    mV

    ]

    Estimation(α=2)Estimation(α=1)Simulation

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    -1.0 -0.6 -0.2 0.2 0.6 1.0

    ΔVin [mV]

    P (out=

    hig

    h) [%

    ]

    The derived equation has a good match with simulation.

    Noise in comparator

    1

    k422

    22

    eff

    dd

    ddL

    effin V

    VαγVCα

    TVVδ

  • 26Required capacitance and consumed Energy

    6 7 8 9 10 11 12 13 140.1

    1

    10

    100

    1 103

    1 104

    1 105

    CL(

    fF),

    Ec(f

    J)

    Resolution (bit)

    CL

    Ec

    VDD=1V, Veff=0.2V

    Node capacitances should be increased to realize higher ADC resolution.This results in increase of consumed energy of the dynamic comparator.

    2fF & 4fJ @8bit40fF & 80fJ @10bit0.6pF & 1pJ @12bit10pF & 20pJ @14bit

    Flash ADC: Ec determines the minimum FoMSAR ADC: Ec cannot be neglected for higher resolution ADC

    Ec: conversion energy

  • 27Noise improvement of dynamic comp.

    CLK

    VINP_a VINP_b VINN_b VINN_a

    Gate weighted interpolation

    Offset CALVdd

    Voutp

    VoutnWPa WNaWNbWPb

    V n(

    ) [m

    V]

    M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov. 2008.

    Yusuke Asada, Kei Yoshihara, Tatsuya Urano, Masaya Miyahara, and Akira Matsuzawa, "A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC," A-SSCC, 5-3, pp. 141-144, Taiwan, Taipei, Nov. 2009.

    90nm CMOS

    Dynamic comparatorNoise of comparator

    Noise of comparator can be reduced by complementary ckt. and an optimizationof the node capacitance.

    CMOS input

  • 28Pd estimation of SAR ADC

    Vin

    Vref

    Comparator Logic

    Switches

    Capacitors

    222 DDLcdc VCfNp 22 DDscds VCfp

    22 DDgcdc VCNfp

    Cs: Total sampling capacitanceCL: Load capacitance of comparatorCg: Effective capacitance of gates and switches

    Cg: const

    2

    22

    DD

    N

    s VC 3

    22

    DD

    N

    L VC

    1) S/H&CDAC 2) Comparator

    2) Logic gates and switch drivers

    Divide SAR ADC into three different circuits.

    Akira Matsuzawa, ISSCC Forum, San Francisco, CA, Feb. 2011.

  • 29Equations to estimate the ADC performance

    222 DDLcdc VCfNp

    22_ 1

    4

    DD

    eff

    eff

    DD

    Lthn V

    VVV

    CkTV

    22

    231

    N

    DDq

    VV

    222_ 12 qENOBthn VV

    2

    2_

    14

    DD

    eff

    eff

    DD

    thnL V

    VVV

    VkTC

    N

    c

    ENOBdgdcds

    fPPP

    FoM2

    2

    2_

    4

    thns V

    kTC

    22 DDscds VCfp

    22 DDgcdg VCNfp

    Quantizationvoltage

    Permitted thermalnoise

    ThermalNoise of COMP.

    Sampling capacitor

    LoadCapacitorOf COMP.

    Pd of S/H

    Pd of COMP.

    Pd of Gate

  • 30C, Pd, and FoM vs. VDD

    0.4 0.6 0.8 1 1.21 10 13

    1 10 12

    1 10 11

    Vdd

    0.4 0.6 0.8 1 1.21 10 5

    1 10 4

    1 10 3

    0.01

    Vdd

    Cs,

    CL

    (F)

    VDD (V) VDD (V)

    P d(W

    )

    Cs

    CL S/H

    Comp

    Logic

    Cg=0.1pF

    Cg=0.3pF

    2

    1

    DDs V

    C

    3

    1

    DDL V

    C

    DDdc VP 1 2

    DDdg VP

    .constPds

    Cs and CL increase with reducing VDD,since the quantization voltage decreases with reducing VDD.

    Pd of S/H is constant for VDD,however Pd of comparator increases with reducing VDD.Pd of logic gate decreases rapidly with reducing VDD.

  • 31FoM vs. VDD

    0.4 0.6 0.8 1 1.21 10 15

    1 10 14

    VddVDD (V)

    FoM

    (J)

    Cg=0.1pF

    Cg=0.3pF

    VVKT

    bitENOBMHzF

    bitN

    eff

    c

    15.03002

    5.010012

    FoM can be lowered by reducing VDD, if Pd of logic gate is dominant.

    Thus the voltage lowering is effective to reduce Pd for low resolution ADC,However, it is still difficult to reduce Pd by reducing VDD for high resolution ADC,even if SAR ADC architecture is used.

    Gate dominant

    COMP dominant

  • 32Example: An ultra-low power CDCWe have developed an ultra-low power Capacitance to Digital Converter.

    1. 10b SAR like architecture2. Self-clocking3. Single to differential

    ① ②③

    3nA @ 30 times/secTuan Minh Vo,Yasuhide Kuramochi, Masaya

    Miyahara,Takashi Kurashina, and Akira Matsuzawa“A 10-bit, 290 fJ/conv. Steps, 0.13mm22, Zero-Static

    Power, Self-Timed Capacitance to Digital Converter.”SSDM 2009, OCT.

  • 33Self clocking technique

    Comparison is ended if the output voltages are not same.

    Output voltage of dynamic comparator

    Self-clocking scheme

    Self-clocking scheme is very useful1) Reducing power consumption (Clock circuits, routing clock, )2) Just an enable command signal is required. No need of clock.

    Suitable for micro controller.

  • 34

    60GHz Short range mm-wave system

    Background

  • 35Frequency plan in 60 GHz range

    Ch.1 Ch.2 Ch.3 Ch.4

    57 58 646362616059 65 66

    2160 MHz

    1760 MHz

    Frequency [GHz]

    BW: 1.8GHz, 4 channels

    IEEE 802.15.3c

    BPSK: 1.7 GbpsQPSK: 3.5 Gbps16QAM: 7 Gbps

    802.15.3c-2009, IEEE Std., Oct. 2009. [Online]. Availablehttp://standards.ieee.org/getieee802/download/802.15.3c-2009.pdf

    Wide frequency range for 60 GHz short distance communication

  • 36System block diagram

    RF Front-end IC (65nm CMOS) Baseband IC (40nm CMOS)

    Digital Base Band60GHz ILO20GHz PLL 3456MHz PLL

    PLL PLL

    LPF ADC

    VGA ADC

    Buff

    BuffLNA

    VGA

    DAC

    LPF

    DAC

    DAC

    DACDAC

    LPF DAC

    DACPA

    LPF

    DAC

    36MHz TCXO

    DAC

    8bDAC

    DAC

    Reg. bank addr/data

    chch

    8b 8b

    8b

    8b+6b 8b+3b

    By Sony

    Matsuzawa and Okada lab. developing

  • 37Equipment image

    Gain: 5.6 dBi

    Two chips solution on one PCB with antenna

    Low cost system

  • 38

    40nm CMOS (BB)

    4.2m

    m3m

    m

    Tokyo Tech SONY 38

    Developed chips

    65nm CMOS (RF)

    LNAQ MIXER

    I MIXER

    LO BUF.

    LO BUF.

    Q.OSC.

    LogicI MIXER

    Q MIXER

    LO BUF.

    LO BUF.

    Q.OSC.PA

    PLL LO BUF.

    DCTR

    DAC(Qch)

    ADC(Qch)VGA

    VGA

    DAC(Ich)PLL

    Digital BB

    LVDS(11ch)

    LVDS(11ch)

    LDPC

    ADC(Ich)RAM

    K. Okada, .., A. MatsuzawaISSCC 2012

  • 39

    39

    Block Diagram of RF Chip

    Tx Output

    LNA

    I Mixer

    RF Amp.Rx input

    BB LNA

    PFD

    20GHz PLL19.44GHz, 20.16GHz,20.88GHz, 21.60GHz

    Q Mixer

    I Mixer BB Amp.

    LO Buf.

    BB Amp.

    RF Amp.

    RF Amp.PA

    Q MixerRx input BB LNA

    RF Amp.

    36MHz

    LO Buf.

    CP LPF

    ÷4 CML÷5÷(27,28,29,30)

    LogicChannel selectionGain controlPower managementTDD control

    Controlsignals

    I+

    I-

    Q+

    Q-

    I+

    I-

    Q+

    Q-

    Ref.Clk

    60GHz QILO

  • 40

    40

    Block Diagram of BB Chip

    I+

    I-

    Q+

    Q-

    LPF

    LPF

    Analog BB

    ClockPLL

    2fs

    (4/3)fs

    Digital BB

    RxFilter

    AGC

    DCTR*

    SyncDetector

    LDPCDecoder

    BB/RFControlPRBS generator

    Saw-tooth wave gen.BER calc.AWGN generatorRAM

    Test modules

    TxFilter

    SyncGenerator

    LDPCEncoder

    LVDS

    LVDS

    Max. 6.3Gb/sTx PHY data

    Max. 6.3Gb/sRx PHY data

    Controlsignals

    I+

    I-

    Q+

    Q-

    Controlsignals

    VGALPF

    VGALPF

    ADC

    ADC

    DAC

    DAC

    Ref.Clk

    *digital carrier and timing recovery

    (35 MHz)

  • 41

    41

    RF Measurement Setup

    I/Q

    Control signals

    RF board(Tx mode)

    I/Q

    Control signals

    RF board(Rx mode)

    Power supply Power supply

    AWGAgilent M8190A

    OscilloscopeAgilent DSA91304A

    Laptop PC Laptop PC

    I/Q output (Rx)

    I/Q input (Tx)

    DC supply

    DC supply16.3mm x 14.4mm

    6-dBi antennaTx

    [3] R. Suga, et al., EuMC 2011

    Rx

  • 42

    42

    RF+BB Measurement Setup

    AbsorberRF boardRF board BB boardBB board

    BB chip BB chipRF chipwith 6dBi antenna [3]

    [3] R. Suga, et al., EuMC 2011

    I/Q

    Control signals

    RF boardI/Q

    BB PHYControl(FPGA)

    Laptop PC

    Power supply

    I/Q

    Control signals

    I/Q

    RF board

    Power supply

    BB PHY Control(FPGA)

    Laptop PC

    Tx mode Rx mode

  • 43

    -40-30-20-10

    010

    55.08 58.32 61.56-40-30-20-10

    010

    57.24 60.48 63.72-40-30-20-10

    010

    59.40 62.64 65.88

    -40-30-20-10

    010

    61.56 64.80 68.04

    -40-30-20-10

    010

    59.40 62.64 65.88

    7.0Gb/s 16QAM (max 10Gb/s)Channel ch.1 ch.2 ch.3 ch.4 Max rate

    Constellation

    Spectrum

    Back-off 4.4dB 4.6dB 5.0dB 5.7dB 5.0dB(ch.3)Data rate* 7.0Gb/s 7.0Gb/s 7.0Gb/s 7.0Gb/s 10.0Gb/s(ch.3)

    EVM** -23.0dB -23.0dB -23.3dB -22.8dB -23.0dB (ch.3)Distance*** 0.3m 0.5m 0.5m 0.3m >0.01m (ch.3)

    *The roll-off factor is 0.25. The bandwidth is 2.16GHz except for Max rate.**EVM through Tx and Rx boards. ***Maximum distance within a BER of 10-3. The 6-dBi antenna in the package is used.2012/03/05

  • 44

    2012/03/05

    Performance comparison (RF+BB)

    [1] K. Okada, et al., ISSCC 2011 [4] H. Asada, et al., A-SSCC 2011 [5] A. Siligaris, et al., ISSCC 2011 [6] S. Emami, et al., ISSCC 2011 [12] C. Marcu, et al., ISSCC 2009

    Integration Data rate (16QAM) Ch. PDC (Tx/Rx)

    CEA-LETI [5] RF (Hetero) 3.8Gb/s - 1,357mW/ 454mW

    SiBeam [6] RF (Hetero) 3.8Gb/s Ch.1-2 1,820mW/ 1,250mW

    Tokyo Tech(This work)

    RF (Direct) +analog BB+digital BB

    RF+BB:6.3Gb/s Ch.1-4

    RF:319mW/ 223mW

    BB:196mW/ 398mW

    World’s fastest data rate with low power

  • 45Comparison of 60GHz RF front-end

    02468

    101214161820

    2007 2008 2009 2010 2011 2012 2013

    Data

    rate

    [Gb/

    s]

    Year

    UCB

    NEC OOK

    Univ. of Toronto

    FSKOOK

    SiBeam, CEA-LETI

    16QAM

    QPSK+16QAMTokyo Tech

    Toshiba

    IMEC

    direct-conversionother arch.

    2012/03/05

    We attained world’s fast data rate of 16Gbps

  • 46Developing baseband SoC

    40nm CMOS technologyADC

    Developed chip integrating ADC, DAC, VGA,and PLL, using 40nm CMOS technology.

    5b, 3GSps, 12mW/chRX: 300mW, TX: 110mWTokyo tech developed

  • 47Analog Baseband : ADC

    47

    D-FF 5bit x 8

    On-chip foreground calibration

    -80-70-60-50-40-30-20-10

    0

    0 288 576 864 1152Nor

    mal

    ized

    Pow

    er [d

    B]

    Frequency [MHz]

    Fin = 100 MHzVGA Gain = 12 dB

    *single channel inc. S/P

    *

  • 48ADC Comparison

    Architecture Cal. fs[GS/s]SNDR[dB]

    Power[mW]

    FoM [fJ/-c.s.]

    Process[nm]

    Area[mm2]

    [1] Flash - 3.5 31.2 98 946 90 0.149[2] SAR Internal 2.5 34.0 50 489 45 1[3] Folding Internal 2.7 33.6 50 474 90 0.36

    [4] Pipeline, Folding External 2.2 31.1 2.6 40 40 0.03

    [5] Flash Internal 2.88 27.8 36 600 65 0.25

    This work Flash Internal 2.3 26.1 12 316 40 0.06

    [1] K. Deguchi, et al., VLSI Circuits 2007 [2] E. Alpman, et al., ISSCC 2009 [3] Y. Nakajima, et al., VLSI Circuits 2007 [4] B. Verbruggen, et al., ISSCC 2010[5] T. Ito, et al., A-SSCC 2010

    48

  • 49

    Flash and sub-ranging ADCs

  • 50Flash ADC

    Comparator Array

    1

    1

    0

    0

    • Expecting highest speed• Comparator determines the ADC performance

    6b: 63 NFS

    qVV2

    Vq=16mV, Mismatch

  • 51FoM of Flash ADC

    ENOBcENOBN

    s

    Nsc

    ENOBs

    d Ef

    fEf

    PFoM

    22

    22

    Ec: Energy/Comparator

    FoM of flash ADC is determined by energy consumption of unit comparator and the degradation of effective bit.

    Reduction of consumed energy and increase of ENOB are very important.

    2DDc CVE

    2

    q

    n

    2

    q

    off2

    )()(121log21

    VV

    VVENOB

    Offset mismatch Thermal noise (can be neglected)

  • 52Performance of flash ADC

    2

    q

    off2

    )(121log21

    VVENOB

    N

    ENOBd

    fP

    22FoM

    c

    FoM is degraded by the offset mismatch voltage of the comparator.Offset mismatch voltage should be reduced at low voltage operation.

    Voff(): Offset mismatch

    Vq : 1LSB voltage

  • 53Tradeoff: mismatch and energy consumption

    Transistor size (um2)

    0

    5

    10

    15

    20

    25

    0 0.2 0.4 0.6 0.8 1

    0

    50

    100

    150

    200

    250

    300

    350

    オフセット

    消費電力

    Offs

    et m

    ism

    atch

    (mV)

    E c(fJ

    )

    LWVo

    1)(ffset

    LWCE cc

    Serious tradeoff between mismatch of transistor and gate area. Larger transistor is required to reduce mismatch voltageand results in increase of gate area and consumed energy.

    21

    offsetc VE

    Ec=50fJ3mV

    Mismatch compensation

    Example

    6bit ADC: Voff

  • 54FoM vs. Area

    0.01

    0.1

    1

    10

    0.01 0.1 1 10

    Area (mm2)

    FoM

    (pJ/

    conv

    .ste

    p)

    Occupied area should be reduced to lower the FoM.We must pay much attention to the occupied area.

    AreaCEc

    5bit and 6bit ADCs

  • 55Mismatch compensation for the dynamic comparator

    FP or FN

    Vi

    gmVi IDVL

    CLVDD

    CLK

    CLK CLK

    CLK

    INP

    SPSN

    INNFN FP

    2iV

    2iVID ID

    CL

    CL

    VDD

    VDD

    VDD/2 td

    VL

    time

    dt

    D

    LDDd I

    CVt2

    Delay time

    effd

    D

    m

    D

    LDD

    i

    D

    D

    d

    i

    d

    Vt

    Ig

    ICV

    dVdI

    dIdt

    dVdt

    2

    effD

    m

    eff

    D

    eff

    Dm

    effTgsD

    VIg

    VI

    VdIg

    VVVI

    D

    D

    L

    L

    d

    d

    II

    CC

    tt

    eff

    i

    d

    d

    VV

    tt

    D

    D

    L

    Leffi I

    ICCVV

    effi

    d

    d

    VV

    tt

    Mismatch can be compensated by change of capacitance or current

    Equivalent circuit for the fist stage

  • 56Digital calibration methods for mismatchResistor ladder type Capacitor array type

    Binary weighted capacitor arrayY. Asada, K. Yoshihara,T. Urano, M. Miyahara and A. Matsuzawa,

    “A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC” A-SSCC, pp. 141-144, Nov. 2009.

  • 57Effect of digital mismatch compensation

    Measured resultV o

    ffset

    Voffset

    Voffset

    The mismatch voltage can be reduced from 14mV to 1.7mV.

    M. Miyahara, Y. Asada, D. Paik, and A. Matsuzawa, "A Low-Noise Self-Calibrating Dynamic Comparator for High-Speed ADCs," A-SSCC, Nov. 2008.

  • 58Area comparisonPenalty area for digital compensation will be reduced with technology scaling.

    Comprator CAP Array

    Register 4b

    5m

    65 m

    25 m 10 m 30 m

    5m

    85 m

    Comprator

    25 m 30 m 30 m

    Register 4bDecorderMUX

    4.5m

    Comprator

    30 m

    120 mStrage Capacitor & Charge Pump

    90 m

    2.9m

    41 m

    UpDownCounter5b

    22 m

    Comprator &Cap Array

    19 m

    90 nm

    40 nm

    Resistor ladder

    Capacitor array

    Capacitor array

  • 59Issue of resistive DAC to generate VREF

    T/HIN

    7

    7

    7

    7

    15

    Upper bit

    Lowerbit

    Resistive DAC consumes static power and has a serious tradeoff between Pd and speed.

    pronref

    refpronref CRI

    VCRR

    44max I

    τ 1

  • 60Advantage of capacitive DAC to generate VREF

    Operating as S/H circuit• No static power consumption ( 360W@1GHz )• Smaller Cu realize faster settling time

    (tDAC= 3.4 ronCU < 80ps @ rON = 1k, CU= 15fF)

    REFIN

    tot

    pout VnV

    CCV

    1

    1 CRon2DDd CVE

    Capacitor DAC doesn't consume static power and has no trade offbetween Pd and speed.

  • 61Settling time and power

    CDAC realizes faster settling time to RDACwith low power consumption.

    0

    20

    40

    60

    80

    100

    120

    140

    160

    180

    0 50 100 150 200

    time [ps]

    α=0.5 vout(CDAC)

    α=5 vout(CDAC)

    α=10 vout(CDAC)

    RDAC

    0

    200

    400

    600

    800

    1000

    1200

    1400

    1600

    1800

    RDAC

    CDAC

    CDAC

    CDAC

    Time response Power dissipation

  • 626bit sub-ranging ADC using CDAC

    6 bit ADC has been realized in a 90 nm 10M1P CMOS technology with a chip area of 0.13mm2

    Y. Asada, K. Yoshihara,T. Urano, M. Miyahara and A. Matsuzawa,

    “A 6bit, 7mW, 250fJ, 700MS/s Subranging ADC” A-SSCC, pp. 141-144, Nov. 2009.

  • 63Performance comparison

    [1] C-Y. Chen, VLSI Circuits 2008.[2] B-W. Chen, A-SSCC 2008.[3] F. C. Hsieh, A-SSCC 2008.[4] Z. Cao, ISSCC 2008.[6] Y. C. Lien, A-SSCC 2008.

    [1] [2] [3] [4] [6] This WorkResolution(bit) 6 6 6 6 6 6fs(GS/s) 0.8 1.2 0.7 1.25 1 0.7SNDR(DC/Nyq.) 35/32 34/33 31/30 34/28 35/33 35/34Pd (mW) 12 75 24 32 30 7Active area(mm 0.13 0.43 0.052 0.09 0.18 0.13VDD(V) 1.2 1.2 1.2 1.2 1.2/1.0 1.2FoM(pJ) 0.44 2.17 1.31 1.22 0.8 0.25CMOS Tech.(nm 65 130 130 130 90 90Architecture Flash Flash Pipeline 2b-SAR Subrange Subrange

    Attain lowest FoM at that time

  • 64Voltage lowering: FoM vs. VDD

    VDD

    Ec

    Voff

    ENOB

    )(bitENOB cfSVIV

    VCE

    TcDD

    2DDcc

    exp

    Ec:Energy consumption for each comparator and followed logic circuits.

    FoM can be reduced drastically by reducing supply voltage VDD.

    ENOBcE

    2FoM

    ENOB is degraded by the reduction of VDD, however little affects the FoM.

    Energy reduction by reducing VDD is dominant.

    2

    2

    )(121log

    21

    q

    off

    VV

    ENOB

  • 65FoM delay (FD) product

    TDDDD

    d VVVkT

    Delay time

    The FD product suggests the balance between the number of interleaving and decrease of energy consumption.

    VT = 0.4 V DelayFoMFD

    Delay is increased and the operating speed is lowered by reducing VDD

    We should investigate the optimum VDD by FD product.

    Optimum range

  • 66Forward body biasingForward body biasing can decrease the delay time (1/2)and can be used easily at 0.5 V operation.

    VDD

    IN OUTBB

    FBB

    BB

    VTN = 100mV

    VTP = 60mV

    Increased leakage current in the proposed ADC is 0.32 mA by forward body biasing.

    1/2

  • 67ADC Structure

    Block diagram of ADC Chip microphotograph

    5bit 0.5V 600MSps Flash ADC is designed and fabricated in 90nm CMOS.

    S/H circuits use gate boosted switches.

    M. Miyahara , J. Lin, K. Yoshihara, and A. Matsuzawa,“A 0.5 V, 1.2mW, 160fJ, 600 MS/s 5 bit Flash ADC”A-SSCC, pp. 177-180, Nov. 2010.

  • 68Performance Summary

    Reference # [7] [8] [9] [10] This workResolution (bit) 5 5 5 5 5fs (GS/s) 0.5 1.75 1.75 0.06 0.6SNDR (dB) 26 30 30 26 27Pd (mW) 5.9 2.2 7.6 1.3 1.2Active area (mm2) 0.87 0.017 0.03 - 0.083Vdd (V) 1.2 1 1 0.6 0.5FoM(fJ) 750 50 150 1060 160CMOS Tech. (nm) 65 90 90 90 90Architecture SAR Fold+Flash Flash Flash Flash

    [7] B. P. Ginsburg, J. Solid-State Circuits 2007.[8] B. Verbruggen, ISSCC 2008.[9] B. Verbruggen, VLSI Circuits 2008.[10] J. E. Proesel, CICC 2008.

    FoMFmax = 160fJ @ 600MSpsFoMBest = 110 fJ @ 360MSps

    A high speed and low FoM 0.5V flash ADC has been realized.

  • 69Summary of energy efficient ADC design

    Reducing static powerResistor DAC Capacitor DACOpAmp based Comparator based

    2DDd CVE

    Reducing capacitance

    Flash Sub-range SAR# of CMP

    TR sizeG

    T CV 1 Large TR Small TR with compensation

    Noise

    CVn

    1

    Use complementally ckt.

    Clock Use self clocking

    Reducing voltageEffective to digital gates and low resolution ADC

    Use forward or adaptive body biasing


Recommended